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ABSTRACT
We introduce and investigate a novel notion of expressiveness for
temporal logics that is based on game theoretic properties of multi-
agent systems. We focus on iterated Boolean games, where each
agent i has a goal γi, represented using (a fragment of) Linear
Temporal Logic (LTL). The goal γi captures agent i’s preferences:
the models of γi represent system behaviours that would satisfy i,
and each player is assumed to act strategically, taking into account
the goals of other players, in order to bring about computations
satisfying their goal. In this setting, we apply the standard game-
theoretic concept of Nash equilibria: the Nash equilibria of an
iterated Boolean game can be understood as a (possibly empty) set
of computations, each computation representing one way the system
could evolve if players chose strategies in Nash equilibrium. Such
an equilibrium set of computations can be understood as expressing
a temporal property—which may or may not be expressible within
a particular LTL fragment. The new notion of expressiveness that
we study is then as follows: what LTL properties are characterised
by the Nash equilibria of games in which agent goals are expressed
in fragments of LTL? We formally define and investigate this no-
tion of expressiveness and some related issues, for a range of LTL
fragments.
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1. INTRODUCTION
Temporal logics are probably the most successful and widely

used class of formalisms for the specification and verification of
computer systems [10]. In particular, temporal logics have proven
to be enormously valuable in model checking, where a standard
question is whether all computations of a given system satisfy a
particular temporal logic property ϕ [7]. A natural question relating
to temporal logics is that of their expressive power: what system
properties is it possible to express within a particular temporal logic
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or temporal logic fragment? For example, the relative expressiveness
of linear versus branching time temporal logics was a major research
topic in theoretical computer science for more than a decade [11,
31], and still generates debate to the present day.

In this article, we are interested in the use of temporal logic
for reasoning about multi-agent systems, and in particular, we are
interested in questions relating to expressiveness that arise in such
settings. We use iterated Boolean games as our abstract model
of multi-agent systems [15]. In this model, each agent i exercises
exclusive control over a subset of Boolean variables, and the game is
played over an infinite number of rounds, where at each round each
player chooses a valuation for their variables. The result of play is an
infinite computation, which can be understood as a model for Linear
Temporal Logic (LTL) [26, 10]. To represent agent preferences in
iterated Boolean games, each player i is assumed to have a goal γi,
expressed using (a fragment of) LTL: the models of γi represent
computations/plays that would satisfy i. Each player is assumed
to act strategically, taking into account the goals of other players,
in order to try to bring about computations that will satisfy their
goal. We can then apply the standard game-theoretic concept of
Nash equilibrium: the Nash equilibria of an iterated Boolean game
can be understood as a (possibly empty) set of computations, with
each computation representing one way the system could evolve if
players in the game chose strategies in equilibrium.

Our main interest in the present paper is as follows. The Nash
equilibria of an iterated Boolean game are a set of computations,
and such a set of computations can be understood as expressing
a temporal property. Now, suppose we have a game G in which
each player i has a goal γi expressed in a fragment L of LTL: then,
what temporal properties can be expressed by the equilibria of G?
In particular, it is very natural to ask whether the equilibria of an
L-game can be characterised within L itself. We formally define
and investigate this novel notion of expressiveness as well as some
related issues for a range of known fragments of LTL.

The problem of expressing Nash equilibria of concurrent games
has, of course, been considered elsewhere. For instance, a popular
approach is to develop new formalisms for representing temporal
properties of Nash equilibria, and similar game-theoretic solution
concepts, in the object language by adding new operators to existing
temporal logics [5, 14]. We believe that our approach—focussing
on the temporal properties that Nash equilibrium can distinguish in
logic-based (Boolean) games—is markedly different.

707



As a motivating example, consider the following temporal varia-
tion on the Battle of the Sexes game (see, for instance, [21]).

EXAMPLE 1 (BOOLEAN BALLET). Alice and Bob go out ev-
ery weekend, either alone or together. They have to decide repeat-
edly whether to go to the prize fight or to the ballet, but are unable
to correlate their actions. Their preferences, however, are slightly
divergent. Alice wishes always to go out together, whereas Bob
wants to go at least once to the ballet together with Alice but also
at least once wishes to see the prize fight alone. The situation can
be modelled as an iterated Boolean game where Alice controls vari-
able p and Bob variable q. Setting p to true indicates Alice going to
the ballet and similarly for q and Bob. Setting p, (respectively, q),
to false means going to the prize fight. The preferences of the two
agents can then be represented as follows, where Gϕ stands for

“always ϕ,” Fϕ for “eventually ϕ,” and q̄ for “not q”:

γAlice = G(p↔ q) γBob = F(p ∧ q) ∧ F(p ∧ q̄)

Thus, the preferences of the players are phrased using only the
temporal operators F and G. Observe that the set of equilibrium
runs includes the run pq, p̄q̄, p̄q̄, p̄q̄, . . .: Alice and Bob go out to
the ballet together the first time and meet at the prize fight forever
after. Alice will thus be satisfied. Not so Bob, but there is little Bob
can do apart from going to the ballet alone at some point and be
miserable as well, or miss out on the ballet altogether. The set of
equilibrium runs, however, does not include pq, pq, p̄q̄, p̄q̄, p̄q̄, . . .
as Bob would dash off to the prize fight after having been to the
ballet first. The runs that are sustained by a Nash equilibrium are
precisely those in which always either pq or p̄q̄ is the case and in
which either pq or p̄q̄ occurs at most once. This, however, is not a
property that can be expressed in the (stutter-invariant) fragment
of LTL with F and G as the only temporal operators.1 Moreover,
it raises the question as to which properties can be characterised
as the set of runs sustained by a Nash equilibrium of some iterated
Boolean game with the players’ preferences formulated in this and
other fragments.

2. PRELIMINARIES
Our analysis uses Linear Temporal Logic and the iterated Boolean

games based on it. In this section, we present the core concepts of
these frameworks along with a number of auxiliary notions.

Linear Temporal Logic (LTL).
We use the well-known framework of Linear Temporal Logic

(LTL) [26, 10, 2]. The formulae of LTL are constructed in the usual
fashion from a non-empty and finite set Φ of propositional variables
using the Boolean connectives negation (¬ϕ) and disjunction (ϕ ∨
ψ), as well as the temporal operators next (Xϕ), eventually (Fϕ),
always (Gϕ), and until (ϕUψ). truth (>), falsity (⊥), conjunc-
tion (ϕ∧ψ), implication (ϕ→ ψ), and bi-implication (ϕ↔ ψ), are
introduced as the usual abbreviations of p ∨ ¬p, ¬>, ¬(¬ϕ ∨ ¬ψ),
¬ϕ ∨ ψ, and (ϕ → ψ) ∧ (ψ → ϕ), respectively. For p a proposi-
tional variable we will write p̄ for ¬p. We also omit conjunctions in
conjunctive clauses and, for instance, denote p ∧ ¬q ∧ r by pq̄r.

