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ABSTRACT
Following the work of Babaioff et al [4], we consider the pric-
ing game with strategic vendors and a single buyer, modeling
a scenario in which multiple competing vendors have very
good knowledge of a buyer, as is common in online mar-
kets. We add to this model the realistic assumption that the
buyer has a fixed budget and does not have unlimited funds.
When the buyer’s valuation function is additive, we are able
to completely characterize the different possible pure Nash
Equilibria (PNE) and in particular obtain a necessary and
sufficient condition for uniqueness. Furthermore, we char-
acterize the market clearing (or Walresian) equilibria for all
submodular valuations.

Surprisingly, for certain monotone submodular function
valuations, we show that the pure NE can exhibit some coun-
terintuitive phenomena; namely, there is a valuation such
that the pricing will be market clearing and within budget
if the buyer does not reveal the budget but will result in a
smaller set of allocated items (and higher prices for items)
if the buyer does reveal the budget. It is also the case that
the conditions that guarantee market clearing in Babaioff et
al [4] for submodular functions are not necessarily market
clearing when there is a budget. Furthermore, with respect
to social welfare, while without budgets all equilibria are
optimal (i.e. POA = POS = 1), we show that with bud-
gets the worst equilibrium may only achieve 1

n−2
of the best

equilibrium.
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1. INTRODUCTION
The question of how to price items in a market has ex-

isted for millennia, ever since people began trading with one
another. Market pricing is clearly a central area of study
in Economics. One of the most important aspects of these
studies is market clearing (Walrasian) equilibria, initiated by
Walras in 1874-1877 (See translation by Willam Jaffe [13]).
The advent of online markets has changed pricing in many
respects, both to the vendors benefit and to their detriment.
On the one hand, vendors can gain vast information about
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their customers, and can tailor their prices to each particu-
lar customer. On the other hand, the instant availability of
a large amount of competitors allows customers to pick and
choose among the items they want. The speed and size of
online markets necessitates having simple rules for setting
prices and understanding the nature of pricing equilibria.

This world, where vendors compete with each other in
online marketplaces (e.g., Amazon or E-Bay), and are able
to adapt their prices to their customer, inspired a recent
line of research [4, 12], utilizing a game theoretical toolbox
to address these scenarios. Here self interested agents (the
vendors) post prices for their wares and a buyer consumes a
subset of the items based on their valuation for the items
and the posted prices. The vendors aim is to maximize
their individual profits (we assume no transaction or pro-
duction costs) and they will post prices as high as possible.
If a vendor does not wish to participate in the market they
may price their items at infinity. How vendors best position
themselves in the market relative to other vendors – and the
valuation of the buyer – creates interesting and non triv-
ial scenarios. While we use buyer - seller terminology, this
problem is applicable to other allocation scenarios that may
arise in a multi-agent environment.

We add to the setting of [4, 12] the vital component of
budgets. Previous work assumed the buyer had unlimited
purchasing power, their decision limited only by the valua-
tions. Now we cannot assume the buyer will purchase any
bundle at a price lower than its value. The buyer will con-
sume the set of items with highest utility (i.e., net value, tak-
ing prices into account), that is within their budget, while
the strategies of the vendors is determining the prices of the
items they offer.

This brings about a departure from the previous results,
as we show how the buyer’s valuation and budget influence
the market. Not only are some previous results now rendered
impossible as they exceed the budget, but this more realistic
assumption materially changes the structure of pricing from
the intuitions formed in earlier research, as a more complex
strategic behaviour needs to considered.

1.1 Our Contributions
We begin by studying additive buyer valuation functions.

In the non budgeted world of Babaioff et al. [4] and Lev et
al. [12] this is an uninteresting case where there is a sim-
ple and unique equilibrium in which every item is sold. We
show, naturally, that a budgeted buyer can no longer nec-
essarily purchase all of the items for sale. We identify a
condition on the valuation function and the budget which
is sufficient to ensure a market clearing equilibrium exists.
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This equilibrium is interesting since each item is priced to
provide identical utility to the buyer. We prove that under
this condition the market clearing equilibrium is unique. We
next examine what happens when the uniqueness condition
does not hold in the additive case. We provide a method to
identify a subset of the sellers whose existence in some sense
generalizes the condition for uniqueness and thereby allows
for a partial characterization of all PNE. We finally prove
our condition for market clearance is necessary.

We then extend our equilibrium analysis to the case of
monotone submodular valuation functions. We extend the
notion of our conditions in the additive case to submodular
valuations proving that a similar market clearing equilibrium
exists. We also prove that the condition is again necessary to
ensure market clearance. We next provide an example which
shows a rather surprising consequence of the budget. We
show that at certain equilibrium a buyer who has no budget
can pay less and receive more items than their budgeted
counterparts. We also show that our notion of generalizing
the condition on the valuation and budget to reach an equal-
utility equilibrium does not work for XOS valuations.

Finally, we explore the budget effects on social welfare.
We show that while it is known [4] that without a budget
the price of anarchy is 1, with a budget the price of anarchy
can be arbitrarily high.

