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ABSTRACT
The applicability and usefulness of agent technology for real
world problems is still a matter of discussion—even within
the AAMAS community. While theoretical models have sig-
nificantly matured and led to an exciting variety of results,
there were only few attempts to validate these models in
reality. In this paper we aim to report on challenges that
occurred when agent theory was used to approach real world
problems. In doing so, we focus on the concept of planning,
since planning currently appears to be one of the most rel-
evant concepts for distributed real world applications. We
examine four agent-based applications and emphasise prob-
lems that occurred when agent theory was practically ap-
plied. We also show how these problems were countered
and propose more general solutions based on these tailored
and context-specific approaches. The aim of this paper is to
bring the two diverging branches of agent theory and prac-
tice back together in order to better adapt agent technology
to the requirements of professional software.
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1. INTRODUCTION
Research in agents and multi-agent systems has signifi-

cantly matured. It seems that we, as a community, have
shifted from initial experiments in building individual agents
or multi-agent systems to rigorous theoretical foundations
based on increasingly sophisticated computational models.
Yet, despite these advances, there were only few attempts
to validate these models in real world applications. The rea-
sons for this are not entirely clear, though, the problem was
recognised by the AAMAS community. At AAMAS 2015,
for instance, a separate panel was being held with the objec-
tive to identify problems that hamper the ‘real world valida-
tion’ of agent-technology and to determine steps to counter
these problems. In this panel, the community aimed to clar-
ify the questions on whether ‘we as a field are doing enough
for this validation’ [23, p. 30] and ‘what should we do to
encourage such validation in real applications’ [23, p. 30].
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It was not possible to find satisfying answers to these ques-
tions, though, the community agreed that it is necessary to
foster the relationship between those doing foundational sci-
entific research and those making autonomous agents and
multi-agent systems a commercial or public policy reality.
In more particular, practitioners were encouraged to share
their experiences in applying agent-theory to real world ap-
plications and to report on problems in order to encourage
improvements of theoretical foundations and to trigger fur-
ther research.

In this paper we reply to this call and report on problems
and limitations that were experienced during the develop-
ment of real world agent applications. In doing so we focus
on applications that were implemented by agent frameworks
with support for the service oriented architecture (SOA) [11]
design principle. When analysing existing agent applica-
tions, we recognised that a lot of works were implemented
through agent frameworks with support for SOA. We ex-
plain this phenomenon with the fact that a programming
framework, which merges SOA and agents innately provides
many features that are required for the development of (pro-
fessional) real world software, e.g. transparently connecting
to and integrating with third party services and support for
common protocol standards. In fact it has been argued [5,
33, 35, 40, 47] that connections to established programming
paradigms is a significant factor for industrial technology
adoption, thus, we consider our focus to be justified.

We start this paper by surveying concepts that have their
foundation in (theoretical) agent research and that currently
play a role in professional software engineering (see Sec-
tion 2). For this paper we focus on one particular concept
that repeatedly caused problems when applied to real world
applications, namely planning. Thus, in Section 2.2 we elab-
orate on the concept of planning with particular emphasis on
planning in SOA and agent environments. Based on a fun-
damental understanding for the latest advances in planning,
we look into professional agent-based applications, where the
concept of planning plays a fundamental role and discuss
difficulties that occurred when planning theory was used for
the implementation of these applications (see Section 3). In
Section 4, we structure these problems into more general
categories and summarise how planning concepts had to be
adjusted in the previously presented applications in order
to fit their purpose. Based on these ‘tailored solutions’, we
identify where and outline how the theoretical foundations
of agent planning have to be improved in order to cope with
real world requirements. We conclude this work in Section 5.
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2. SERVICE ORIENTATION
In this work we put a focus on applications that were im-

plemented through agent frameworks with support for SOA.
SOA is an established design principle, which made its way
into professional software engineering and applications. Any
merger of SOA and agent-based techniques thus provides
support for developing autonomous and highly distributed
entities, which can connect (in a standardised fashion) to a
broad spectrum of available real world functionality (or ser-
vices). In this section we provide an overview over principles
of and current trends in merging SOA and agents. Due to
its importance for real world applications we put particular
emphasis on the concept of planning. In the next section
we use this fundamental understanding in order to analyse
existing agent applications.

2.1 Semantic Services
Currently there are four SOA trends, which are relevant

for the agent world. Each trend provides remarkable solu-
tions, yet, it has to be mentioned that some of these so-
lutions are far away from practical applicability. Following
Papazoglou et al. [38], these trends can be classified as:

• Service Foundations,

• Service Composition,

• Service Management,

• Service Engineering.

The category Service Foundations comprises principal con-
cepts, e.g. a service-oriented middleware that connects ser-
vice providers and offers service deployment and discovery
mechanisms. The Service Engineering category, in turn,
comprises the specification of services and of their internal
processes.