By a valuation v we understand a subset of propositional vari-
ables, that is, v ⊆ Φ. Thus the set of valuations over Φ is given
by 2Φ. Intuitively, a propositional variable p is set to true at valua-
tion v whenever p ∈ v. For a valuation v ⊆ Φ, we have χΦ

v denote
1Interestingly, had Bob’s goal been to go both to the ballet with
Alice and to the prize fight alone infinitely often, that is, if Bob’s
goal had been G(F(p ∧ q) ∧ F(p ∧ q̄)), the set of Nash equilibria
of the resulting iterated Boolean game would be expressible in this
fragment, namely by G(p↔ q) ∧ (FG pq ∨ FG p̄q̄).

the characteristic clause for v given by χΦ
v =

∧
p∈v p∧

∧
q∈Φ\v q̄.

Thus, for w, v ⊆ Φ, we have w |= χΦ
v if and only if v = w. We

will also identify valuations and their characterising clauses, that is,
write pq̄r for valuation {p, r} if Φ = {p, q, r}.

The formulae of LTL are interpreted with respect to runs ρ =
v1, v2, . . . , which we define as infinite sequences (or ω-words) over
valuations in Φ, that is, ρ ∈ (2Φ)ω . We denote the set of runs over
valuations in 2Φ by runs(Φ), again omitting the reference to Φ
when clear from the context.

The semantics of LTL then interprets LTL-formulae with respect
to a run ρ = v0, v1, v2, . . . and time index t ∈ N as follows.

ρ, t |= p iff p ∈ vt (for p ∈ Φ)
ρ, t |= ¬ϕ iff ρ, t 6|= ϕ
ρ, t |= ϕ ∨ ψ iff ρ, t |= ϕ or ρ, t |= ψ
ρ, t |= Xϕ iff ρ, t+ 1 |= ϕ
ρ, t |= Fϕ iff ρ, t′ |= ϕ for some t′ ≥ t
ρ, t |= Gϕ iff ρ, t′ |= ϕ for all t′ ≥ t
ρ, t |= ϕUψ iff for some t′ ≥ t both ρ, t′ |= ψ and

ρ, t′′ |= ϕ for all t ≤ t′′ < t′

We say that a run ρ satisfies a formula ϕ if ρ, 0 |= ϕ. The set of runs
that satisfy formula ϕ we denote by [[ϕ]]. A formula ϕ is satisfiable
if some run satisfies ϕ. Observe that ¬Xϕ is equivalent to X¬ϕ,
and Fϕ to ¬G¬ϕ.

We also employ a number of auxiliary concepts. For Ψ ⊆ Φ and
ρ ∈ runs(Φ), we write ρ|Ψ for the restriction (or projection) of ρ
to Ψ, that is, if ρ = v1, v2, . . . then ρ|Ψ = w1, w2, . . . wherewt =
vt ∩Ψ for each t ≥ 1. For X ⊆ runs(Φ) and Ψ ⊆ Φ, we denote
by X|Ψ the set {ρ|Ψ : ρ ∈ X}.

By a history we understand a finite and possibly empty sequence
π = v0, . . . , vk in V ∗. We let length(π) denote the length of π.
We furthermore use the usual operations on histories. For π and π′,
we have π;π′ denote the concatenation of π and π′, and πω =
π;π;π; . . . the infinite iteration of π. We also specify subsets of
runs in runs(Φ) by ω-regular expressions over the alphabet Σ = 2Φ

using the operations concatenation (X;Y ), union (X + Y ), finite
iteration (X∗), and infinite iteration (Xω).

A history π = w0, . . . , wk is a prefix of a run ρ = v0, v1, v2, . . .
(in symbols π ≤ ρ) if vt = wt for all t ≤ k. The set of prefixes
of a run ρ we denote by prefix (ρ). We say that a history π is the
(unique) maximal common prefix of two (finite or infinite) runs ρ
and ρ′ if π is a prefix of both ρ and ρ′ and no prefix of greater length
has this property. For instance, π = pq, pq̄ and π′ = pq, pq̄, p̄q
are both a common prefix of the runs ρ = pq, pq̄, p̄q, pq, pq, . . .
and ρ′ = pq, pq̄, p̄q, p̄q̄, p̄q̄, . . ., but only π′ is maximal.

We will invoke frequently the notion of an ultimately periodic run.
A run ρ = v0, v1, v2, . . . , is said to be ultimately periodic if there
are s, p ≥ 0, called the starting index and period, respectively,
such that for every t ≥ s, we have that vt = vt+p. The Ultimately
Periodic Model Theorem in [29] establishes that every satisfiable
LTL-formula is satisfied by an ultimately periodic run.

THEOREM 2 (SISTLA AND CLARKE [29]). Every satisfiable
LTL-formula is satisfied by an ultimately periodic run.

Moreover, every ultimately periodic run ρ = v0, v1, . . . over 2Φ

with starting index s and period p is characterised by the formula

χρ =
∧

0≤t≤s+p X
tχvt ∧ X

s
G(

∧
v∈2Φ(χv → X

pχv)),

where X
kϕ = X · · ·X︸ ︷︷ ︸

k times

ϕ.

PROPOSITION 3. Let ρ = v0, v1, . . . be an ultimately periodic
run over 2Φ. Then, ρ is the unique run over 2Φ that satisfies χρ.
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Fragments of Linear Temporal Logic.
We study the expressive power of the most natural, and therefore

most widely known, fragments of LTL. Such fragments are the
“stutter-invariant” fragment (technically, the X-free fragment), de-
noted by LU, as well as other fragments where the use of the “until”
operator is restricted to simply being G or F, leading to the following
sublogics: LG,F,X, where only G and F and X are allowed, and with
similar interpretations, the sublogics LG,F, LX,G+ , and LX,F+ , where
the “+” notation indicates that negations are allowed only in front
of propositional variables (otherwise, for instance, the LG fragment
would be the same as the LF fragment). The fragment LG,F was
briefly discussed in Example 1. We will not study the extremely
weak sublogics LG+ , LF+ , LX, and L∅ (the latter referring to propo-
sitional logic). On the one hand, the two latter sublogics cannot
express interesting properties of infinite runs—all their models are
finite words; on the other hand, the first two sublogics can ex-
press only very limited classes of temporal properties: only “safety”
properties in the case of LG+ and only “reachability” properties in
the case of LF+ . Indeed, our study covers the most relevant LTL
fragments in the literature. Finally, by Lω-reg we refer to the set
of ω-regular expressions, which are seen as an extension of LTL,
rather than a fragment [33]. Sometimes we refer explicitly to the
set Ψ of variables over which L is defined, and write L(Ψ) for L.