1.2 Previous work
As already mentioned, the study of market pricing and

equilibria is one of the most classical areas of Economics. In
particular, the study of Walrasian equilibria considers the
question of which markets have market clearing equilibria;
that is, an assignment of prices to items such that when
all agents take their preferred allocation in this pricing (i.e.
an allocation in their demand set), all items are sold. We
are interested especially in settings where there are distinct
sellers and buyers, which are termed Fisher markets [6, 9].
A lot of work has gone into examining this when all items
are divisible (e.g., commodities, such as oil, grains, etc.), but
we focus on the case of indivisible items, which is how most
items are sold in say online markets.

One of the foundational “modern” papers in this regard is
that of Gul and Stacchetti [10] who show that for indivisible
items the class of Gross Substitutes, a strict subfamily of
submodular functions, is the largest class of functions con-
taining unit demand buyers that always possess a Walrasian
equilibrium. There have been several papers that follow this
work [9, 8, 2, 3, 1, 7]. The basic emphasis in these papers is
the existence and convergence to such equilibria without ex-
plicit representation of a pricing function. Moreover, while
budgets are mentioned in some of these papers, the usual
assumption is that the budgets are sufficiently large.

Recently, as the ability of vendors to analyze individual
buyers and personalize their prices in online markets has in-
creased [14], research in analyzing competitive pricing anal-
ysis in this scenario has increased. The model of Babaioff et
al. [4] is most similar to ours, with many strategic vendors
each holding a single item, and a single buyer. The main
difference from their work is that while they consider buy-
ers with unlimited purchasing power, we limit ourselves to
budget constrained buyers. They prove that in any game
with monotone buyer valuations there always exists a pure
Nash equilibrium that clears the market and maximizes so-
cial welfare. Furthermore, they show that for buyers with

submodular valuations there is a unique equilibrium that
maximizes social welfare, and that the price of anarchy (and
hence price of stability) is 1.

While we do not apply the budgetary constraint to their
setting, Lev et al. [12] generalized [4] by allowing sellers to
sell multiple items, and letting them choose which items to
offer and for what price. They prove that an equilibrium is
not guaranteed to exist for submodular valuations. When
an equilibrium does exist the price of anarchy and price of
stability are roughly log n where n is the number of items
offered.

2. PRELIMINARIES
Our setting has a set of vendors N (|N | = n) in which

vendor i sells a single distinct item i. A strategy profile of the
vendors is a price vector p = (p1, . . . , pn) ∈ Rn

≥0 where item i
is priced at pi (pi ≥ 0). We use p(S) =

∑
i∈S pi to represent

the cost to the buyer for purchasing a set S ⊆ N . We
write p−i to represent the set of prices excluding pi, we write
(pi, p−i) to represent the full set of prices p. Opposite the
vendors we have a single buyer, represented by a valuation
function v(), who faced with price vector p consumes a set
of items which maximises his utility.

2.1 The Buyer
The buyer will be represented by a valuation function and

a budget. The valuation function v : 2N → R≥0 gives non
negative value to each subset of N . We assume the function
is normalized and monotone; that is, v(∅) = 0 and v(S) ≤
v(T ) for S ⊆ T ⊆ N . The budget B ∈ R>0 is simply the
maximum capital the buyer has available to purchase items;
the budget cannot be exceeded.

We shall discuss 3 types of valuation functions:

Additive This function is defined by a vector of per item
valuations v = (v1, ..., vn) and for any S ⊆ N the val-
uation is v(S) =

∑
i∈S vi.

Submodular This function is characterized by the idea of
decreasing marginal utilities. That is, for a submodu-
lar function we have v(S)− v(S \ {a}) ≥ v(T )− v(T \
{a}) for S ⊆ T ⊆ N and a ∈ S.

XOS An XOS (Exclusive Or of Singletons) function is de-
fined by a finite set of additive functions F = {f1, ..., fk}
such that v(S) = maxfi∈F fi(S) for every S ⊆ N .

The set of additive functions is a strict subset of the set
of monotone submodular functions which in turn is a strict
subset of the set of XOS functions. It should be noted all
of these sets of functions are strictly contained in the set of
subadditive functions which are defined as: v(S) + v(T ) ≥
V (S ∪ T ) for S, T ⊆ N . For a more in depth look at these
functions see [11].

We assume the buyer has a budget bounded quasi-linear
utility function. That is, for some bundle S ⊆ N and pricing
vector p we have:

ub(S,p) =

{
v(S)− p(S) if p(S) ≤ B
−∞ otherwise

To ease reading and notation, we will write ub(i,p) in
place of ub({i},p) and omit the p if it is unambiguous. Fol-
lowing notation in [4], the demand correspondence of a buyer
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with valuation function v facing pricing vector p is the fam-
ily of sets that maximize the buyer’s utility:

D(v,p) = {S ⊆ N : ub(S) ≥ ub(T ) ∀T ⊆ N}

The buyer will consume a set X(v,p) ∈ D(v,p). We
assume the buyer has access to a demand oracle which allows
the buyer to find X(v,p). For ease of notation we usually
write X(v,p) as Xp Often we will find |D(v,p)| = 1 in the
cases we study. A common assumption [4] in cases where
|D(v,p)| > 1 is that the buyer will opt for a set S ⊆ N with
the largest size. We call such a buyer maximal.

