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ABSTRACT
In this paper, we develop a variational method to track
and make predictions about a real-world system from con-
tinuous imperfect observations about this system, using an
agent-based model that describes the system dynamics. By
combining the power of big data with the power of model-
thinking in the stochastic process framework, we can make
many valuable predictions. We show how to track the spread
of an epidemic at the individual level and how to make short-
term predictions about tra�c congestion. This method points
to a new way to bring together modelers and data miners
by turning the real world into a living lab.

Keywords
Social simulation, interactive simulation, novel agent and
multi-agent applications, epidemic dynamics, short term traf-
fic forecasting, discrete event simulation, stochastic kinetic
model, variational methods, expectation propagation, Bethe
variational principle, Markov process.

1. INTRODUCTION
Agent-based modeling has been employed by researchers

in many disciplines to specify the elements of a complex sys-
tem and their interactions, to check their understandings of
a system, to conduct thought experiments and to inform de-
sign and analysis [16, 47, 6, 21]. With the availability of big
data in recent years [10, 30, 12], we hope to track and make
predictions about a real world system from the data that
represent the continuous observations of this system and an
agent-based model that specifies how the system evolves,
and consequently to turn our world into a living lab. In this
paper, we identify the agent-based model as a discrete-event
Markov process, and develop a variational inference method
that searches the latent state trajectories of the elements of
the system in the probability space that are most compat-
ible with the noisy observations by minimizing the Bethe
variational principle [4].

Data have traditionally been used by agent-based mod-
elers to calibrate model parameters, drive model execution,
and validate the model. The inquiry in this paper is instead
about how continuous imperfect observations about a real-
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world system can help us make inferences about the system
here and now. Instead of simulating tra�c jams at rush
hours using road network data and agent trips synthesized
from census data [32, 42], we are more interested in predict-
ing whether today’s tra�c jams will be formed earlier or last
longer from the trajectories of probe vehicles, and how the
knowledge about future tra�c states will help drivers use the
road network more e�ciently. Instead of constructing the S-
shaped curve of an infectious population from simulation [8,
31], we are more interested in who got a sni✏e from his
dynamic social network and how we can prevent epidemics
from further spreading [29, 14, 18]. Instead of showing the
emergence of cities and roads from how people explore and
exploit resources [2, 44, 19], We are more interested in iden-
tifying poverty and extracting census information from how
people make phone calls [5, 10, 38]. Predictions with an
agent-based model about real-world data are interpretable
in terms of how agents interact with one another and change
states, and are amenable to reason regarding non-recurrent
scenarios. This transparency about the predictions is lack-
ing in non-parametric approaches.

Our approach is to identify an agent-based simulator as a
Markov process, and to search in the probability space spec-
ified by the simulator for agent behaviors and interactions
that best match the continuous observations about our real-
world system. The key observation behind this approach
is that an agent-based simulator generates di↵erent sample
paths with di↵erent probabilities — it therefore defines a
stochastic process with a probability measure assigned to
the space of the sample paths that describe the interactions
among the elements of the system. In this stochastic pro-
cess, the system state as a function of time is composed of
the states of its elements. This stochastic process is driven
by a number of events that change the system state and
happen with event rates that are functions of the current
system state. A sample path of the stochastic process is de-
fined by a sequence of events and the corresponding times
when those events happened, from which we can unambigu-
ously recover the system state as a function of time. An
agent-based simulator therefore iteratively samples the next
event according to event rates then changes the world state
according to the sampled state starting from the initial state,
until the required amount of simulated time has passed.