Iterated Boolean Games.
Boolean games were introduced by Harrenstein et al. [17] and fur-

ther popularised by, among others, Bonzon, Lang, and Wooldridge
(see, for instance, [4, 12]). In this paper, we adopt the framework of
iterated Boolean games as proposed by Gutierrez et al. [15], where
players play a Boolean game over an infinite number of rounds and
where the players’s goals are given by an LTL-formula. For L a
fragment of LTL over Φ, an L-iterated Boolean game is a tuple

G = (N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn),

where N is a set of players, each Φi ⊆ Φ is a subset of propo-
sitional variables under control of player i, and γi is a formula
in L representing player i’s preferences over runs(Φ). We assume
Φ1, . . . ,Φn to partition Φ, that is, Φ1 ∪ · · · ∪ Φn = Φ and i 6= j
implies Φi∩Φj = ∅. Henceforth, we refer to an L-iterated Boolean
game as an L-game. We say thatG is an L-game over Φ if we make
explicit reference to the set Φ.

An iterated Boolean game takes place in an infinite number of
rounds and in every round each player i simultaneously makes a
choice vi ⊆ Φi of values for the propositional variables under its
control based on the values chosen by all players in previous rounds.
Formally, a strategy for a player i is a function fi : (2Φ)∗ → 2Φi

which associates with every history π ∈ V ∗ a choice fi(π) ∈ 2Φi .
A strategy profile is a tuple f = (f1, . . . , fn) that associates with
each player i a strategy fi and induces an infinite run ρ(f) =
v0, v1, v2, . . . defined as follows:

v0 = f1(ε) ∪ · · · ∪ fn(ε)

vt+1 = f1(v0, . . . , vt) ∪ · · · ∪ fn(v0, . . . , vt)

A player i strictly prefers runs that satisfy γi to runs that do not
and is indifferent otherwise, that is, i strictly prefers run ρ to run ρ′

if and only if ρ 6|= γi and ρ′ |= γi. Thus, each player’s preferences
in iterated Boolean games are dichotomous, dividing the set of runs
into those that are preferred and those that are not preferred.

It can easily be seen that with the players, strategies and pref-
erences defined in this way, each iterated Boolean game defines
a strategic game in the game-theoretic sense of the word (see,
e.g., [24, 22, 28]). Accordingly, the usual game theoretic solu-
tion concepts are available for the analysis of iterated Boolean

games. This in particular holds for Nash equilibrium, which in
our present setting is a strategy profile f∗ = (f∗1 , . . . , f

∗
n) such

that for all players i and all of i’s strategies gi, we have that
ρ(f∗−i, gi) |= γi implies ρ(f∗) |= γi, where (f∗−i, gi) denotes
the profile (f∗1 , . . . , f

∗
i−1, gi, f

∗
i+1, . . . , f

∗
n). We furthermore say

that a run ρ ∈ runs(Φ) is sustained by a Nash equilibrium f∗ in
a game G whenever ρ(f∗) = ρ. We then refer to ρ as an equilib-
rium run. The set of equilibrium runs of G—rather than the set of
equilibria itself—we denote by NE(G).

Expressiveness.
Given a suitable model-theoretic semantics, the expressive power

of a logic can be measured in terms of the sets of models it can char-
acterise. In the case of LTL, the models are runs of valuations and
by a linear time property given a set Φ of propositional variables,
we understand any subset X ⊆ runs(Φ) of runs.

We say that an LTL-fragment L can express a property X ⊆
runs(Φ) if there is some formula ϕ ∈ L such that X = [[ϕ]]. A
weaker notion of expressiveness applies when, given a temporal
property, the fragment can express a stronger property. Thus, L is
said to weakly express the non-empty property X whenever there
is a satisfiable formula ϕ ∈ L with [[ϕ]] ⊆ X .

The concept of weak expressiveness is much weaker than standard
expressiveness, in the sense that fragments are likely to be able to
express considerably more properties in the weak sense than they
can under the standard notion. Indeed, for an LTL-fragment L to
weakly express every LTL-property it suffices to be able to express ∅
and {ρ} for every ultimately periodic run ρ ∈ runs(Φ). By virtue
of Proposition 3, this holds, for instance, for the fragment LX,F,G. In
settings where a designer uses temporal logic to specify the desired
behaviour of a system, however, the concept of weak expressiveness
seems to be quite natural. If the designer wants a system, for instance
a multi-agent system, to behave accordingly to the specification and
she manages to design it so that it behaves in equilibrium according
to a stronger but consistent specification, she should still be satisfied.

A third notion of expressiveness abstracts away from the proposi-
tional variables available in the language. Rather than requiring that
a temporal propertyX on 2Φ coincide with the set of runs satisfying
some formula ϕ in a fragment L(Φ), it demands that X be the set
of projections to Φ of the runs satisfying some formula ϕ of L in an
extended set of propositional variables. Formally, we say that LTL-
fragment L(Φ) can projectively express property X ⊆ runs(Φ)
if there is some finite set Ψ of auxiliary variables and some for-
mula ϕ ∈ L(Φ ∪Ψ) such that X = {ρ|Φ ∈ runs(Φ): ρ ∈ [[ϕ]]}.

Finally, a fragment L(Φ) is said to be able to weakly projectively
express a non-empty property X ⊆ runs(Φ) if there is some finite
set Ψ of variables and some formula ϕ ∈ L(Φ ∪ Ψ) such that for
every run ρ ∈ runs(Φ∪Ψ) we have that ρ ∈ [[ϕ]] implies ρ|Φ ∈ X .

On the basis of the above concepts we also introduce concepts of
relative expressiveness. Thus, we say that fragment L1 is at least as
expressive as another fragment L2, in symbols L1 ≥ L2, if every
property that can be expressed by L2 can also be expressed by L1.
Furthermore, L1 ≥w L2 denotes that every property that L2 can
express (not weakly express!), can also be weakly expressed by L1.
The notations L1 ≥p L2 and L1 ≥wp L2 are defined analogously
for projective and weak projective expressiveness. Note that the
relations ≥p and ≥wp need not be reflexive. Finally, L1 >w L2

denotes that L1 ≥w L2 and there is a property X ∈ runs(Φ) that is
not expressible in L2 but that L1 can weakly express. The notations
L1 > L2, L1 >

p L2, and L >wp L2 are introduced analogously.2

2Observe that it is not generally the case that L1 >
w L2 if and only

if L1 ≥w L2 and not L2 ≥w L1. Similarly for >p and >wp.
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The roots of projective expressiveness go back to the work of
Beth [3] and Craig [8] in the 1950s on definability in first order
logic. The concept has numerous applications in model theory [6,
18] and has recently also been studied in the context of modal and
temporal logics [13, 16]. In our setting, projective expressiveness
defines relatively weak constraints on a fragment and should be care-
fully distinguished from standard expressiveness. Thus, it is well
known that the properties that LTL can express are non-counting
and cannot, for instance, characterise temporal property even(p),
the set of runs on 2Φ in which p is set to true at every even state (see,
for instance [33]). Still, q ∧G(q ↔ X¬q)∧G(q → p) projectively
expresses exactly this property. It is known from the literature that
every ω-regular property can be projectively expressed by LTL
if you can use an unbounded number of additional propositional
variables [13, 30]. We reformulate this result for our setting.