2.2 Vendor Utility and Equilibrium
As mentioned before, the utility of the vendors is simply

the payment they receive for their items. That is, if the
buyer consumes X(v,p) when presented with prices p the
utility to vendor i is:

ui(X(v,p)) =

{
pi if i ∈ X(v,p)

0 otherwise

In a slight abuse of notation we will often omit the X(v,p)
from ui(X(v,p)) instead we write ui(p) implicitly assum-
ing the X(·) and v are in place. A pricing vector p is de-
fined to be a pure Nash equilibrium (PNE) if there does
not exist any agents that can improve their utility by uni-
laterally modifying their price. That is, @i ∈ N such that
ui(p

′
i, p−i) > ui(pi, p−i) = ui(p) for some p′i 6= pi. We note

that the sellers also have access to the demand oracle and
are able to determine what X(v,p) is.

We say a price vector p is market clearing if X(v,p) = N
and mini pi > 0. That is every item is bought and each
vendor receives positive utility.

The game as described is entirely parametrized by the
budget B and valuation profile v(). The agents will price
themselves presenting a p that maximizes their individual
utility. We are interested in studying the properties of sta-
ble pricing schemes, i.e., prices that are a PNE. In particu-
lar, when are the PNE unique, how must agents price their
items, and what is consumed by the buyer. Note this is a
game of full information: the agents are assumed to know B
and v and can see the prices p posted by each of the agents.

3. ADDITIVE VALUATIONS
We begin our study with a very simple class of buyer val-

uations, additive functions. Recall v(·) is additive if there
exists a set of item values (v1, ..., vn) and v(S) =

∑
i∈S vi for

S ⊆ N . As mentioned earlier, previous work [4, 12] does not
explicitly study the additive case, as there is a very simple
and unique solution in their setting: assuming a maximal
non budgeted buyer, the seller holding item k should simply
price the item at vk. Hence, the maximal buyer will pur-
chase the universe of items and social welfare is maximized.
Since each item is being consumed, none have an incentive
to lower their price. If pk < vk then the agent holding k
should be able to increase pk to vk and still be consumed
by the maximal buyer. Now consider the following instance
of our budgeted game (B = 1, (v1, v2) = (2, 1

2
)). It is easy

to verify that the only PNE are of the form: p = (1, x), for
x ∈ R≥0, and Xp = v1. The budget has enabled the vendor

with the more valuable item to demand the entire budget
excluding the other vendor from participating in the game.

3.1 A Unique PNE
We now provide a sufficient condition (later, in Theorem 2,

to be shown necessary) on the buyer’s valuation to ensure
a unique market clearing PNE in which each vendor partic-
ipates in the game. More specifically we show that under
this condition there is a unique PNE that clears the market
providing each vendor with positive utility. Throughout this
section we assume V (N) > B, otherwise this setting reduces
to the setting of [4].

Definition 1. The relative valuation constraint for set
S ⊆ N , valuations (v1, . . . , vn) and budget B is that for each

vi ∈ S, vi >

∑
vj∈S\{i} vj−B

|S|−1

When considering the constraint on the full set of items
(N) this is equivalent to stating it as a constraint on the
budget: for every i ∈ N , B >

∑
j 6=i(vj − vi).

We can see that this constraint does not imply that the
valuation is a gross substitutes valuation. Namely, the ad-
ditive function v(S) =

∑
i∈S vi for 3 items (v1, v2, v3) with

the values (2, 2, 2) correspondingly and a budget of 1. The
function satisfies the relative valuation constraint and is not
gross substitutes: the pricing (0.2, 0.4, 0.4) allows the buyer
to buy all items, while the pricing (0.3, 0.4, 0.4) forces the
buyer to give up v2 or v3 despite their prices staying the
same, hence not gross substitute1.

Theorem 1. Given an additive valuation profile (v1, ..., vn),
where

∑
i vi > B and the valuations for N follow the relative

valuation constraint for all items, there is a unique PNE p
where mini(pi) > 0,

∑
i pi = B, ∀(i, j), vi−pi = vj−pj and

X(v,p) = N .

Before we prove Theorem 1 we will find the following
lemma useful:

Lemma 1. Given an additive valuation profile (v1, ..., vn)
with budget B and sets A and U where A ⊂ U ⊆ N . If for

i ∈ U , vi >
∑

j∈U\{i} vj−B

|U|−1
then vi >

∑
j∈A vj−B

|A| .