Service Composition is based on concepts that can be
classified as Service Foundations and describes the aggre-
gation of multiple services to a value-added service, which,
itself, may be a part of more complex compositions. In the
beginning, orchestration was done manually, e.g. by means
of service description standards like WSDL and orchestra-
tion languages like WS-BPEL [37]. These mechanisms were
able to foster interoperability between services (and thus
between agents that offer services), yet, the workflow was
predefined, static and not dynamically adaptable unless the
designer clearly specified alternatives or abstract adaptation
patterns [48].

A more flexible approach to compose services is referred
to as automated composition of services. Automated service
composition is a concept, which aims to automatically find
and combine services in order to achieve a certain goal. Au-
tomated service composition should be flexible and robust
enough to compensate for unforeseen changes in the envi-
ronment, e.g. service failures or the sudden emergence of
services with a higher quality value. All of these aspects are
discussed under the umbrella of Service Management. Fur-
thermore, Service Management also comprises concepts like
Self-* properties such as self-healing or self-optimising (the
latter more commonly known as ‘self-organisation’, when it
comes to the field of agent research).

We already mentioned that this work is focused on agent
frameworks with support for SOA, thus, we can assume that

an agent’s capabilities are offered as services. It is obvious
that advances in automated service composition directly fur-
ther the progress of agent-based computing. Despite the im-
portance of automated service composition, real world ap-
plications are sparse. The reasons for this are not entirely
clear, though, the lack of (more) comprehensive solutions
might be a factor.

We deem automated service composition to be one of the
most promising software-engineering concepts and thus pro-
ceed by discussing automated service composition in the
light of agent-functionalities that are offered in compliance
with SOA. We conclude this section with a detailed ex-
planation of automated planning procedures—the ultimate
driving-force for service composition.

Semantics.
In order to make autonomic behaviour in the process of

service composition possible, agents have to be able to inter-
pret the purpose and effects of other agents’ services. This
can be achieved with the help of semantics. Semantics usu-
ally rely on a formal specification and enable the definition
of ontologies. Ontologies represent the domain of concern
and define interrelationships between entities. Contrary to
common programming languages, which can also be used
for domain modelling, semantic languages come up with
more complex constructs, such as restrictions, axioms and
rules. These constructs make the automatic categorisation
of information considerably more accurate. Established ap-
proaches in this area are the Knowledge Interchange Format
(KIF ) [15], the Planning Domain Language (PDDL) [17],
the Web Services Modelling Language (WSML) [8] and the
Web Ontology Language (OWL) [34].

Semantic Services.
Despite its capabilities, the ontological representation of

the domain does not enable the automated interpretation
of services. What is actually required is a structure that
specifies how semantics are related to service properties and
to an agent’s functionalities, respectively. These structures
exist in the form of semantic service description languages,
e.g. Semantic Web Services Framework (SWSF ),1 Web Ser-
vice Modeling Ontology (WSMO),2 Semantic Annotations
for WSDL (SAWSDL) [26], Web Service Modeling Language
(WSML) [14], DIANE Service Description Language (SDS)
[28] and the Web Ontology Language for Services (OWL-
S) [31], to name but a few. Some of these languages are
‘lightweight approaches’, providing information about in-
puts and outputs only, others are more complex and allow
for the definition of preconditions, effects or even Quality-
of-Service parameters. The bottom-line is: semantic service
description languages are able to make services machine-
readable and interpretable.

Semantic Service Matchmaking.
Assuming an appropriate semantic description, it is pos-

sible to equip agents with mechanisms that are able to au-
tomatically discover ‘promising’ services. Such concept is
commonly known as service matchmaking. Currently, there
are several service matchmaking approaches available. One
particular category is focusing on functional parameters such

1SWSF website: www.w3.org/Submission/SWSF/
2WSMO website: www.w3.org/Submission/WSMO/
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as inputs, outputs, preconditions and effects (also referred to
as IOPE) and is using taxonomical analyses, lexicographic
methods, and rule reasoning for the comparison of service re-
quest and advertisement [24, 29, 32]. Other approaches put
emphasis on Quality-of-Service properties (non-functional)
in order to find promising service options. There are also
approaches [4, 6], which combine both mechanisms. A ser-
vice matchmaker can be understood as a one-step planner,
thus, a service matchmaker can be always be used as a basic
module for a more comprehensive planning approach.

2.2 Planning with Services
Most available AI planning approaches are based on a

search through a solution space. Solutions that are based on
service composition and the execution of composed services
are scarce [18]. In this work, we focus on software agents that
are compatible with the SOA paradigm, thus, we understand
a service as a semantically described action of an agent and
also as a basic building block of a construct, which we refer to
as ‘plan’. Developing plans is extremely challenging [36] and
usually starts with the abstract creation of a plan and ends
with its execution. Creating plans at runtime aggravates the
problem by adding practical challenges [2].