PROPOSITION 4. LTL ≥ LX,F,G ≥p Lω-reg.

Proof: Let A = (Q, 2Φ, δ, Q0, F ) be a nondeterministic Büchi au-
tomaton [2]. We construct a formula ϕA in LF,G,X(Φ∪Q), where Φ
and Q are disjoint, as follows.

ϕAinit =
∨
q∈Q0

q

ϕAtrans = G(
∧
q∈Q(q →

∨
{(q′,v) : q′∈δ(q,v)}(χ

Φ
v ∧ X q

′)))

ϕAaccept = GF
∨
q∈F q

ϕAinvar = G(
∨
q∈Q(q ∧

∧
q′ 6=q q̄

′))

Then set ϕA = ϕAinit ∧ ϕAtrans ∧ ϕAaccept ∧ ϕAinvar . By an inductive
argument it then follows that LA = {ρ|Φ : ρ |= ϕA}, where LA is
the language accepted by A. It follows that LX,F,G can projectively
express all ω-regular temporal logic properties. Recalling that Lω-reg

is the class of languages over 2Φ accepted by nondeterministic Büchi
automata and that LTL ≥ LX,F,G, we obtain the result.

It is interesting to note that allowing for additional variables along
with projection has a similar effect as, for instance, extending LTL
to Extended Temporal Logic (ETL) by including to the logical
language suitable grammar-operators as proposed in [33].

Expressiveness in Equilibrium.
Nash equilibrium fundamentally pertains to strategy profiles

rather than to runs, and the former have a much richer structure
than the latter. A strategy profile f = (f1, . . . , fn) not only pre-
scribes which actions each player has to perform at every time
during the run ρ(f), it also prescribes actions off this path, that is,
for histories that are not a prefix of ρ. Thus the following two things
can hold in an L-game G:

(i) different strategy profiles f and g may induce the same run,
that is, ρ(f) = ρ(g), even if f is an equilibrium and g is not;

(ii) different runs ρ and ρ′ may satisfy the same players’ goals,
even if one is sustained by a Nash equilibrium and the other
one is not.

Possibility (ii) makes that the set of equilibrium runs of a game may
seem quite unrelated to the goals of the players. To see this, consider
the following example.

EXAMPLE 5. Let G be the two-player game where players 1
and 2 control p and q, respectively, and whose goals are given
by γ1 = F(p ∧ q) and γ2 = >, respectively. Then, run (p̄q̄)ω is
sustained by the Nash equilibrium where the two players always
set p and q to false, respectively. Thus, γ2 is satisfied, but γ1 is

not. This is also true of run (p̄q)ω , which, however, is not sustained
by any Nash equilibrium: no matter what strategies are played,
player 1 would deviate to a strategy that sets p to true at some point.

This last phenomenon illustrates that for fragments L of LTL it is
quite possible that the Nash equilibrium runs of L-games are distinct
from the sets of runs satisfying L-formulae.

For this reason we now also introduce the following notions
of expressiveness, which relate to the temporal properties that are
characterised by the sets of equilibria runs of iterated Boolean games
in a given fragment L. Thus, we say that LTL-fragment L can
express in equilibrium property X ⊆ runs(Φ) if there is an L-
game G with X = NE(G). Example 1 shows how the standard
notion of expressiveness can be different from expressiveness in
equilibrium. The concepts of weak expressiveness in equilibrium,
projective expressiveness, and weak projective expressiveness
are then defined analogously to weak expressiveness, projective
expressiveness, and weak projective expressiveness, respectively,
with the role of the extensions [[ϕ]] of L-formulae being taken over
by the Nash equilibrium runs NE(G) of L-games G.

The corresponding relative expressiveness notions are similarly
defined as expected. Here, we have LNE refer to the temporal
language over 2Φ that is defined by the sets of equilibrium runs of
L-games. For fragments L1 and L2 we then write LNE

1 ≥ L2 if
every property that can be expressed by L2, can also be expressed in
equilibrium by L1, that is, if for every ϕ ∈ L2, there is an L1-game
such that NE(G) = [[ϕ]]. The notations L1 ≥ LNE

2 , LNE
1 ≥ LNE

2

have an analogous interpretation and, moreover, extend naturally
to ≥w, ≥p, and ≥wp. Clearly, L1 ≥ L2 implies both L1 ≥w L2 and
L1 ≥p L2. Moreover, each of the following expressiveness relations
≥, ≥w, ≥p, and ≥wp is easily shown to be transitive.

One would expect that, if a fragment L can express a property X ,
it can also express X in equilibrium. Although generally true, there
is one notable exception: if there is only a single propositional
variable p and X = ∅. For L, any unsatisfiable formula will do.
For LNE , however, one has to observe that in the setting of iterated
Boolean games, control over a single variable p can be assigned to
a single player i only, who is then also the only player who could
possibly deviate from a profile. If X is the empty property, i should
want to deviate from every given run ρ and, consequently, i does not
have its goal satisfied at any of them. Then, there is no run that i
would possibly want to deviate to and the (non-empty) set of all runs
coincides with the set of equilibrium runs.

If L expresses X by ϕ and there are at least two variables p and q,
one can construct the L-game Gmp

ϕ , which bears a resemblance to
the well-known game of matching pennies [24], as follows. Let
there be two players, i and j, such that i controls p and j all other
variables, including q, and whose goals are given by:

γi = ϕ ∨ (p↔ q) γj = ϕ ∨ (p↔ q̄).

To see that [[ϕ]] is exactly the set of equilibrium runs ofGmp
ϕ , observe

that every run that satisfies ϕ, also satisfies both players’ goals and,
hence, is sustained by an equilibrium. If, by contrast, a run ρ does
not satisfy ϕ, the players will be entangled in a matching pennies
game on p and q. Consequently, ρ is not sustained by an equilibrium.
Thus we obtain that

L1 ≥ L2 implies LNE
1 ≥ L2, provided that |Φ| ≥ 2.

Observe that Gmp
ϕ could also contain additional variables. Thus, for

projective expressiveness in equilibrium we immediately have the
following statement.

L1 ≥ L2 implies LNE
1 ≥p L2.
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Using a construction that is similar to Gmp
ϕ , it can also be shown

that, if a fragment L can express a property X , it can also projec-
tively express in equilibrium the complement of X . This result is
especially relevant for fragments that are not closed under negation.

LEMMA 6. Let ϕ be a formula in fragment L. Then, L can
projectively express [[¬ϕ]] in equilibrium.