Proof. Let i = arg minj∈U\A vj , let D = U \ (A ∪ {i}).
From the condition on vi:

vi >

∑
j∈U\{i} vj −B
|U | − 1

=

∑
j∈D vj +

∑
j∈A vj −B

|U | − 1

=⇒ (|U | − 1)vi −
∑
j∈D

vj >
∑
j∈A

vj −B

((|U | − 1)− |D|)vi ≥ (|U | − 1)vi −
∑
j∈D

vj >
∑
j∈A

vj −B

1A different example, shown in Lehmann et al. [11], is
a budget-additive function v(S) = min{B,

∑
i∈S vi} for 3

items (v1, v2, v3) = (1, 1, 2) and a budget B = 2, which
satisfies the relative valuation constraint and is not gross
substitutes: the prices (0, 1

2
, 1), in which v1 and v2 are pur-

chased, in comparison to prices (1, 1
2
, 1) in which only v3

would be bought.
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Where the last line is because vi was chosen to be the
smallest value amongst those in U \ A. So now we have
that:

((|U | − 1)− |D|)vi >
∑
j∈A

vj −B

=⇒ vi >

∑
j∈A vj −B

(|U | − 1)− |D|

=

∑
j∈A vj −B
|A|

Now we are ready to prove Theorem 1:

Proof. We will divide the proof into two parts. First we
will define a PNE p which meets our criteria. We then will
show that this p is the only possible PNE when N satisfies
the relative valuation constraint.

Existence of PNE p: Let pi =
B+(n−1)vi−

∑
j 6=i vj

n
. First

we note since vi >
∑

j 6=i vj−B

n−1
we get that pi > 0. It is also

easy to see that
∑

i pi = B.
We now argue vi − pi = vj − pj for any pair of vendors i

and j. Fix some vendor k:

vk − pk = vk −
B + (n− 1)vk −

∑
j 6=k vj

n

=
nvk −B − (n− 1)vk +

∑
j 6=k vj

n

=

∑
i vi −B
n

=
v(N)− p(N)

n

That is, each seller i is providing exactly 1
n

of v(N)−p(N),
so each item is priced so they provide identical utility to the
buyer.

Next we show vi > pi for each item i. Suppose for contra-
diction there is some i where pi ≥ vi. Since vi−pi = vj−pj
for any item j it must be that pj ≥ vj . Thus we get
p(N) ≥ v(N) > B, which contradicts p(N) = B by con-
struction.

Now we can prove p is a PNE:
Because

∑
i pi = B and 0 < pi < vi each seller has their

item chosen. Thus none have an incentive to lower their
price. Say seller i increases their price by of ε > 0. Since
(pi + ε)+

∑
j 6=i pj > B the buyer will consume at most n−1

items. Since vi − pi = vj − pj for any pair of items i and
j we get vi − (pi + ε) < vj − pj , so item i is not consumed
leaving its seller with 0 utility. So i should not increase its
price. Thus p is a PNE.

Uniqueness of PNE p: Given that the relative valua-
tion constraint holds for N , we now argue that p is the only
PNE. Assume we have another PNE p′ = (p′1, . . . , p

′
n). First

we show
∑

i p
′
i = B:

Suppose
∑

i p
′
i < B, then clearly Xp′ = N since p′ is a

PNE. Since
∑

i vi > B it must be that p′j < vj for some

item j. Let 0 < ε ≤ min{B − (
∑

i p
′
i),

vj−p′j
2
}. It is easy to

see (p′j + ε, p′−j) is a better solution for seller j. By the first
term in the min the new pricing vector is not over budget by
the second term vj < p′j so the buyer still receives positive

utility from item j. Thus item j is still consumed and we
see that seller j should increase their price by ε.

Suppose
∑

i p
′
i > B, then under this pricing scheme there

is an agent i, i 6∈ X(v,p′). We now argue i is able to
offer a positive price where this item will be picked. For
the remainder of this section when referring to Xp′ we ex-
clude items which are priced at zero. We can assume that∑

j∈Xp′
p′j = B, if this were not the case seller i could offer

a positive price and still be consumed.
Let s = arg minj∈Xp′ ub(j), that is s is the seller providing

the least amount of utility amongst those who are picked. If
vi > ub(s) seller i can offer a price of

min{ vi−ub(s)
2

,
B−

∑
j∈X

p′ \s p′j

2
}. The first term in the min

ensures that the buyer gets more utility from i than s, the
second term ensures the buyer can afford the current chosen
set when s will be replaced by i. Thus vendor i can replace
vendor s in the chosen set.

We now prove vi > ub(s). We know that ub(s) is at
most the average utility provided by a seller in Xp′ . That

is ub(s) ≤
∑

j∈X
p′ vj−B

|Xp′ | . So we must show show vi >∑
j∈X

p′ vj−B

|Xp′ | . This is simply a direct result of Lemma 1,

where we take the sets X(v,p′) and N to be A and U in the
lemma respectively.

Thus at any PNE p′ each seller offers a positive price is
bought and the budget is consumed.

We finally argue ub(i) = ub(j) for all sellers i and j at any
PNE p′. Let i = arg maxk ub(k) and j = arg mink ub(k).
Assume, for contradiction, ub(i) > ub(j). Let 0 < ε ≤
min{B−

∑
k 6=j vk
2

, ub(i)−ub(j)
2

} and consider the point (p′i +
ε, p′−i). Since p′ is a PNE,

∑
i p
′
i = B so under (p′i + ε, p′−i)

at least one item will not be consumed. By the first term in
the min, p′i + ε+

∑
k 6=i,j p

′
k < B, so the buyer can afford all

of the items except for j. By the second term in the min,
vi − (p′i + ε) = ub(i) − ε > ub(j) so the buyer gets more
utility from seller i than from seller j. Since seller j is still
providing the least utility, it will be the one left out of the
chosen set. Thus we see that seller i should increase the
price by ε and that p′ is not a PNE. Thus it must be that
ub(i) = ub(j) for all sellers i and j.