AI planning is well explored, thus, most of the automated
service composition approaches transform their services into
PDDL descriptions and then use standard AI planning algo-
rithms for solving the planning problem. Examples for such
approaches are WSPlan [39], OWLS-XPlan [25], or were
presented by Sirin et al. [45], Akkiraju et al. [1], or Hatzi
et al. [20]. All these works are based on a similar mecha-
nism, that is: i) transforming service descriptions to PDDL
or another logic language, ii) using a planning algorithm to
solve the search problem, iii) translating the results into a
sequence of service calls. Due to this mechanism, the ca-
pability of most automated service composition approaches
(even the latest developments, cf. Sabatucci and Cossentino
[42]) is determined by the capability of the underlying log-
ical language. Furthermore, depending on the particular
approach, different theoretic properties like the Open World
Assumption or the Frame Problem are ‘flexibly interpreted’
in order to meet the requirements of the modelling space of
the applied language. The effects of these design decisions
are commonly neglected.

Only a few solutions approach the problem of service com-
position directly in the service domain and by means of AI
planning. One promising approach was presented by Sathya
and Hemalatha [43]. The authors propose a high-level ar-
chitecture including a Universal Description, Discovery and
Integration repository and a mechanism that composes reg-
istered services to an invocation order. Fähndrich et al. [13]
argue that state definition planning can be executed directly
in OWL and propose to use OWL-S for planning based on
service description. The authors suggest to describe either
the start or the goal state and to use SWRL to describe
the effects of actions. A similar approach to avoid transfor-
mations to languages other than OWL-S, was presented by
Redavid et al. [41]. In order to avoid the dependency to an
underlying language, the authors propose to create SWRL-
DL rules from the input and output parameters of the service
if the OWL-S service description provides no information
about preconditions or effects. These rules can be stored
in a domain ontology were initial knowledge and goals are
constantly updated. After creating and storing SWRL rules

in the ontology, a backward search is used in order to find
a path that is able to achieve the pursued goal. This path
can be considered as a composition of service calls. A similar
service-based approach was presented by Cruz et al. [7]. The
approach is based on services, which are described in OWL-
S and which support SWRL rules. The output parameters
of the services can be used for analysis or for input parame-
ters of other services. To this end, the approach focusses on
output parameters of services and not on ‘world-altering’ ef-
fects like in other solutions. Tong et al. [46] integrate agents
with service composition techniques. The authors present
a distributed planning algorithm, namely Distributed Plan-
ning Algorithm for Web Service Composition (DPAWSC ),
which transforms the service composition problem into a
graph search problem according to the dependencies among
service agents.

The application of web service languages motivates fur-
ther theoretic and practical solutions. In more particular,
it is necessary to discuss problems that occur when plan-
ning theory is being executed. The first challenge here is to
differentiate two types of services:

World-altering services are services, which cause changes
in the environment when being executed. During plan-
ning these effects are only simulated on a virtual state,
however, during the execution of a plan, services have
effects. These have to be handled if the plan fails dur-
ing execution.

Information services are services, which provide infor-
mation, without having any other effect. The effect
(the abstract knowledge of an agent) of such a service
cannot be described in PDDL [19].

During the planning process, the effects of executed infor-
mation services have to be considered. To account for this,
the planning process has to instantiate individuals that rep-
resent the abstract knowledge in the current state, respec-
tively. Summing up, we do not only have to deal with the
commonly known frame problem [16], but with this new
problem of remembering state-knowledge as well.

Additionally the semantic service research is done in com-
pliance with the Open World Assumption, which means that
facts can be either ‘true’, ‘false’, or ‘unknown’ (compared to
the Closed World Assumption, where facts can only be ‘true’
or ‘false’) [39]. The creation of a locally closed world eases
these two challenges, yet, the underlying theoretic problem
on the other hand remains unsolved [9].

Practically there is no reasoner available, which exceeds
the capabilities of SWRL:B3 and SWRL:X 4, e.g. modelling
of lists, sets, maps, and instance or class creation. Thus,
contrary to PDDL, semantic services maintain the expres-
siveness of describing more than ‘add lists’ and ‘delete lists’
in an effect, however, the usage is limited due to the lack of
theoretic reasoning capabilities of current reasoners.

3. SCENARIOS
There are many scenarios how those advances in service

technology can be used in current trends such as the In-
ternet of Things, human-computer-interaction, smart cities,
3SWRL:B website: www.daml.org/rules/proposal/
builtins.html
4SWRL:X website: swrl.stanford.edu/ontologies/
built-ins/3.3/swrlx.owl
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etc. In this section, we present a number of current re-
search projects: The ‘smart home’ of Connected Living, the
charging optimisation of MSG EUREF, the intermodal route
planning of IMA, and the service orchestration of EMD.
Each project uses some of the aforementioned service para-
digms; in particular, each employs some form of planning.
In the following, we look at each of those in more detail.