To find out the maximum likelihood probability distribu-
tion of the system state X

t

for t

1

 t  t

2

from observed
system state x

t

1

at time t

1

and x

t

2

at time t

2

, we follow
the forward-backward algorithm: we first let the probability
mass di↵use from x

t

1

in the forward step according to how
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this system evolves from t

1

to t

2

, and then we iteratively
trace backwards from t

2

to t

1

in the backward step how the
probability mass ended at system state x

t

2

instead of an-
other state. After the forward step and the backward step,
we get the probability distribution of system state X

t

for
t

1

 t  t

2

conditioned on both of its states x
t

1

and x

t

2

.
The challenge in making probabilistic inferences about an

agent-based model is that we have to deal with an exploding
state space — for just a simple task of tracking the binary
states of 50 agents, we must cope with 250 combinatorial
states because the agents interact with one another. And,
of course, a real-world system is much larger. To cope with
this exploding state space, we use mean field approximation:
the probabilistic evolution of an agent state is determined
by the mean field (average) e↵ect of the states of the other
agents. The variational framework for making inferences
about stochastic processes was developed in the field of ma-
chine learning [45] as minimizing Bethe variational principle
[4] with applications to expectation propagation [33, 24] and
loopy belief propagation [34].

This paper therefore advocates that we should combine
the power of big data and the power of model-thinking in
the stochastic process framework. Agent-based modeling is
a physicist’s approach for modeling human societies when
data are unavailable and experiments impossible [16], and
we believe that big data will transform agent-based model-
ing from speculation into a physical science. This paper also
o↵ers a solution that fits to big time-series data any agent-
based model defined by a production rule system based on
mean-field approximation. Hence, this system brings to-
gether modelers and data miners. We have benchmarked our
solution on systems of hundreds of agents, and our bench-
marking gives meaningful results.

The rest of this paper is organized as follows. In Section
2 we introduce a probabilistic production (rule) system to
describe the microscopic dynamics of a generative model,
and identify the production system as a stochastic process.
In Section 3 we derive a mean-field solution to the gener-
ative model under the constraint of data. In other words,
given a simulator and noisy observational data about a pro-
cess generated by the simulator logic, our algorithm infers
the probabilities on a per-agent basis of all possible out-
comes. In Section 4 we give examples and benchmark this
algorithm against other algorithms. We summarize what we
have accomplished and o↵er our speculation about big data
in Section 5.

2. STOCHASTIC PROCESS INDUCED BY
AGENT-BASED MODELS

In this section, we introduce the stochastic kinetic model
described by the Gillespie algorithm [22] to make inferences
about social dynamics from information about individuals in
the social system. A“stochastic kinetic model” is a chemist’s
way of describing the temporal evolution of a system with
M agent species driven by V events (or chemical reactions)
parameterized by rate constants c = (c

1

, . . . , c

V

). At any
specific time t, the populations of the species are x

t

=
(x(1)

t

, . . . , x

(M)

t

). An event v happens with rate h

v

(x
t

, c

v

),
changing the populations by�

v

. The V events are mutually
independent.

Gillespie algorithm

1. Initialize the system at time t = 0 with rate constants
c

1

, . . . , c

V

and initialize the populations of the species
as x(1)

, . . . x

(M).

2. Simulate the time ⌧ to the next event according to
exponential distribution ⌧ ⇠ Exponential(h

0

(x, c) =P
V

v=1

h

v

(x, c
v

)).

3. Simulate the event v according to categorical distribu-
tion v ⇠ Categorical(h1

h

0

, . . . ,

h

V

h

0

).

4. Update and output time t  t + ⌧ and populations
x x+�

v

.

5. Repeat steps 2-5 until the termination condition is sat-
isfied.

The stochastic kinetic model specified by the Gillespie al-
gorithm assigns a probability measure to a sample path of
the system induced by a sequence of events v

1

, . . . , v

n

, hap-
pening between time 0 and time T , 0 = t
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The stochastic kinetic model was designed to explain the
macroscopic properties of a system via the microscopic in-
teractions among particles in the system [47]. If we are able
to observe particles, we expect not only to improve our esti-
mation of the system properties but also to make inferences
about the particles. When this model is applied to a so-
cial system, the particles are the individuals in the system,
and the capability to make inferences about these particles
becomes even more important. An event in the Gillespie
algorithm looks like the following:
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�
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, · · · ,�(M)
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(M)

v

).