Thus when the relative valuation constraint holds for N
we get that all PNE must take the form of p as defined
above.

3.2 Non Market Clearing PNE and a Com-
plete Characterization of Market Clear-
ing PNE

In this section we will explore what happens when the
relative valuation constraint does not hold for N . Without
loss of generality, let the elements of N be in decreasing
order of valuations; i.e. if i < j then vi ≥ vj .

Definition 2. A PNE base set is a set L ⊆ N , which is
constructed by ordering the elements of N in non-increasing
order of valuations. Starting with the first (most valuable)
element of N iteratively add the next element to L until

reaching an element i s.t. vi ≤
∑

j∈L vj−B

|L| .

Note we are not counting vi in the above sum nor the size
of L.

In a sense L is a maximal set of the largest items. We
note that a non-empty L must exist since L = {1} certainly
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satisfies the definition. Furthermore, note that for several
equal valued items, if one of them is in L, then all of them
are in L.

We now prove some additional useful facts about L:

Lemma 2.
∑

i∈L vi > B

Proof. If L = N then since we assumed
∑

i vi > B we
are done.

Let us suppose L 6= N then there must be an element

s s.t. vs ≤
∑

j∈L vj−B

|L| . Rearranging we get that |L|vs ≤∑
j∈L vj−B, and since vs > 0 we get that

∑
j∈L vj−B > 0.

Thus we see that L contains strictly more value than the
budget.

Lemma 3. ∀j ∈ L, vj >
∑

k∈L\j vk−B

|L|−1

Proof. Let i be the last element added to L, that is vi
is the smallest value amongst items in L. When we added

i to L it was because vi >
∑

j∈L′ vj−B

|L′| where L′ is L \ {i}.

Since |L| − 1 = |L′| we get vi >
∑

j∈L\i vj−B

|L|−1
. Now trade

vi with any element in the sum; the value on the left of the
inequality can’t decrease since vi was minimal and the value
on the right can’t increase since we are swapping in vi for
some larger element vj . Thus the inequality still holds.

It is easy to see that L as defined above is the unique

maximal set such that ∀i ∈ L, vi >
∑

j∈L\i vj−B

|L|−1
. If this

was not the case and some set M existed s.t. ∀i ∈ M, vi >∑
j∈M\i vj−B

|M|−1
and L ( M . Lemma 1, where L and M take

the place of A and U in the lemma, implies that for each

i ∈ M vi >
∑

j∈L vj−B

|L| . Thus when constructing L and

considering element (|L| + 1) ∈ M we should have added
it to L. Thus L is the largest set for which the relative
valuation constraint holds.

Lemma 4. There is always a PNE p where Xp = L and
vi − pi = vj − pj for all pairs of elements in L.

Proof. Let p = (p1, ..., p|L|, 0..., 0) where

pi =
B+(|L|−1)vi−

∑
j∈L\i vj

|L| .

By Lemma 3 we know pi > 0. By the construction of each

pi,
∑

i pi = B and vi−pi = vj−pj =
∑

j∈L vj−B

|L| for all pairs

i, j ∈ L. As in Theorem 1 no one agent in L has an incentive
to lower their price since they are being sold. Furthermore, if
one of the agents in L were to increase their price, they would
be removed from Xp as they now provide the least utility
in L, and prices are now over budget. Finally combining
Lemma 2 and a similar argument found in Theorem 1 we
get that pi ≤ vi for each i ∈ L.

Now we argue that none of the agents in N \ L have an
incentive to increase their price. Let vs be the largest value
amongst the agents in N \ L. By the construction of L,

vs ≤
∑

j∈L vj−B

|L| . If agent s were to offer a price ps > 0 it

would not be chosen since vs − ps <
∑

j∈L vj−B

|L| . Since we

are now over budget and the utility provided by s is lower
than the utility provided by any of the agents in L, s is not
chosen. Since vs was the largest value amongst the agents
not in Xp none of the agents outside of Xp have a sufficient
valuation to be chosen.

Unfortunately we do not get a nice generalisation of The-
orem 1 where at all PNE vi − pi = vj − pj for each pair
i, j ∈ L.

Example 1. Let the budget B = 1, the valuations v =
(2, 1.5, 0.6, 0.6) and finally the prices p = (0.6, 0.4, 0.3, 0.3).
The utility gained from each agent is simply
u = (1.4, 1.1, 0.3, 0.3). It is easy to see that L = {1, 2} and
this is a non market clearing PNE where X = L. If the first
agent increased their price the new consumed set would be
{2, 3, 4}. If the second agent increased their price the new
consumed set would be {1, 3} or {1, 4}. And if the third or
fourth agent dropped their price to any positive value the
consumed set would still be L = {1, 2}.

We can, however, obtain a partial characterization show-
ing that at any PNE p the base set L must be a part of
Xp.