3.1 Connected Living
The Connected Living (CL) project is about creating a

‘smart home’, featuring different devices and services. Each
of those devices is represented by a software agent, provid-
ing services for the different sensors and actuators of the
device, e.g. for reading a humidity sensor or for turning off
the heater or for switching on a lamp. Those services can be
controlled via ‘assistants’, i.e. another kind of agent provid-
ing different web UIs and/or rules for controlling the device
agents. Those agents can be added to and removed from the
platform dynamically at runtime.

The CL assistants and rules have been implemented in a
demonstration platform that has been evaluated in a small
number of selected households. Parts of the CL system even-
tually passed into the IO-LITE platform5.

With each of the services being semantically annotated
with input and output, precondition and effect, as well as
some quality-of-service metrics, those device agents’ services
can be planned with, and orchestrated to more complex ser-
vices according to the user’s goals.

Consider the following scenario: Instead of manually op-
erating the light, the blinds, or the air conditioning, the
user simply states the goal ‘I want my room to be warm
and bright’. First, the system would determine what ‘my
room’ refers to, using context information provided by the
user, and filtering the services that relate to the same room.
Then, it matches services that have an effect on brightness,
such as turning on different lamps in the room, or operating
the blinds, as well as services regulating the temperature,
like heaters and air conditioning. Depending on the current
conditions, some of those services are applicable, and others
are not—opening the blinds will not make it brighter if it
is dark outside, and turning on the heater does not do any
good if it is already too warm in the room. The remain-
ing services are then assessed w.r.t. the quality-of-service
attributes that are relevant to the user in the current situa-
tion, and one or more of the services are executed.

The planning problem encountered in this project is not
too difficult. While the number of devices can be rather high,
and each device can have multiple services, those services
usually have discrete parameters, making the search-space
as a whole finite and not too large. Also, as few of the
devices’ effects depend on effects from other devices, service
chains are rather short; in fact, a single service execution is
often enough to achieve a goal.

3.2 MSG EUREF
The project MSG EUREF is part of a larger group of

projects in the Schaufenster Elektromobilität that are con-
cerned with finding optimal charging schedules for electric
vehicles in a micro-smart grid (MSG) [30]. The different
projects are based on the same abstract domain model and
the same optimisation algorithm, with a few specific adap-
tations for each of the projects.

5IO-LITE website: iolite.de/

The MSG EUREF project is currently in the final stage
of its field test at the EUREF campus. In this field test, the
application creates charging schedules for two local buffer
storages, six charging stations for electric vehicles, and a
combined heat and power plant.

The core of each of those projects is a domain model,
describing the different components of the micro smart grids,
such as different charging stations, storages, and vehicles, as
well as abstract concepts such as prognoses, bookings, and
charging schedules. Those models are used in a multi-stage
optimisation for finding an optimal schedule for charging the
vehicles and local storages for meeting a certain goal (usually
a set of bookings) while making best use of locally produced
energy and low energy prices [21].

The optimisation is subdivided into several stages:

1. Using machine learning to predict energy available from
local production.

2. Assignment of vehicles to bookings, swappable stor-
ages to vehicles, and vehicles to charging stations.

3. Optimisation of the charging schedules using stochas-
tic optimisation.

4. Load-smoothening using local storages and/or com-
bined heat and power plants.

Each of those stages is represented as a service provided
by a different agent. For some stages, different implementa-
tions are available (reflecting the requirements of the differ-
ent sub-projects), to be orchestrated to the overall optimi-
sation process [22].

The schedule is created using a (µ/ρ+ λ) evolution strat-
egy, a form of genetic algorithm [10]. Starting with an empty
schedule, the algorithm repeatedly recombines the ‘parent’
schedules, creating and mutating ‘offspring’ schedules and
assessing them by simulating the charging processes in those
schedules. A numeric quality measure is determined by cal-
culating the weighted sum of some key metrics, such as ratio
of bookings fulfilment, and total energy cost. The schedules
that have the highest quality are carried over to the next
generation and the process is repeated until the quality con-
verges.

While this project is also concerned with creating a plan,
or a schedule, the approach to planning is entirely different
than in the one before. Here, the number of different actions
is very limited (charging or discharging any of the storages),
but the actions have multiple continuous parameters (start
of charging, end of charging, and charging power). The ef-
fect of the actions is well-understood, to the point where
it can be accurately simulated, and small changes in input
parameters yield small changes in the action’s result, mak-
ing the application of stochastic and local search algorithms
possible.

3.3 IMA
The Intermodal Assistance for Megacities, or IMA6 project

aims to tackle the problem of integrating ever diversifying
mobility services: Next to public transportation and private
cars, car and ride sharing are becoming more prevalent in
large cities, and often a combination of different means of
transportation is the best option.