When ↵

(1)

v

individuals of species 1, ↵(2)

v

individuals of species
2 ... meet, they trigger event v with rate constant c

v

, which
result in �

(1)

v

individuals of species 1, �

(2)

v

individuals of
species 2, and so on. The rate h

v

(x, c
v

) for this event to

happen is rate constant c
v

times a total of
Q

M

m=1

⇣
x

(m)

⌘
↵

(m)

v

di↵erent ways for the individuals to meet.
When the components of the agent-based model X(1), · · · ,

X

(M) lose meaning as the populations of agent species, we
can find the probability distribution of a component state
among a finite partition of the component’s state space.
When the event rates cannot be expressed as the multipli-
cations of component contributions in the form of Eq. 3, we
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take Taylor expansions of the event rates around the mean
value of the system state

h

v

(x, c
v

) =
X

|↵|�0

(x�Ex)↵

↵!
@

↵

h

v

(Ex, c

v

),

with each term being in the form of Eq. 3. ↵ is a multi-index
and E is the expectation operator.

Although the stochastic kinetic model is a continuous time
model, we work with a discrete time stochastic model in the
rest of this paper, because our goal is to track stochastic
kinetic dynamics from observations of populations or indi-
viduals with countably many computational steps. There
are two ways to turn a continuous stochastic process into
a discrete one, both of which involve Jensen’s uniformiza-
tion/randomization method [23].

The first method for discretizing a continuous time stochas-
tic system is through approximating the continuous time
process with a discrete time process on a countable set of
equally spaced time points 0, ⌧ ,2⌧, . . . , with a time interval
so small that the probability of more than one event happen-
ing in the interval ⌧ is negligible. This approximation works
because the state transition kernel from time 0 to time ⌧ is
p(x

0

! x

⌧

) =
P1

n=0

⇣
I + Q

�

⌘
n

exp(��⌧) (�⌧)
n

n!

according to

the uniformization method, where � is a uniformization rate,
I is the identity matrix and Q is the infinitesimal generator
defined by h

k

, k = 1, . . . , V . With � ! 1 and �⌧ = 1, we
get a first-order approximation of the state transition kernel
I +Q · ⌧ .

Specifically, let v

1

, . . . , v

T

be a sequence of events in the
discrete time stochastic kinetic system, x

1

, . . . , x

T

be a se-
quence of states (populations of species), and y

1

, . . . , y

T

be a set of observations about the populations. Our goal
is to make inferences about {v

t

, x

t

: t = 1, . . . T} from
{y

t

: t = 1, . . . , T} according to the following probabil-
ity measure, where indicator function 1(x

t

� x

t�1

= �
v

t

)
is 1 if the previous state is x

t�1

and the current state is
x

t

= x
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+�
v

t

, and 0 otherwise.
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)

= P (v
t
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t�1

)1(x
t

� x

t�1
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t
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and P (v
t
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t�1
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(
c

k

⌧ · g
k

(x
t�1

) if v
t

= k

1�
P

j

c

j

⌧g

j

(x
t�1

) if v
t

= ;
. (6)

The second way to discretize a continuous time stochas-
tic system is by introducing a uniformization rate � that is
faster than all event rates in Q and inspecting a discrete time
Markov chain defined by the state transition matrix I + Q

�

,
with the transitions happening at time t

1

, t

2

, . . . , sampled
according to a uniform Poisson process with rate �. This
works because according to the uniformization method the
uniformised continuous time process has the same probabil-
ity measure as the original process.

We employ a stochastic kinetic model to simplify the state
space transition kernel for several reasons. First, the stochas-
tic kinetic model already successfully describes the time evo-
lution of reaction systems in many areas, including chem-
istry and cell biology [1, 22]. It is therefore a more natural
model for describing and tracking the spatio-temporal pro-
cess driven by events. Second, the event based transition

kernel is more general and flexible–we can define the num-
ber of events based on the complexity of real transitions.