Proof: Let p, q /∈ Φ. Consider the two-player L-game G with
Φ1 = {p}, Φ2 = Φ ∪ {q} and the players’ goals being given by:

γ1 = ϕ ∧ (p↔ q) γ2 = p̄↔ q.

First observe that no equilibrium run in G satisfies ϕ. To see this,
let f be an arbitrary profile with ρ(f) |= ϕ. If ρ(f) 6|= γ1, player 1
would deviate by choosing the opposite value for p in the first
round. If, on the other hand, ρ(f) |= γ1, player 2 would deviate
by choosing the opposite value for q in the first round. Hence,
NE(G)|Φ ⊆ [[¬ϕ]]. To see that this inclusion also holds in the
opposite direction, assume that ρ 6|= ϕ and that profile f induces ρ.
Since, neither p nor q occurs in ϕ, we may assume without loss of
generality that ρ |= p̄↔ q. Therefore, player 2 has its goal achieved
and will not deviate. As, moreover, player 1 controls no variables
occurring in ϕ, no deviation from f will satisfy its goal. It follows
that f is a Nash equilibrium and ρ ∈ NE(G), as desired.

3. EQUILIBRIA AND FRAGMENTS
We now will proceed to investigate expressiveness in equilibrium

of a number of well-known fragments of LTL.

3.1 The Full and Empty Fragments
It is not necessarily the case that a fragment can express or pro-

jectively express more temporal properties in equilibrium than it
normally can. A prime example is propositional calculus, that is,
the LTL-fragment L∅. A fundamental observation in the literature
on Boolean games is that the formula∧

1≤i≤N (
∨
θ : Φi→{>,⊥} θ(γi)→ γi),

where θ(γi) results from γi by replacing every occurrence of p ∈
Φi by θ(p), characterises the set of equilibrium runs of the L∅-
game (N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn) (see, e.g., [4]). Thus, L∅ can
express every property that it can express in equilibria, and vice
versa—provided that Φ contains at least two propositional variables.

PROPOSITION 7. L∅ > LNE
∅ , if there is at most one proposi-

tional variable. Otherwise, both L∅ ≥ LNE
∅ and LNE

∅ ≥ L∅.

The full fragment LTL is at the other end of the syntactic spec-
trum of the linear temporal logics considered in this paper. Barring
the borderline case in which |Φ| ≤ 1, we have

LTLNE ≥ L

for all fragments L we consider. Thus, the question remains how
expressive LTL is w.r.t. LTLNE , that is, to what extent the temporal
properties defined by the Nash equilibria of LTL-games can be
expressed by LTL itself. As a first step in this direction we prove
game-theoretic pendant of Theorem 2: if an LTL-game has an
equilibrium run, it also has an ultimately periodic equilibrium run.

PROPOSITION 8. LetG be an LTL-game with the players’ goals
given by γ1, . . . , γn. Then, for every run ρ ∈ NE(G), there is an
ultimately periodic run ρ∗ ∈ NE(G) such that ρ |= γi if and only
if ρ∗ |= γi for every player i.

ρ(f) 6|= γi

ρ(f−i, g∗i ) |= γi
i deviates

0 s s+m s+p

πinit πper

ρ(f∗) 6|= γi

ρ(f∗−i, g
∗
i ) |= γi

i deviates in the first period
ρ(f∗−i, gi) |= γi

i deviates in the k+1-st period

0 s s+m s+p s+kp s+kp+m s+(k+1)p

πinit πper πper

Figure 1: Proof of Proposition 8. For equilibrium f , construct
profile f∗ such that ρ(f∗) is an ultimately periodic equilibrium
run. If we assume that i deviates from f∗ in the k+ 1-st period,
it follows that i would deviate in the first period as well. As f
and f∗ coincide on any history with a maximal common prefix
in πinit ;πper , it follows that i also deviates from f .

Proof: Let ρ be an equilibrium run of G and let f be a Nash equi-
librium sustaining ρ. Let W = {i ∈ N : ρ |= γi} be the set of
winners at ρ and consider the formula

γρ =
∧
i∈W γi ∧

∧
i∈N\W ¬γi.

Clearly, ρ |= γρ. By virtue of Theorem 2, there is also an ultimately
periodic run ρ∗ = πinit ;π

ω
per with start index s and period p such

that ρ∗ |= γρ. Moreover, due to Lemma 4.5 in [29], we may assume
for every t ≥ s that we have ρ∗, t |= γi if and only if ρ∗, t+p |= γi
for all players i in the game.

We define a strategy profile f∗ that induces ρ∗ and show that it is
a Nash equilibrium of G. Hence, ρ∗ ∈ NE(G). First observe that
every history π has a unique maximal common prefix πcom with ρ∗,
which is either a prefix of πinit or has the form πinit ;π

r
per ;πper′ ,

where r ≥ 0 and πper′ ≤ πper . Now define f∗ such that, for each
player i and history π = πcom ;π′′,

f∗i (π) =

{
fi(πcom ;π′′) if πcom ≤ πinit ,
fi(πinit ;πper ;πper′ ;π

′′) if πcom = πinit ;π
r
per ;πper′ .

Observe that ρ(f∗) = ρ∗ = πinit ;π
ω
per and, hence, ρ(f∗) |= γρ.

We prove that f∗ is a Nash equilibrium of G (also see Figure 1
for an illustration of the argument). To this end, assume for con-
tradiction that there is a strategy gi for some player i such that
ρ(f∗) 6|= γi and ρ(f∗−i, gi) |= γi. Then, ρ(f∗) and ρ(f∗−i, gi) have
a maximal common prefix π′, for which either π′ ≤ πinit ;πper or
π′ = πinit ;π

k
per ;πper′ for some k ≥ 1.

If the former—that is, if i deviates from f∗ before the first period
πper is completed—we have ρ(f−i, gi) = ρ(f∗−i, gi) and can im-
mediately conclude that f is not a Nash equilibrium, a contradiction.

If the latter ρ(f∗−i, gi) = πinit ;π
k
per , ρ

′ for some ρ′ ∈ runs(Φ).
Thus, k is the number of times that the period πper is completed
before i deviates from f∗ by playing gi. We now define another
strategy g∗i for i on the basis of gi in a similar way as f∗ was
constructed from f . For every history π = πcom ;π′′, let

g∗i (π) =

{
gi(π) if πcom ≤ πinit ,

gi(πinit ;πr+kper ;πper′ ;π
′′) if πcom = πinit ;π

r
per ;πper′ .

Thus, for every history π and r = 0, we have g∗i (π) = gi(π) =
fi(π) if πcom ≤ πinit , and g∗i (πinit ;π

′′) = g(πinit ;π
k
per ;π′′) if
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πinit < πcom ≤ πinit ;πper . Intuitively, g∗i behaves in the first
period exactly as gi in the k-th period. Hence, ρ(f∗−i, g

∗
i ) =

πinit ;πper′ ; ρ
′. Then, by virtue of Lemma 4.5 in [29] it follows

that ρ(f∗−i, g
∗
i ) |= γi. Moreover, ρ(f∗−i, g

∗
i ) = ρ(f−i, g

∗
i ) and

hence ρ(f−i, g
∗
i ) |= γi. It follows that f is not a Nash equilibrium

and a contradiction ensues, as desired.