6IMA website: ima.dai-labor.de
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In IMA, mobility providers can register and offer their ser-
vices by implementing interfaces for corresponding routing
requests. The approach allows for the development of high-
level functionality, which autonomously accesses, assesses
and utilises available services. Those are integrated into
an assistance system, which calculates and proposes inter-
modal routes that are tailored to the individual preferences
and requirements of users. To make this work, services are
specified through semantic service descriptions, using OWL-
S, containing preconditions, effects, and descriptions of the
service’s attributes, to be matched against the user’s prefer-
ences.

Based on a semantically enriched service landscape, inter-
modal route calculation becomes a typical planning problem.
The algorithm accesses the distributed platform and uses a
semantic service matchmaking component to determine ser-
vices that fit to the user’s preferences and characteristics
(e.g. if the user has no driver’s license, the planner must not
include car-sharing services). After the matching-procedure,
all locations or stations of possible mobility services are in-
tegrated as nodes into a graph, which are in turn assembled
to clusters indicating potential changing locations between
modes of transportation. Next, the costs are estimated by
an objective function considering the user’s preferences, such
as time, monetary costs, ecological footprint, and others. In
order to be able to set the preferences into relation, each
of them is normalised according to the worst estimation for
the respective route. Based on this heuristic, an optimal in-
termodal routing solution can be searched for on the graph
using the A-star algorithm.

The system was implemented as a distributed multi-agent
system, encapsulating bits of functionality as individual soft-
ware agents. In doing so, inter-agent communication works
‘out-of-the-box’, and new agents can be deployed to the sys-
tem without need for further configuration, even at run-
time. As a consequence, mobility service providers simply
have to implement an agent providing the respective ser-
vice, interfacing with the backend service running on their
own hardware, and deploy this agent to the IMA system.
This approach facilitates the providers’ data sovereignty, in-
creases trust and eases the access to the system. The agent-
based approach enables the development of more sophis-
ticated route-finding approaches, e.g. approaches in which
software agents represent mobility providers as bidders in
auctions where a customer’s mobility requests are negoti-
ated.

The IMA system is deployed in Berlin, Germany. The
application includes detailed information about the local
public transportation network, three car-sharing and two
bike-sharing companies as well as one taxi service provider.
The resulting graph comprises approximately 12,000 nodes,
which are connected by more than 4 million edges. The
overall graph size is significantly determined by the user’s
particular settings, thus, the systems’ response time varies.
An average response time of roughly 5 seconds was deter-
mined during a field test study. This time lag was required to
compute the first set of results, yet, the philosophy of IMA is
not only to rely on the best results, but to search all kinds of
alternative options (in particular intermodal route options).
To make this work, IMA uses a threshold of 20 seconds to
search for further routing options. Results are ranked and
presented to the user, who can select from the proposed
options. The applied planning concepts were able to tai-

lor route-finding in IMA to the individual preferences of the
user. In more than 90 % of the cases, the user selected the
same option that the IMA system assessed with the highest
quality. This was also shown during the above-mentioned
field test.

In IMA, planning is used in two ways: First, the low-level
route finding algorithm is an example for a domain-specific,
highly optimised planning algorithm. Secondly, a planning
algorithm is used in order to determine the potential combi-
nations of available routing actions, e.g. via car or via train.
While those actions have very similar effects—getting the
user from A to B—they can have very specific preconditions
as well as quality-of-service parameters, such as the dura-
tion, cost, or eco-friendliness.

3.4 EMD
The project EMD (Extendable and Adaptive E-Mobility

Services) is concerned with developing semantic service de-
scriptions for real-world services and with using those de-
scriptions for searching, matching, and planning with those
services, so that they can be reused and orchestrated to more
complex processes.

Services—both agent actions and web services—are se-
mantically annotated using OWL-S with preconditions and
effects being described in SWRL. The domain ontologies are
modelled with OWL, or OWL ontologies are derived from
existing Java or EMF models. Those services can then be
searched for or matched against a service template, both,
at development time and at runtime, using the Semantic
Service Matcher SeMa2 [32].

The matched services (or the service templates for match-
ing at runtime) are then imported into BPMN process di-
agrams and thus orchestrated to more complex services,
which can again be semantically annotated and added to
the list of available services. Those processes are then either
transformed to executable agent components or are invoked
directly using a process interpreter agent [27].

Besides matching individual services against some service
template and the manual assembly of those services to larger
processes, the project is also concerned with the automated
planning of complex service orchestrations [13], both at de-
velopment and at runtime. Other than in many related
approaches (see Section 2.2), EMD is aiming at planning
directly at the OWL-S level instead of using PDDL as an
abstraction, making this approach more complex, but also
more applicable in practice: Services are not required to be
known a-priori, but can be discovered at runtime, plus, ser-
vice parameters can be any semantically described complex
data type. This allows interoperability on a semantic layer
and enables fuzzy service discovery by preserving grounding
and feasibility. In the project EMD, 13 agents have been
implemented to provide 42 example services.