3. MAKING INFERENCES WITH AN
AGENT-BASED MODEL

In this section, we derive a mean-field solution to infer
the probabilities on a per-agent basis of all possible paths of
system evolution, given a simulator and noisy observational
data about this system generated by the simulator logic.

3.1 Variational Inference
Recall the forward-backward algorithm to make inferences

with a state space model [39]. Let X

t

be the hidden states
and y

t

be the observations of a discrete-time state-space
model (Kalman filter and hidden Markov model) identified
by a transition probability P (X

t+1

|X
t

) and an observation
model P (Y

t

|X
t

), where t = 1, · · · , T . The forward-backward
algorithm for making inferences about hidden statesX

t

from
observations y

t

is comprised of a forward/filtering sweep
to compute the forward statistics ↵(x

t

) = P (x
t

|y
1

, · · · , y
T

)
and a backward/smoothing sweep to estimate the one-slice
statistics �(y

t

) = P (x
t

y

1

, · · · , y
T

). From the forward statis-
tics and the one-slice statistics we can extract the backward
statistics �(x

t

) = �(x
t

)/↵(x
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) and the two-slice statistics
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)�(x
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)P (y
t+1

|y
1,··· ,t).

Here we follow the tradition, use upper case letters for ran-
dom variables and use lower case letters for the values of
random variables.

The challenge with making inferences about a non-trivial
agent-based model is that we have to search in a formidable
state space — X
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= (X(1)

t

, X

(2)
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, · · · , X(M)

t

), where the su-
perscripts 1, · · · ,M represent the states of the interacting
elements of the system. We therefore estimate the state dis-
tributions of the hidden states in an amenable state space
with mean field approximation �
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We apply the method of Lagrange multipliers to solve this
optimization problem, which begins with forming the La-
grange function to be optimized:
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is the mean field approximation of the original dynamics
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The above is a factorized stochastic kinetic model. The
marginal two-slice probability ⇠

t

(x(m)

t�1

, x

(m)

t

, v

t

) in Eq. 15

takes the same form as the coupled two-slice probability
⇠

t

(x
t�1

, x

t

, v

t

) in Eq. 13. The marginal state transition ker-

nel P (x(m)

t

, v

t

|x(m)

t�1

) in Eq. 16 consists of choosing an event

(or no event) v

t

according to event probability P (v
t

|x(m)

t�1

)

and changing the state x

(m)

t

in a deterministic way, similar
to the joint state transition kernel P (x

t

, v

t

|x
t�1

) in Eq. 14,

except that we marginalize over all x(m

0
) for m0 6= m.

Hence the solution to the above Bethe variational princi-
ple through Legendre-Fenchel transform [40] is one in which
the interacting elements of the system evolve their states
marginally according to the average e↵ects of the other el-
ements. As such, instead of searching the joint probability
space of of (X

1

, · · · , X
T

), we search the marginal probability

spaces of (X(m)

1

, · · · , X(m)

T

).

3.2 Graphical Model Representation
The stochastic kinetic model with its distinct graphical

model structure is more suitable than traditional models for
modeling complex interactions in social dynamics. To illus-
trate this point, we compare its graphical model with the
coupled hidden Markov model.

A coupled hidden Markov model (CHMM, Figure 1(a))
combines a number of conventional hidden Markov models
(HMMs) to model the dynamics of interacting processes [7,
35]. In CHMM the latent state of HMM at time t depends
on the latent states of all HMMs at time t� 1. Traditional
ways to simplify the state transition kernel include the fac-
torial hidden Markov model which decouples the inter-chain
probability dependence [28] and the hidden Markov decision
tree which assumes fixed and sparse inter-chain probability
dependence [20].