As an immediate consequence we find that every property that
can be expressed by LTL in equilibrium can be weakly expressed
by LTL itself. By virtue of Proposition 8, every non-empty set of
equilibrium runs also contains an ultimately periodic run, which, by
Proposition 3, is characterised by an LTL-formula.

COROLLARY 9. LTL ≥w LTLNE .

For the moment we leave whether LTL ≥p LTLNE and whether
LTL ≥ LTLNE as open questions. As a first step to resolve these
issues, however, we show that LTLNE 6≥ Lω-reg. Key to this issue
are temporal properties that are noncounting (see, e.g., [23]). A
property X ⊆ runs(Φ) is said to be noncounting if there exists an
n0 > 0 such that, for all k ≥ n0, histories π, π′, and runs ρ,

π;πk; ρ ∈ X if and only if π;πk+1; ρ ∈ X .

As a prime example of a counting property over runs(Φ) consider
the one defined by the ω-regular expression (∅; ∅)∗; {p}ω . Although
for every even k ≥ 0 we have that the run ∅k; pω belongs to this
property but the run ∅k+1; pω does not. Indeed, Kučera and Stre-
jček [19] have characterised the LTL-properties as those that are
both ω-regular and non-counting.

THEOREM 10 ([19]). A property X ⊆ runs(Φ) can be ex-
pressed by LTL if and only if X is ω-regular and noncounting.

We find that for every LTL-game G the set NE(G) of equilibrium
runs is noncounting. As the proof of this result runs along similar
lines as the one for Proposition 8, here we only give a sketch.

PROPOSITION 11. For every LTL-game G, the set NE(G) of
equilibrium runs is noncounting.

Sketch of proof: Consider an arbitrary LTL-game G. For every
run ρ ∈ NE(G) there is a subset W ⊆ N such that ρ satisfies
γW =

∧
i∈W γi ∧

∧
i∈N\W ¬γi. Moreover, by Theorem 10, there

exists an nγW > 0 by virtue of which [[γW ]] is noncounting. At
this point, consider n0 = maxW⊆N{nγW }. The proof proceeds
by showing that, for all k ≥ n0, histories π, π′, and runs ρ,

π;πk; ρ ∈ NE(G) if and only if π;πk+1; ρ ∈ NE(G).

For the “only if”-direction, we may assume the existence of a Nash
equilibrium f that sustains π;πk; ρ and on its basis construct a Nash
equilibrium f∗ that induces π;πk+1; ρ ∈ NE(G). The definition
of f∗ is similar to the construction in Proposition 8. The “if”-
direction is proven analogously.

Thus, in particular, the ω-regular property (∅; ∅)∗; pω can not be
obtained as the set of equilibrium runs of any LTL-game. As an
immediate consequence of Proposition 11 we thus obtain that

LTLNE 6≥ Lω-reg.

In view of the characterisation result by Kučera and Strejček, Propo-
sition 11 gives us one half of the proof that LTL ≥ LTLNE . Indeed,
it remains to be shown that the set of equilibrium runs of every
LTL-game is an ω-regular set. We leave it here as an open question
to be investigated in a future work.

3.2 The Next-Free Fragment
In this section we consider the fragment LU, which does not

contain the “next”-operator X, and show that we can characterise
every LTL-property as the set of runs sustained by a Nash equi-
librium in some LU-game. For our construction we need at least
two players and six additional propositional variables on which the
LTL-property does not depend.

In [20] it is made a case for so-called stutter-invariant specifica-
tions.3 Formally, we say that a temporal property X ⊆ runs(Φ)
is stutter-invariant if, for all runs ρ = v0, v1, v2, . . . and every
sequence k0, k1, k2, . . . of positive integers,

v0, v1, v2, . . . ∈ X if and only if vk0
0 , vk1

1 , vk2
2 , . . . ∈ X

where vk denotes the k-fold iteration of v. Thus, for instance, the
property defined by (p; p̄)ω , henceforth denoted by toggle(p), does
not define a stutter-free property, as it contains p, p̄, p, p̄, . . . , but not
p, p, p̄, p̄, p, p, p̄, p̄, . . . . Peled and Wilke [25], furthermore, showed
that LU is the largest stutter-free fragment of LTL.

As toggle(p) is expressed by the LTL-formula p ∧ G(p↔ X p̄),
we immediately obtain LU 6≥ LTL as well as LU 6≥w LTL. Some
reflection reveals moreover that for every Ψ ⊆ Φ, if X is a stutter-
invariant property on runs(Φ), then so is X|Ψ, that is, property X
projected to Ψ. Hence, LU does not even projectively express LTL:

LU 6≥p LTL.

We find, however, that property toggle(p) can be projectively
expressed in equilibrium. To see this, consider the two-player
game Gtoggle with two players, i and j, who control Φi = {p, s}
and Φj = {q, r}, respectively, and whose goals are given by:

γi = p ∧ (r ↔ s̄),
γj = F((pq ∧ (pqU pq̄)) ∨ (p̄q ∧ (p̄qU p̄q̄))) ∧ (r ↔ s).

Intuitively, player j’s goal can only be satisfied if p is true at two
subsequent time points in the future. But even if this were so, j still
has to win a matching pennies game on r and s against player i. As
player i would then deviate by choosing appropriate values for p
and s, player j will not achieve its goal in any equilibrium. This
being established, the first conjunct of γj will not be satisfied in any
equilibrium either. Otherwise, j would deviate and win the matching
pennies game on r and s and thus achieve its goal. Therefore, in no
equilibrium will p subsequently assume the same truth-value. On
the other hand, if p is initially true and then toggles truth-values
indefinitely, there is no way player j can deviate and get its goal
achieved. Accordingly, he can just as well let player i win the
matching pennies game on r and s. Player i will then achieve its
goal and have no incentive to deviate either.

LEMMA 12. Let ρ ∈ NE(Gtoggle). Then, ρ, t |= p if and only
if t is even and, hence, {ρ|{p} : ρ ∈ NE(Gtoggle)} = toggle(p).