Besides using the services that were defined especially
for EMD, the project also aims at being integrated with
the other projects (or rather, the services defined in those
projects), particularly with MSG EUREF and IMA. This,
however, gives rise to further challenges: As the projects
were not originally designed to work together, heterogeneous
technologies are used and similar concepts are described in
different domain models. These and other challenges, which
can also be found in many real-life problems, will be the
topic of the next section.
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Table 1: Connection of research projects, planning
problems and challenges.

Element CL EU
R

EF

IM
A

EM
D

P
l a

n
n
in

g Informed Search x
Local Search/Optim. x
Semantic Services x x x
Service Matching x x x
Semantic Planning x

C
h
a
ll
en

g
es

Size of Search Space x x x
Communication x x x
Gen.-Purpose Plan. x x
Interoperability x x
Dev. Tools x x x
Beyond PDDL x x

4. CHALLENGES
While specialised planning algorithms are commonly used

throughout industry, there are still many open problems that
hinder the application of automated general-purpose plan-
ning in real-world applications.

While each of the research projects presented in the pre-
vious section uses some form of planning, their approaches
to planning are very different, ranging from informed search
algorithms and optimisation for solving specific problems
to semantic service matching and planning w.r.t. different
available services and their preconditions and effects. Due to
this heterogeneity, it is difficult to compare those projects
and their respective solutions. Nevertheless we will show
their most important characteristics as well as the challenges
that arose from those characteristics in Table 1.

In the following, we discuss some of those challenges, and
briefly outline how they could be tackled.

Communication and Interaction.
Examined applications—IMA in particular—showed that

effective planning processes are frequently slowed down by
the distribution of relevant planning entities and the com-
municational overhead that is required to exchange infor-
mation between these entities. Because of this, IMA re-
frains from distributed planning and applies a centralised
approach, which caches information that is required for the
planning. The approach fits its purpose, yet, on the expense
of precision and flexibility. One minor side effect of this
‘adaptation’ is a wrongly calculated arrival time (e.g. due
to outdated traffic information), however, it is also possible
that the planning algorithm proposes to use a car sharing
vehicle, which is not available any more (e.g. because of
outdated booking information). What we generally suggest
is to find ways to decrease the information exchange in dis-
tributed planning approaches. IMA showed that caching is
a way to do that, however, in this case it is necessary to
include the concept of ‘ageing data’ in order to account for
information that is not up-to-date.

Domain-specific vs. general-purpose planning.
The presented projects use very different planning algo-

rithms: On the one hand, domain-specific, highly optimised

planning algorithms are used for the routing problem and for
finding charging schedules. Those algorithms do not need se-
mantic annotations, as the semantics of the actions is often
encoded in the algorithms themselves.

On the other hand, different semantically annotated ser-
vices are selected and orchestrated using general-purpose
planners, operating on those services’ preconditions and ef-
fects. General purpose planners will never catch up, and
thus never replace specialised planners in their respective
domains, but there are things they could adopt. For one,
some planning algorithms are incorporating heuristics, such
as the minimum number of steps to reach the goal, or the
number of fulfilled sub-goals in a given state. Integrating
this kind of heuristics into planning algorithms like Graph-
Plan or partial order planning, as attempted, e.g. in [3],
holds great promise for the future.

Interoperability among system borders.
Looking at the aforementioned scenarios, it becomes clear

that the interconnection between systems of different do-
mains will be one of the key advantages of service-oriented
multi-agent systems. Especially upcoming trends like the In-
ternet of Things, or IoT metaphor with presumably millions
of nodes, will push the development to open and adaptive
architectures. However, the need for interoperability raises
a significant challenge, that is: Having a common domain
model in order to exchange information. IMA and EMD are
closely related to each other, therefore the developers de-
cided to use the same model for both projects in order to en-
sure compatibility. The developers, however, reported that
such approach involved a significant number of synchronicity
problems, e.g. version control, different interpretation of at-
tributes, or update cycles, to name but a few—let alone that
the concept of common ontologies will not cope with future
application requirements, especially with the requirements
of the IoT.

A more general, holistic approach is required. First exper-
iments showed that ontology matching [12] might work here.
The basic idea of ontology matching is to (automatically)
identify relations between entities of (possibly) different on-
tologies. Available approaches usually apply one or more
matching strategies. Common strategies are name-based,
string-based (Jaro-Winkler measure or Cosine-similarity),
or structure-based and semantic-based strategies. The con-
cept of ontology matching appears to be promising, espe-
cially when dealing with large numbers of (different) appli-
cations with heterogeneous models. Yet, in order to work in
real world applications, several challenges have to be tack-
led [44]—most importantly (especially in the IoT context)
‘large-scale matching’. Also, most matching solutions are
design-time approaches, neglecting adaptability at runtime.
Finally, an appropriate weighting of the different matching
techniques within the aggregation process is missing. Tests
have shown that, depending on the ontologies, specific tech-
niques seem to be more suitable than others. An automatic
approach to identify the proper technique for the respective
situation is still missing.