A stochastic kinetic model has a graphical model repre-
sentation di↵erent from CHMM, as shown in Figure 1(b).
First, we define a set of stochastic events to summarize the
complex interactions and decouple direct dependencies be-
tween nodes. Second, while the system can move from any
state to any other state in a CHMM, in any infinitesimal
time interval no more than one out of V possible events is
happening in a stochastic kinetic model. Third, conditioned
on the system state x

(1)

t�1

, . . . , x

(M)

t�1

describing the popula-
tions of species 1, . . . ,M , the latent state at the next time
step x

(1)

t

, . . . , x

(M)

t

could be dependent. (Consider an event
that changes population m

1

and population m

2

simultane-
ously.) In contrast, in a CHMM the states x

(1)

t

, . . . , x

(M)

t

at time t are conditionally independent given the states
x

(1)

t�1

, . . . , x

(M)

t�1

at time t� 1. Thus the inference algorithms
of CHMM are not applicable for modeling the complex in-
teractions in social dynamics driven by events.

The factorial stochastic kinetic model has a graphical model
similar to the stochastic kinetic model except that it fac-
torizes stochastic events to individual species (Figure 1(c)).
The new graphical model further simplifies the inference al-
gorithm.

3.3 Parameter Learning
In order to find the rate constants c

v

in a stochastic ki-
netic model and in a factorial stochastic kinetic model, we
maximize the expected log likelihood and the Bethe entropy
approximation respectively over these rate constants.

The likelihood of rate constants c

v

in a continuous time
stochastic kinetic model with respect to a sample path iden-
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Figure 1: In comparison of coupled hidden markov model (a), a stochastic kinetic model (b) decouples

inter-chain interactions with events v and allows factorization (c).

tified by events v
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, · · · , v
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, system states to x
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and
times t

1

, · · · , t
n

is given in Eq. 1, and the event rates are
given in Eq. 3. To find the maximum likelihood estimate
of the rate constants, we set the partial derivatives of the
log-likelihood over the rate constants to 0:
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Hence, the maximum likelihood estimate of the rate con-
stants c

v

is such that the numbers of events that are ex-
pected to happen according to the event rates along the
sample path

´
T

0

dt c

v

g

v

(x(t)) match the numbers of eventsP
i

1(v
i

= v) that happened in the sample path. Indicator
function 1(v

i

= v) takes value 1 if v
i

= v and 0 if v
i

6= v.
The likelihood of rate constants c

v

in a discrete time stochas-
tic kinetic model with respect to a sample path identified by
events v

1

, · · · , v
T

, system states x
1

, · · · , x
T

and observations
y

1

, · · · , y
T

is given in Eq. 4. To find the maximum likelihood
estimate of the rate constants, we similarly set the partial
derivatives of the log-likelihood over the rate constants to 0:

logP =
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Hence, the maximum likelihood estimate of the rate con-
stants c

v

in a discrete-time stochastic kinetic model simi-
larly matches the numbers of events that are expected to

happen according to the event rates (
P

t

c

v

⌧g

v

(x

t�1

)1(v

t

=;)
1�
P

j

c

j

⌧g

j

(x

t�1

)

,

extrapolated from the times of null events) with the num-
ber of events that happened (

P
t

1(v
t

= v)). As the in-
terval ⌧ approaches 0, the probability of a null event (1 �P

j

c

j

⌧g

j

(x
t�1

)) and the fraction of null events (
P

T

t=1

1(v
t

=
;)/T ) both approach 1, and the maximum likelihood esti-
mate of the rate constants in the discrete time stochastic
kinetic model approaches the maximum likelihood estimate
in the continuous time stochastic kinetic model.

When the events v
1

, · · · , v
T

and the system states x
1

, · · · , x
T

are unobserved latent variables, we use the expectation max-
imization (EM) algorithm to iteratively search for the rate
constants that maximize the expected log likelihood over the
probability distribution of the latent variables. EM is an it-
erative method for finding the maximum likelihood estimate
of the parameters in statistical models involving unobserved
latent variables [11]. It alternates performing the expecta-
tion (E) step, which constructs the expected log likelihood
as a function of the parameters over the probability dis-
tribution of the latent variables using the current estimate
for the parameters, with the maximization (M) step, which
computes the parameters to maximize the expected log like-
lihood function constructed in the E step. The estimated
parameters are used to determine the probability distribu-
tion of the latent variables in the next E step.