Lemma 12 not only shows that LNE
U can projectively express

(p; p̄)ω in equilibrium—and thus that LNE
U > LU—it can also be

leveraged to prove that the next-free fragment can actually projec-
tively express every LTL-property. To this end, let p /∈ Φ. We then

3On this issue Peled and Wilke [25] write “A specification that is
not invariant under stuttering will not allow refinement and will
thus be useless for hierarchical (modular) reasoning.” Moreover,
stutter-invariance enables state space reductions in model checking
of concurrent systems (also see [25]).
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define a translation τ : LTL(Φ)→ LU(Φ ∪ {p}) such that,

qτ = q

(¬ϕ)τ = ¬(ϕτ )

(ϕ ∧ ψ)τ = ϕτ ∧ ψτ

(ϕ ∨ ψ)τ = ϕτ ∨ ψτ

(ϕUψ)τ = ϕτ Uψ
τ

(Xϕ)τ = (p→ pU(p̄ ∧ ϕτ )) ∧ (p̄→ p̄U(p ∧ ϕτ )),

where q ∈ Φ. Thus, on every run ρ ∈ Φ∪{p}with ρ|{p} = (p; p̄)ω ,
each formula ϕ and its translation ϕτ will have the same truth-value.

LEMMA 13. Let ϕ ∈ LTL(Φ), p a propositional variable not
in Φ, and ρ = v0, v1, v2, . . . a run in runs(Φ ∪ {p}) such that
ρ, t |= p if and only if t is even. Then, ρ |= ϕ if and only if ρ |= ϕτ .

Proof: The proof proceeds by structural induction on ϕ. The basis
is immediate and the induction hypothesis covers all inductive cases
apart from ϕ = Xψ. Consider an arbitrary t ≥ 0 and assume
ρ, t |= Xψ. Then, ρ, t + 1 |= ψ and by the induction hypothesis
also ρ, t+ 1 |= ψτ . Now either ρ, t |= p or ρ, t |= p̄. First assume
the former. Then immediately ρ, t |= p̄→ p̄U(p ∧ ψτ ). Moreover,
ρ, t+ 1 |= p̄ by definition of ρ and, therefore, ρ, t |= pU(p̄ ∧ ψτ )
and also ρ, t |= p→ (pU(p̄ ∧ ψτ )). We may conclude that ρ, t |=
(Xψ)τ , as desired. The argument if ρ, t |= p̄ is analogous.

For the opposite direction, assume ρ, t 6|= Xψ. Then, ρ, t+ 1 6|=
ψ and by the induction hypothesis ρ, t + 1 6|= ψτ . Now, either
ρ, t |= p or ρ, t |= p̄. If the former, both ρ, t 6|= p̄ ∧ ψτ and
ρ, t+ 1 6|= p̄∧ψτ . It follows that ρ, t 6|= pU(p̄∧ψτ ), ρ, t 6|= p→
(pU(p̄ ∧ ψτ )), and eventually ρ, t 6|= (Xψ)τ . As the argument if
ρ, t |= p̄ is analogous, we may conclude the proof.

To obtain the main result of this section, we construct for each
LTL-formula ϕ a four-player LU-game with six additional variables.
Intuitively, two players play the game Gmp

ϕτ ensuring that ϕτ holds
at precisely the equilibrium runs. Two other players play Gtoggle

ensuring that an additional variable p alternately assumes the truth
values true and false, and ϕτ evaluates as intended.

THEOREM 14. LNE
U ≥p LTL.

Proof: Let ϕ ∈ LTL(Φ) and Ψ = {p, q, r, s, x, y} a set of aux-
iliary variables disjoint from Φ. Now construct LU-game G on
Φ ∪ Ψ with four players, 1, 2, 3, and 4, such that Φ1 = {p, s},
Φ2 = {q, r}, Φ3 = Φ∪{x}, and Φ4 = {y}. Let the players’ goals,
moreover, be given by:

γ1 = p ∧ (r ↔ s̄),
γ2 = F((pq ∧ (pqU pq̄)) ∨ (p̄q ∧ (p̄qU p̄q̄))) ∧ (r ↔ s),
γ3 = ϕτ ∨ (x↔ y),
γ4 = ϕτ ∨ (x↔ ȳ).

Thus, players 1 and 2 play Gtoggle and Lemma 12 ensures that in
every equilibrium run ρ ∈ Φ ∪Ψ, ρ, t |= p if and only if t is even.
Players 3 and 4—quite independently from 1 and 2—play Gmp

ϕτ .
Thus, ρ |= ϕτ if and only if ρ is an equilibrium run ofG. Lemma 13
then yields the result.

The following result is then an immediate consequence of Theo-
rem 14, Proposition 4, and transitivity of ≥p.

COROLLARY 15. LNE
U ≥p Lω-reg.

It is worth noting that the size of ϕτ is exponential in the number
of nestings of the X-operator, that is, even if LU can projectively
express every LTL-property in equilibrium, this may come at the
cost of having exponentially longer goals for the players. Whether
this exponential blowup is inevitable, we leave as an open question.

3.3 The Positive Future Fragment
We now consider the fragment LX,F+ , where the F-operator can-

not occur within the scope of a negation. We find that also this, rather
weak, fragment can express more in equilibrium than it can by itself.
First we have the following lemma, which intuitively says that every
LX F+ -formula, when satisfied, will be satisfied after a finite number
of rounds. Formally, a temporal property X ⊆ runs(Φ) is tail-
invariant if ρ ∈ X implies the existence of a prefix π ∈ prefix (ρ)
such that π; ρ′ ∈ X for all ρ′ ∈ runs(Φ).

LEMMA 16. Every temporal property X ⊆ runs(Φ) that can
be expressed in LX,F+ is tail-invariant.

Sketch of proof: Let ϕ ∈ LX,F. As the F-operator occurs within the
scope of a negation symbol ¬, exploiting the equivalence of ¬Xϕ
and X¬ϕ, we can transform ϕ to an equivalent formula in which
all negation symbols occur in front of propositional variables.

Letϕ ∈ LX,F+ and assume thatϕ is in this normal form. Consider
an arbitrary run ρ = v0, v1, . . . in runs(Φ) such that ρ |= ϕ.
We have to show that there is a prefix π ∈ prefix (ρ) such that
π; ρ′ |= ϕ for all ρ′ ∈ runs(Φ). Define inductively for every
formula ψ ∈ LX,F+ and every t ≥ 0, κρ,t(ψ) the following:

κρ,t(p) = κρ,t(p̄) = 0

κρ,t(χ1 ∧ χ2) = κρ,t(χ1 ∨ χ2) = max(κρ,t(χ1), κρ,t(χ2))

κρ,t(Xχ) = κρ,t(χ) + 1

κρ,t(Fχ) =

{
t′ − t+ κρ,t′(χ) if ρ, t |= Fχ,
0 otherwise,

where t′ = min{t′′ ≥ t : ρ, t′′ |= χ}. By a structural induction
on ψ it can then be shown that ρ, t |= ψ implies the existence of
a prefix π ∈ prefix (ρ) with length(π) ≤ t + κρ,t(ψ) such that
πψ; ρ′, t |= ψ for all ρ′ ∈ runs(Φ). This holds in particular for ϕ,
which yields the result.