Development and Debugging Tools.
Programming with autonomous agents in general, and

with planning agents in particular, presents the developer
with different challenges than in conventional programming.
Besides obvious points, such as accurately annotating ac-
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tions with their preconditions and effects, it can also be
difficult to determine why a software agent is behaving in
a certain way. The action could have been triggered by a
rule, or by a plan, and that plan, again, has been selected
in accordance to some goal, under the very specific circum-
stances that held when the goal was evaluated. It is not as
easy to link a triggering event to a resulting action, and vice
versa. On the one hand, this can make programming easier,
as the developer does not have to care about how something
is achieved, but on the other hand, in case something fails,
it is also much harder to determine the cause of the failure.

For example, a classical exception stack trace shows the
call hierarchy of a function and thus shows why and under
what circumstances that function was called. But in case of
a planning agent, it will just show that the action was in-
voked by the plan execution engine, but not why that action
was selected. This calls for new programming and debug-
ging tools, keeping track of the reasoning performed by the
agent.

Also, while this is not in particular a challenge of plan-
ning, the distributed nature of agents can complicate de-
bugging, as well. Here, a number of approaches exist, both
for modelling interactions and for remotely monitoring and
controlling agents and multi-agent systems.

Planning ‘beyond PDDL’.
In Section 2.2, we elaborated on the complexity of plan-

ning processes, which operate on semantic description lan-
guages and which are executed in the web service domain.
Below, we transfer these problems to service-agent environ-
ments and emphasise factors that aggravate the successful
use of semantic descriptions for real world agent planning
and service composition:

Continuous parameters vs. finite predicates: In many
toy domains, object properties are modelled as predi-
cates, representing finite state, which narrow the search
space in contrast to real applications. In reality, pa-
rameters are continuous elements. These are hard to
guess during a search process. As an example con-
sider the following two descriptions: IsOpen(Door) and
Open(Door, 42cm)

Expressiveness: Depending on the description logic of the
language used to describe states, preconditions, effects,
domain restrictions, and pursued goals, the reasoning
on a service’s effects can be indeterministic. Such phe-
nomenon was demonstrated by means of the descrip-
tion logic OWL-DL SROIQ(D).

Concretisation: In many cases, precondition and effects
of services are abstract descriptions. These have to be
concretised during the plan execution, since effect de-
scriptions cannot provide all the required details. Such
an effect can be demonstrated through the instantia-
tion of an entity. The instantiation process has to set
all mandatory parameters (either by inheritance or by
inference).

Knowledge representation: At runtime, the agent has
access to the representation of the currently executed
plan. Additionally acquired knowledge as well as the
interpretation of this knowledge cannot be represented.
Furthermore, stronger reasoning at runtime on precon-
ditions and effects is needed.

Blending planning and execution: Execution of infor-
mation services during plan time and monitoring of
service execution at runtime are additional concepts,
which should be reflected in the description of services.
Also, it is not possible to formally represent failures
that occur during the execution of a plan. This is not
limited to, but includes Quality-of-Service parameters.

The (automatic) composition of functionality that is de-
scribed by semantics, has great potential—if not the highest
potential of all planning-related techniques. Yet, available
approaches require much improvement and further research
in order to cope with real world problems.

5. CONCLUSION
In this paper we showed that, despite the fact that the

agent-community deems several approaches as ‘adequately
matured’, there still are significant problems when these the-
ories are turned into reality. We used the concept of planning
to emphasise the practical implications of these problems. In
order to do that, we analysed existing agent-based applica-
tions with an adequate level of sophistication and maturity
and that were developed to serve a real world purpose. The
aim of this analysis was to collect planning-related problems
that occurred during the implementation of these applica-
tions and to show how and to what extend these problems
were countered.

In total we identified five categories of problems. To start
with, software agents that serve a real world purpose fre-
quently have to communicate to entities in different com-
puter networks via Ethernet or mobile communication pro-
tocols. In terms of transmission rates, these protocols are
highly optimised, thus, we do not see much potential for im-
provements here. Rather, more efficient ‘real-world-ready’
planning approaches are required, or, from a scientific point
of view it is necessary to answer questions like: Is it possible
to implement planning algorithms that feature the same level
of quality as established approaches, but at the same time re-
quire a decreased number of interactions between the involved
entities? Established planning approaches (see Section 2.2)
are—in theory—able to include large numbers of agents, yet,
in reality it was shown that these approaches reach their lim-
its with 30 to 40 entities that are involved in the planning
process. In the IMA project this limitation was countered
through a centralised planning approach, which grabs and
caches information from all available agents before planning
is done. The approach fits purposes, though, on the expense
of the planning’s quality and flexibility. Due to the fact
that information is being cached, planning is not based on
the latest data, e.g. up-to-the-minute traffic information or
newly deployed or adjusted mobility and transportation ser-
vices. Thus, for a more comprehensive application of agent
technology in a similar context, the communication overhead
between planning-relevant entities has to be decreased. The
IMA project showed that such problem can be approached
by information caching mechanisms.