The expected log likelihood over the posterior probabil-
ity of events v

1

, · · · , v
T

and system states x
1

, · · · , x
T

condi-
tioned on the observations y

1

, . . . , y

T

takes the form in Eq.
17. Maximizing this expected log likelihood by setting its
partial derivatives over the rate constants gives the updated
estimate of rate constants in Eq. 18.
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As such, the rate constant c

v

for event v matches the
expected number of times this event could have happened
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)) along the sample path with the expected num-
ber of times the events happened (
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Using Bethe entropy approximation,
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and setting the discretization time interval ⌧ to be small
enough, the rate constants c

v

can be updated according to
Eq. 19.
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Therefore, the rate constant for event v is the expected
number of occurrences of this event summed over all times,
divided by the total cross-section of this event also summed
over all times.

To summarize, we provide the variational agent-based in-
ference algorithm below.

Variational Inference with Gillespie Algorithm

Given observations y(m)

t

for t = 1, . . . , T andm = 1, . . . ,M ,
and the stochastic kinetic model of a complex system de-
fined by Eq. 4, find x

(m)

t

, v

(m)

t

and rate constants c

k

for
k = 1, . . . , V .

• Latent state inference. Iterate through the follow-
ing forward pass and backward pass until convergence,
where P (x(m)

t

, v

t
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) is given by Eq. 16.
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• Parameter estimation. Iterate through latent state in-
ference (above) and rate constants estimate of c

k

ac-
cording to Eq. 19, until convergence.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of variational

agent-based inference for two applications: epidemic dynam-
ics and tra�c dynamics. We selected these because they are
important applications with significant practical value.

4.1 Epidemic Dynamics
In this section, we infer the progression of common cold in

a dynamic social network using an agent-based susceptible-
infectious-susceptible (SIS) model at the individual level
through a small numbr of volunteers who report their symp-
toms, and estimate the total number of infectious individu-
als. Being able to estimate the outbreak of an epidemic in
advance and determine who has the highest probability of
infection is important for health-care providers and health
policy researchers who must optimize limited medical re-
sources. Conventional agent-based epidemic simulators [17,
26, 41, 27, 15] lack the capability to infer epidemic spread-
ing with symptoms observations in the social network, and
thus the sample paths given by these simulators can di↵er
significantly from the truth.

In the SIS dynamics, each individual is either infectious
(I) or susceptible (S), and the system has three events: a) an
in infectious individual in the network infects a susceptible
individual and turns that person infectious in the network
with rate constant c

1

(probability per unit time), b) an in-
fectious individual recovers and becomes susceptible again
with rate constant c

2

, and 3) a susceptible individual be-
comes infectious by contacting an infectious individual from
outside the system with rate constant c

3

.

I + S ! 2⇥ I, infection, rate constant = c

1

,

I ! S, recover, rate constant = c

2

,

S ! I, infection from outside, rate constant=c

3

.

To model the SIS dynamics at the individual level with Gille-
spie algorithm, we assign two “species” to each person p:
I

(p) 2 {0, 1}, S(p) 2 {0, 1} and I

(p) + S

(p) = 1. The proba-
bility for a susceptible person p to become infectious through
one unit time of contact with an infectious person q is thus
h(x, c

1

) = c

1

· s(p) · i(q) = c

1

. The mean field probability for
the susceptible person p to become infectious is thus

X

q2neighbor of p

c

1

· s(p) ·EI

(q) = c

1

· s(p)
X

q2neighbor of p

EI

(q)

,

i.e., the average total number of infectious neighbors in the
individual’s social network times the probability of infection
per infectious neighbor. If infection happens, we change S(p)

from 1 to 0 and change I

(p) from 0 to 1.
We benchmark the performance of the variational agent-

based inference algorithm using the Dartmouth College cam-
pus data set [29]. This data set contains the locations of
13,888 on-campus WiFi users from April 2001 to June 2004.
On top of this dynamic social network we synthesized epi-
demic progression using the SIS model and set parameters
such that an individual is on average infected twice per
year and takes one week on average to recover. We ran-
domly select 10% of individuals as volunteers who report
their daily symptoms and from these we infer the daily in-
fectious/susceptible state of the other 90% individuals. As
far as we know, there is no real data set with both a large
amount of sensor data and symptom reports; we hope our
research encourages data collection and analysis in this di-
rection.