The property defined by the LTL-formula G p may serve as the
quintessential property that is not tail-invariant, and is neither ex-
pressible nor weakly expressible in LX,F+ . Observing that tail-
invariance of X ⊆ runs(Φ) implies tail-invariance of X|Ψ for
every Ψ ⊆ Φ, we may even conclude that G p cannot even be
projectively expressed by LX,F+ . Yet, as G p is LTL-equivalent
to ¬F p̄, in virtue of Lemma 6, we find that LX,F+ can projectively
express G p in equilibrium. Hence,

LNE
X,F+ >p LX,F+ .

Leveraging the same ideas along with the fact that every ultimately
periodic run can be characterised in LX,F,G with only one occurrence
of the G-operator, we also obtain the following expressiveness result
for LX,F+ with respect to LTL.

PROPOSITION 17. LX,F+ ≥wp LTL.

Proof: Let ϕ ∈ LTL. If ϕ is unsatisfiable, Lemma 6 yields the
result immediately as p ∨ p̄ is a formula in LX,F+ . On the other
hand, if ϕ is satisfiable then by Theorem 2 and Proposition 3 there is
an ultimately periodic run ρ = v0, v1, . . . with starting index s and
period p such that is characterised by the LTL-formula χρ given by∧

0≤t≤s+p X
tχvt ∧ X

s
G(

∧
v∈2Φ(χv → X

pχv)).

By suitably applying the laws of propositional logic, the duality of
F and G, as well as the equivalence of ¬Xϕ and X¬ϕ, we find that
the negation of χρ is equivalent to∨

0≤t≤s+p X
i¬χvi ∨ X

s
F(
∨
v∈2Φ(χv ∧ X

p¬χv)),
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Figure 2: Relation between expressiveness and expressiveness
in equilibrium of LTL-fragments assuming |Φ| ≥ 2. Double
arrows relate to strict expressiveness (L1 > L2).

which is included in the fragment LX,F+ . By Lemma 6 we know
that LX,F+ can projectively express χρ in equilibrium. Hence, LX,F+

can weakly projectively express ϕ in equilibrium, as desired.

4. RELATED WORK
The expressive power of LTL and many of its syntactic frag-

ments has been a research topic for decades, with work showing
connections with other temporal logic languages as well as results
classifying the power of LTL and its fragments [27]. The most basic
and well known classifications are with respect to sub-languages,
that is, LTL fragments where only some operators are allowed. How-
ever, more refined studies have also been conducted, for instance,
LTL fragments with respect to the allowed number of propositional
variables or the number of nested temporal operators [9].

Most of these studies have focused not only in the expressive
power of the resulting sublogics but also in the implications of im-
posing such restrictions in the complexity of the model checking and
satisfiability problems of such sublogics. These studies have also
made it possible to understand connections between LTL fragments
and standard automata models over infinite words—which in turn
also easily show how to define different automata-theoretic decision
procedures for each LTL sublanguage at hand [32].

Despite the very many studies about the expressive power of
LTL and related sublanguages, to the best of our knowledge, there
are no results on the expressive power of LTL or its fragments
with respect to the classes of runs that can be sustained by some
Nash equilibrium. In this paper, we study precisely that issue and
provide the first known results in the literature. The results are rather
promising: they show that even though some LTL sublanguage, say
L1, may be strictly more expressive than other LTL sublanguage,
say L2, when interpreted over the full class of ω-regular runs, such
two sublogics L1 and L2 become equi-expressive when interpreted
over a class of runs that can be sustained by some Nash equilibrium
in a given class of games, as many of our results show.

As this kind of result can usually only be obtained by adding extra
propositional variables to the “weaker” language, we also studied
the expressive power, and game-theoretic implications, of allowing
languages interpreted over different sets of propositional variables
(projective expressiveness). Again, the results were promising in
the sense that they show that generally weaker LTL sublogics can
be made as expressive as generally stronger LTL sublogics by the
addition of fresh propositional variables to the weaker language, a
notion that goes back to the 1950s [3, 8] and has proven useful in a
number of settings (see, for instance, [18, 6, 13, 16]).

5. CONCLUSION
In this paper, we have explored the temporal properties that are

characterised by the equilibrium runs of iterated Boolean games,
where the players’ dichotomous preferences are represented by
formulae in fragments of Linear Time Logic (LTL). The Nash equi-
libria of an iterated Boolean game are fully determined by the goals
of the players and the way control of the propositional variables is
distributed over the players. In particular, they are not dependent
on an additional underlying game structure—like, for instance, con-
current game structures (see, for instance, [1]). This enabled us to
focus on the logical aspects of Nash equilibrium and accordingly
we formulated our research issue in terms of expressiveness.

We investigated the concept of expressiveness in equilibrium for
a number of fragments of LTL. We found that for a given fragment
every (non-trivial) property that can be (projectively) expressed can
also be (projectively) expressed in equilibrium, but not generally
the other way round. For an overview of our results see Figure 2.
In the future, we plan to explore more fully the links that remain
missing. In particular, whether LTL ≥ LTLNE is still open. Other
questions for future research concern the minimal number of players
and additional propositional variables that may be needed to express
or projectively express temporal properties in a particular fragment.

Apart from specific fragments, the concept of expressiveness in
equilibrium gives rise to a number of more abstract and conceptual
questions. First, most of our game constructions involve a “matching
pennies” game like Gmp

ϕ . These games establish a crucial link
between runs that satisfy a given formula and equilibrium runs in
iterated Boolean games. This feature, however, is due to one player
trying to achieve p↔ q and another p↔ q̄, and as such is largely of
a non-temporal nature. An interesting question is if this is peculiar
to the results in this paper or that it points at a more fundamental
connection with the concept of expressiveness in equilibrium.

Second, our investigations in a considerable measure relied on
projective expressiveness, as our game constructions usually involve
additional propositional variables. Expressiveness in equilibrium
does not afford such freedom and one would suspect a narrower
gap between expressiveness and expressiveness in equilibrium that
between the respective projective notions for most fragments. An
important question is how narrow this gap is.

Third, as in most work on model checking and concurrent game
structures, the strategies of the players are functions from histories
to choices whereas, in stark contrast, the preferences of the players
are represented by logical formulae. As such the former are much
finer grained than the latter. One may wonder to what extent the gap
between the standard notion of expressiveness and expressiveness
in equilibrium can be attributed to this “mismatch.” For instance,
would the phenomenon also occur in iterated Boolean games, if the
players’ strategies are similarly specified by temporal formulae?

Fourth, all our notions of expressiveness naturally extend to game-
theoretic solution concepts other than Nash Equilibrium and we aim
to investigate some of these concepts in future work.

Finally, the original motivation for our work was the problem of
allocating tasks to agents so that a given property is satisfied in all
resulting equilibria. We hope that our research on expressiveness
in equilibrium shed some light on this issue and to what extent
the design of multi-agent systems in practice can be simplified by
providing “lean” temporal specifications of individual agents who
can be assumed to play strategies that together form an equilibrium.
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