Secondly, in order to account for the connection of many
different applications, some form of ontology matching is
required. Examined applications (IMA and EMD in partic-
ular) avoided such approach by defining a common domain
model, yet, the analysis of both applications showed that
a common foundation quickly reaches its limit. Especially
when it comes to the maintenance tasks, version control,
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or update cycles, common approaches are clearly inferior
to the more flexible ontology matching. Ontology match-
ing (at least current approaches), however, is not ready for
real world applications. There are several problems that
have to be tackled—most importantly support for ‘large-
scale matching’. This feature becomes increasingly impor-
tant in the context of the Internet of Things. Other problems
are the missing support for adaptability at runtime and an
appropriate weighting of the different matching techniques
within the aggregation process.

Thirdly, we emphasised that two different types of plan-
ning were applied, namely specialised and general purpose
planning. The advantage of general purpose planners is
the possibility to comprehensively reuse existing software
(mostly with minor additions). Yet, general purpose plan-
ners are usually slow and thus not applicable to problems
where results are required quickly. The analysis of existing
agent-based applications substantiated this thesis since spe-
cialised planning solutions were preferred. However, when
looking into specialised solutions we were able to identify
one feature that can be adopted by general approaches, that
is, the incorporation of heuristics. Some approaches include
heuristics like the minimum number of steps to reach the
goal or the number of fulfilled sub-goals in a given state.
We learned that these heuristics are promising and suggest
adding them to general purpose planners as well. Following
Bercher et al. [3], such integration is by all means possible.

We deem automatic composition of semantically described
functionality to have the highest potential of all planning-
related techniques. Yet, first tests clearly showed that avail-
able approaches require much improvement and further re-
search (e.g. in terms of continuity, expressiveness, concreti-
sation, and knowledge representation) in order to cope with
real world problems.

Finally, we identified the need for new programming and
debugging tools. Programming for itself is complex—and
programming in distributed environments significantly more
challenging. Classical exception stack traces show call hi-
erarchies of functions and under what circumstances these
functions were called, yet, in the case of a planning agent,
it is difficult to get more information than the name of an
action that (might have) caused problems. More detailed
(and highly important) information, e.g. why the action
was selected in the first place, are not visible to the pro-
grammer. In order to facilitate any professional adoption of
agent-based frameworks we propose the development of new
programming and debugging tools that help developers to
keep track of the reasoning performed by the agent. After
all, comprehensive tools support is arguably [5, 33, 35, 40,
47] a significant driver for industrial adoption of technology.

Wrapping up we can say that agent-technology is able to
meet the requirements of real world applications through
the use of service paradigms. The problem, however, is that
agent-based programming frameworks and runtimes do not
work ‘out of the box’ and frequently have to be adapted
(e.g. with respect to their performance). This might hamper
any broader application or validation of agent-based models,
since programmers prefer to focus on the development of the
application—not on dealing with shortcomings of the frame-
work. This constellation is exceptionally unfortunate, espe-
cially in the light of the ever-new evolving software devel-
opment trends that may significantly profit from the agent-
based approach. As an example consider the Internet of

Things, where agent-technology can significantly contribute
to an easy integration of intelligent software, sensors, mobile
devices and human beings.

Based on our analysis we argue that (most of the time)
performance problems do not result from ‘insufficient im-
plementations’ of concepts that have their roots in agent
theory but rather from limitations of agent theory that is
applied to real world problems. Nevertheless, considering
these theories to be inapplicable is not helpful as well, thus,
we identified the particular bottlenecks and proposed ways
to improve the fundamental concepts. We identified chal-
lenges in both, theory and practice:

Theory: Communication overhead, expressiveness of de-
scription languages, knowledge representations, ontol-
ogy alignment.

Practice: Development tools i.e. for debugging, execution
monitoring, planning in continuous parameter spaces,
heuristics to guide the shift from domain specific to
general purpose planning.

We hope that our work will help theorists to better un-
derstand the problems and requirements that practitioners
have when applying agent-based programming to reality.
We have to find a joint approach to further the adoption
of agent-technology, after all we, as the agent community,
are strongest when we are working hand in hand.
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e Investigación, 28(3):145–149, 2008.

[20] O. Hatzi, D. Vrakas, M. Nikolaidou, N. Bassiliades,
D. Anagnostopoulos, and I. Vlahavas. An integrated
approach to automated semantic web service
composition through planning. IEEE Transactions on
Services Computing, 5(3):319–332, 2012.
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