Figure 2(a) compares the receiver operating characteristic
(ROC) curve of predicting whether an individual is infec-
tious using either a variational agent-based inference algo-
rithm or a support vector classifier [37]. The support vec-
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Figure 2: Statistical inference in Dartmouth data

tor classifier (SVC) estimates the probability that an indi-
vidual is infectious based on the percentage of his contacts
reporting symptoms. Since only 10% of individuals are re-
porting symptoms in the experiment setup, the likelihood
that an individual is infected can be only roughly estimated
by SVC. In addition, infectious individuals make di↵erent
contributions to epidemic progression because infectious dis-
eases from randomly infected individuals go first to the hubs
of a social network then spread to the other nodes from those
hubs [9], and SVC has di�culty in capturing such network-
related features. Variational agent-based inference, on the
other hand, can correctly predict 60% of infections with only
a 20% false positive rate.

Figure 2(b) compares the performance in estimating the
number of infectious persons in the 90% of individuals who
do not report their daily symptoms from daily symptoms
reported by the 10%. A scaling-based method missed the
rapid increase of infectious individuals in early September
and overestimated the number of infectious individuals in
mid-October and November. This occurred because not all
infectious individuals contribute to epidemic progression the
same way.

4.2 Traffic Dynamics
In this experiment, we predict road tra�c up to one hour

ahead of time from a large set of tracked vehicle locations
in conjunction with an agent-based transportation simulator
called MATSIM [32]. While tracked vehicle locations from
car telematics systems are already being exploited to provide
drivers with real-time tra�c information, the chaotic nature
of transportation networks means that an incident at one
location might a↵ect the tra�c condition of another location
up to a hundred miles away. A decision made according to
current travel times might therefore be suboptimal, and can
in certain cases even lead to global system breakdown.

Researchers employ a transportation simulator to explain
the macroscopic phenomena of transportation dynamics by
simulating how individuals travel in a real-world transporta-
tion network. Such a simulator takes three primary compo-
nents as its input: a road network like the one used in a
GPS navigator, a population specification that lists the lo-
cation and travel of individuals on a typical day synthesized
from census data and trip surveys with the number of sim-
ulated vehicles matching the number of vehicles in the real
world, and a control file specifying how daily itineraries are
scored and how individuals improve their daily itineraries
(and the parameters specifying the modeling details). From

these data, the simulator will proceed to execute travel, to
score daily itineraries, and to perturb daily itineraries in an
attempt to improve them, and then repeat the three steps
until equilibrium is reached. Simulation without continu-
ous observtations about a real-world transportation network
however doesn’t tell us whether today’s tra�c jams will be
formed earlier or last longer.

Many existing algorithms to track and predict real-time
tra�c dynamics on the other hand — vector ARIMA [3],
state space models [46], neural networks [48], and Bayesian
network models [25, 13] — have di�culty in coping with
noisy and missing data, with making predictions in non-
recurrent scenarios, and with explaining predictions in terms
of agent trips. According to Vlahogianni [43], the challenge
in short-term tra�c forecasting is not only to predict but
also to explain phenomena at the city network level — to
fuse new data sources such as those from telematics units
and to easily incorporate the e↵ects of non-recurrent condi-
tions.

To join the event model of a discrete-event simulator with
continued observations about real-world social systems, we
make use of the fact that all discrete event simulators (at
least, to the best of our knowledge) have a way to dump the
events happening in a simulation run. As such, we can re-
construct simulation runs according to the event sequences
and so reconstruct the stochastic discrete-event model from
simulation runs outside the simulator, instead of hacking the
source code of a specific simulator over many man-months.
MATSIM, for example, has about 140 thousand lines of
code, and hacking its source code to make real-time infer-
ences with real-world data wouldn’t be easy.