Lemma 5. Let p be some PNE and Xp be the set con-
sumed (not including those selling for free) it must be that
L ⊆ Xp.

Proof. Assume for contradiction that L 6⊆ Xp at some
PNE p We break this into two cases.

Case 1 (Xp ∩ (N \ L) 6= ∅):
That is, there are elements of N \ L in Xp. Let s be the

element of Xp ∩ (N \ L) providing the least utility to the
buyer. Let i be some element of L \Xp. Since L contained
the largest valued elements of N it must be that vi > vs.
The inequality must be strict for if vi = vs, s would be a
member of L. Letting pi = ps, at this price agent i provides
strictly more utility than agent s, who is providing the least,
so the buyer will replace s with i in the consumed set. So p
is not a PNE.

Case 2 (Xp ∩ (N \ L) = ∅):
That is, Xp is a strict subset of L. By making an argument

similar to the one in Theorem 1 using Lemma 1, with Xp

and L replacing A and U in the lemma, we get p is not a
PNE.

It is, however, possible that at a PNE p, Xp 6= L.

Example 2. Let the budget B = 1, the valuations v =
(2.5, 1.5, 1.4) and the prices p = (0.9, 0.1, 0.9). The per agent
utility is u = (1.6, 1.4, 0.5). Obviously L = {1} and Xp =
{1, 2} 6= L. If agent 1 raises the price the new consumed set
will be {2, 3}, if agent 2 increases the price the new set will
be {1} and finally if agent 3 drops the price the consumed
set will remain {1, 2}. Thus p is a PNE with L 6= Xp.

We conclude our discussion of additive valuations by prov-
ing that having a market clearing PNE requires that the rel-
ative valuation constraint holds for N and hence the PNE
is unique and must be of the form described in Theorem 1.

Theorem 2. Consider an additive valuation function v
and budget B for the buyer. Let p be some market clearing
PNE, such that is Xp = N and mini pi > 0. It must be that
relative valuation constraint holds for v and B; equivalently,
the PNE base set L = N .

Proof. Assume, for contradiction, L 6= N . Let s be the
element providing the least utility to the buyer under the
pricing p.
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Since L ( Xp there must be an element i ∈ L where

vi − pi >
∑

j∈L vj−B

|L| . This is because when the consumed

set is only L the average utility provided by an agent in L is∑
j∈L vj−B

|L| . Now we have agents outside of L receiving util-

ity, to accommodate them at least one agent in L must offer
a lower price providing more utility. By the construction of

L each element of N \L has value at most
∑

j∈L vj−B

|L| . Since

s is providing the least utility over all agents, and no agent

outside of L can provide at most
∑

j∈L vj−B

|L| utility, vs−ps <∑
j∈L vj−B

|L| . So we get vi − pi > vs − ps. Thus we see that

agent i can increase the price by min{ (vi−pi)−(vs−ps)
2

, B −∑
j∈N\s pj}. The first term ensures agent i still provides

more utility than agent s while the second ensures N \ s
is budget feasible. Under the new pricing scheme at most
n−1 items will be bought. Since s is still providing the least
utility we get that N \ s is the new consumed set. Thus p
was not a PNE, a contradiction.

This theorem, alongside Example 1, means that the Babaioff
et al. [4] result showing that there is always a market clear-
ing equilibrium for all montone valuation is not true when
introducing budgets to the model and even fails for some
additive valuations.

From Theorem 2 we conclude that any market clearing
PNE p must be of the form of the one described in Theo-
rem 1. That is:

Corollary 1. If a PNE p is market clearing, then it is
unique, and for all pairs (i, j) vi− pi = vj − pj and

∑
i pi =

B.

4. MONOTONE SUBMODULAR VALUATION
FUNCTIONS

We now focus on submodular valuation functions. Re-
call submodular valuations are characterized by diminishing
marginal values, that is for S ⊆ T and x 6∈ T we have
v(S ∪ {x})− v(S) ≥ v(T ∪ {x})− v(T ).

Define vT (S) = v(T ) − v(T \ S) for S ⊆ T ⊆ N , that
is the marginal value of set S for completing set T . To
simplify reading, for a set S with single item s, we will
use the notation vT (s) to denote vT ({s}). We also define
ui
b(S) = vS(i) − pi, that is the seller i’s marginal contribu-

tion to the buyers utility for completing set S. We will find
the following lemmas regarding submodular and monotone
functions useful in this section:

Lemma 6. For a submodular valuation v and pricing scheme
p, if for all vendors i, pi ≤ vD(i) then v(D) − p(D) ≥
v(C)− p(C) for sets C ⊆ D.

Proof. Consider some seller j ∈ D \ C. Since v is sub-
modular and pj ≤ vD(j) we get pj ≤ vC∪{j}(j), so v(C ∪
{j}) − p(C ∪ {j}) ≥ v(C) − p(C). Since C ∪ {j} ⊆ D
we can take another seller j′ ∈ C ∪ {j} \ D and again
conclude due to p′j ≤ vD(j′) and the submodularity of v
v(C ∪{j, j′})− p(C ∪{j, j′}) ≥ v(C)− p(C). We can repeat
this process for the rest of the elements in C \D concluding
v(D)− p(D) ≥ v(C)− p(C) for sets C ⊆ D.