In this way, we dump four events: vehicle leaving a build-
ing, vehicle entering a link, vehicle leaving a link and vehicle
entering a building. From these four events, we have con-
structed a data frame representing continued observations of
the locations (the link or building) of all vehicles at equally
spaced time steps. From the data frame we constructed a
state transition matrix to represent vehicle dynamics (with
each row and column representing a link/building), along
with entries giving the state transition probabilities accord-
ing to how long a vehicle stays at a link/building and how
frequently a vehicle chooses the next link/building. By uni-
formly sampling a given fraction of tracked vehicles, we have
constructed an observation model that provides the proba-
bility distribution of observed vehicles at a location given
the total number of vehicles there. This system has only one
event p

i

� l
j

! p
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� l
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, a vehicle i moving from link/building
j to link/building k with rate constant p
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t

+1. But the infer-
ence is much more complex due to the interactions between
vehicles and links.

We employ the mobility traces of more than 500 taxi cabs
collected over 30 days in the San Francisco metropolitan area
[36] to benchmark the advantages of considering possible
future tra�c conditions for individual transportation plan-
ning. We extract the road network from OpenStreetMap, a
collaborative project to create a free editable map of the
world. We obtain population distribution and daily trip
statistics from the U.S. Census, and obtain the state transi-
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Figure 3: Considering future tra�c reduces the rel-

ative error of travel time versus actual travel time

from 35% when future tra�c is not considered to

29% when it is.

tion matrices from one link/building to another at equilib-
rium from simulations. We map the latitudes and longitudes
of tracked vehicle locations to links and buildings because
our stochastic inference is at the link/building level.

To benchmark how the estimation of travel time can be
improved by considering future tra�c conditions even though
tra�c conditions vary significantly, we extract the 20% of
trips with the highest di↵erence between actual travel time
and estimated travel time according to tra�c at the time of
departure, then estimate the average travel time according
to our probabilistic model. Such travel often occurs at the
rising edge of overall tra�c volume, during bad weather, and
on less developed roads.

Figure 3 compares these estimated travel times according
to only tra�c at the time of departure with the same data
considering possible future tra�c estimations through a ran-
dom sample of 128 trips. The travel estimations that do not
project future tra�c exhibit on average a 35% relative error
(in comparison with a 29% when projecting future tra�c),
and therefore occasionally di↵er significantly from the actual
travel time.

As such, we can combine the sporadically observed vehicle
locations with the large compilation of typical trip plans to
continuously estimate current and future tra�c conditions.
Starting from the number and behavior of tracked vehicles
in a road link, we can determine the total number of vehicles
in the link by scaling and estimating tra�c conditions. If we
trace the origins and destinations of the estimated number
of vehicles through the factorial stochastic process model
(filling any gaps with prior individual travel behaviors), we
can extract information about the tra�c at other road links.
If we then iterate estimations between the tra�c at links
and the trip choices of simulated vehicles, we improve our
estimation of both.

5. CONCLUSIONS AND DISCUSSIONS
In this paper, we have developed a variational method to

make inferences about a real-world system from continuous

imperfect observations about the system, using an agent-
based model that describes the dynamics of this system. To
demonstrate the value of combining the power of big data
and the power of model-thinking in the stochastic process
framework, we show how we can track epidemics at the in-
dividual level from only a small number of volunteers who
report their symptoms, and we make short-term predictions
about road tra�c from sporadically observed probe vehi-
cles. This is just a taste of what this powerful combination
of approaches can do, and we expect to see further applica-
tions and theoretical development to test the bounds of this
methodology.

APPENDIX
The duality between Eq. 7 and Eq. 12 is a duality between
maximum relative entropy and maximum pseudo-likelihood.
To get the dual form of the Bethe variational problem in Eq.
12, we set the derivatives of Eq. 11 over ⇠
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