Lemma 7. For a monotone valuation v and pricing scheme
p, if for vendors a and c vN (a) − pa = vN (c) − pc then
v(N \ c)− p(N \ c) = v(N \ a)− p(N \ a).

Proof. Assuming vN (a)− pa = vN (c)− pc:

vN (a)− pa = vN (c)− pc
=⇒ v(N)− v(N \ a)− pa = v(N)− v(N \ c)− pc
=⇒ v(N \ c)− pa = v(N \ a)− pc

=⇒ v(N \ c)− pa −
∑

k 6=a,c

pk = v(N \ a)− pc −
∑

k 6=a,c

pk

=⇒ v(N \ c)−
∑
i6=c

pi = v(N \ a)−
∑
i6=a

pi

Theorem 3. Given a submodular valuation function v

where ∀i ∈ N, vN (i) >
∑

j 6=i vN (j)−B

n−1
there is a market clear-

ing PNE p where
∑

i pi = B and vN (i) − pi = vN (j) − pj
for all pairs of vendors i and j.

Proof. Let pi =
B+(n−1)vN (i)−

∑
j 6=i vN (j)

n
, this value is

positive because of the condition on vN (i). As in the proof

of Theorem 1 it is easy to see vN (i)− pi =
∑

j∈N vN (j)−B

n
so

vN (i) − pi is the same for each vendor i. It is also easy to
see

∑
i pi = B. Combining these two facts we see that as in

the proof of Theorem 1 pi < vN (i). Using these facts and
applying Lemma 6 to N we see each agent must be chosen
and none have an incentive to lower their price.

Suppose p is not a PNE It must be that some agent has
an incentive to increase their price, call this agent a. If a
increases its price by ε > 0, since

∑
i pi = B at least one of

the agents must not be chosen under the new pricing scheme.
Call this other agent c. Let p′ be the new pricing scheme
where a increases its price.

First we argue that v(N\c)−
∑

i6=c pi > v(Xp′)−
∑

i∈Xp′
pi−

ε. Note v(Xp′)−
∑

i∈Xp′
pi− ε < v(Xp′)−

∑
i∈Xp′

pi. This

is now a simple application of Lemma 6 where C and D
in the lemma are replaced with Xp′ and N \ c respectively.
Thus we get v(N \ c) −

∑
i6=c pi ≥ v(Xp′) −

∑
i∈Xp′

pi >

v(Xp′)−
∑

i∈Xp′
pi − ε.

Next we get directly from Lemma 7 v(N \ c)−
∑

i6=c pi =

v(N \a)−
∑

i6=a pi. Thus we get v(N \a)−
∑

i6=a pi = v(N \
c)−

∑
i6=c pi > v(Xp′)−

∑
i∈Xp′

pi − ε. Since
∑

i6=a pi < B

we see that the new consumed set will be all agents except
a; thus it should not increase the price. So we see p was a
indeed an equilibrium.

Similar to Theorem 2 from the additive case we show that
in the submodular case the only market clearing PNE are
of the equal marginal utility kind. That is the all market
clearing PNE must be of the form of the one described in
Theorem 3

Theorem 4. For a submodular valuation v given any PNE
p where X(v,p) = N and ui > 0 for all vendors i, it must
be that vN (k) − pk = vN (j) − pj for any pair of vendors k
and j.

Proof. Suppose at PNE p Xp = N . Let
a = argmaxi∈NvN (i) − pi, that is, a is providing the most
marginal utility, so vN (a)− pa ≥ vN (i)− pi for every other
vendor i. Assume for contradiction, that in at least one case
this inequality is strict. Let vendor c = arg mini vN (i) − pi
so vN (a)− pa > vN (c)− pc.
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We now argue a has an incentive to increase its price by

ε < min{u
a
b (N)

2
,
ua
b (N)−uc

b(N)

2
,minj 6=aB − p(N \ j)} (recall

ui
b(N) = vN (i) − pi). The first term is positive since since
vN (c) − pc ≥ 0 thus vN (a) − pa > 0 so vN (a) > pa. The
second positive since vN (a)− pa > vN (c)− pc. The third is
positive because

∑
i pi ≤ B. Let (pa + ε, p−a) = p′.

Since Xp = N we know that pi ≤ vN (i) for each vendor i
and because of the first term in the above min, p′i ≤ vN (i).
We can apply lemma 6 taking set D in the lemma to be
any K ⊂ N where |K| = |N | − 1 getting v(K) − p′(K) ≥
v(J) − p′(J) for J ⊆ K. So we see under p′ the buyer will
consume a set of size |N | − 1, assuming it is under budget.

By the second term in the min, vN (a)−pa−ε > vN (c)−pc.
Using this we can modify the proof of Lemma 7, replacing
the equalities with inequalities, getting v(N \a)−

∑
i6=a pi <

v(N \ c)−
∑

i6=c pi− ε. Thus the buyer will prefer to exclude
c instead of a from Xp′ , assuming the chosen set with a is
under budget. The third term in the min ensures any set of
size |N | − 1 that a is a part of will remain under budget.

Thus we see a can raise its price by ε and p can’t be a
PNE.

We note that we cannot extend the idea of the PNE base
set to the submodular case in the same way – while a maxi-
mal set of items that adhere to the condition can be found,
as shown in Example 3, the set is not unique, and hence not
all equilibria are an extension of the same set.

Example 3. We have a set of 4 items N = {a, b, c, d}.
v(a) = v(b) = 1; v(c) = v(d) = 1

2
. v({a, b}) = 3

2
, v({c, d}) =

1, v({a, c}) = 3
2

. v({a, b, c}) = 7
4

, v({a, c, d}) = 1.52 and
v({a, b, c, d}) = 1.76. The values for the rest of the sets
are defined by this as a and c can be replaced with b and d,
respectively (if they were not in the original set). The budget
is 0.3.

Both sets {a, b, c} and {a, b, d} conform to the relative val-
uation constraint (their marginal values with respect to the
set are equal). However, a, b, c, d does not.

4.1 When the Sum of Marginal Values is Be-
low the Budget

When the sum of marginal values of items is below the
budget, the equilibrium shown in [4] is both market clearing
and lets the buyer keep some of their money. However, that
equilibrium is unique only when the budget is not known
to the sellers. When it is known, other equilibria arise, and
some of them provide less utility to the buyer than the mar-
ket clearing one, and reduces the social welfare. This shows
buyers are worse off announcing their budget, as Example 4
shows.

Example 4. We have a set of 4 items N = {a, b, c, d}.
v(a) = v(b) = 1; v(c) = v(d) = 1

4
. v({a, b}) = 7

4
, v({c, d}) =

1
2

, v({a, c}) = 9
8

. v({a, b, c}) = 1.76, v({a, c, d}) = 1.135
and v({a, b, c, d}) = 1.77. The values for the rest of the sets
are defined by this as a and c can be replaced with b and d,
respectively (if they were not in the original set). The budget
is 1.

The marginal values (in N) of a and b are 0.27, of c and
d 0.1, so pricing the items with these values is both under
budget and an equilibrium, as [4] claim, and will result in
all items being purchased by the seller. However, another
equilibrium is pricing a and b at 1

2
each, and c and d at 1

4
.

Under these prices, the buyer will only buy items a and b (as
they exhaust the budget). This is an equilibrium, as neither
a nor b can raise their prices, as that precludes buying both
of them, and buying the one that didn’t raise its price with c
and d is more beneficial for the buyer. Items c and d can’t
lower their prices to anything above 0, as there is no budget
to purchase them, and even with only one of a or b, they still
do not provide as much utility as purchasing both a and b.

Finally, as Example 5 shows, unlike submodular valuation
functions, we cannot always guarantee equal utility equilib-
ria for XOS functions even when the valuations adhere to
the relative valuation constraint:

Example 5. We have a set of 3 items N = {a, b, c}. The
XOS valuation function is defined using 2 additive valua-
tions: The first is (2, 1, 1) respectively for (a, b, c), and the
second is (3, 0, 0). The budget is 1.5. The marginal value
of item a is 2, and b and c have marginal value 1, so they
comply with the relative valuation constraint.

An equal marginal utility contribution would mean pricing
item a at 7

6
and items b and c at 1

6
each. However, in this

case item a can increase its price to 4
3

, as without it, by

buying only b and c the buyer has a utility of 5
3

, but by buying
a and b, the buyer gets a utility of 2.5, being obviously better
off, so this is not an equilibrium.

5. SOCIAL WELFARE
While we have shown price equilibria in various settings,

we have yet to investigate the value of the sold set to the
buyer. As the sellers get the money from the buyer, this is
equivalent to analyzing the social welfare – the amount of
utility “created” in the equilibrium.

The common measures of the impact of equilibrium on the
welfare are price of anarchy (PoA), and, to a lesser extent,
price of stability (PoS), which are, respectively, ratio of the
social welfare in the worst (respectively, the best) equilibria
and the optimal welfare . However, the optimal welfare is,
of course, that all items are given to the buyer for free, and
therefore, the social welfare is the value of the whole set,
namely v(N).

In [4] the authors show that for monotone submodular
valuations the PoA is always 1. Furthermore they show for
any monotone function the PoS is 1, although the PoA can
be infinite. In the multi item setting of [12] the authors show
when PNE do exist for monotone submodular valuations
both the PoA and PoS are approximately log(m) where m
is the number of items.

The usage of PoA is intended to aid us in understanding
the effects of an equilibrium compared to the optimal state.
Assuming sellers get nothing is not only unrealistic, it also
does not let us consider the effect of an equilibrium under the
budget constraints (as the budget plays no role). Therefore,
we would like to have some measure that takes into account
the existence of a budget, as well as the desire of sellers to
be paid.

To deal with this problem we use a somewhat different
metric: PoA

PoS
, i.e., the ratio between the social welfare in the

worst equilibrium and the social welfare in the best equi-
librium. In order to avoid items being “given away” and
artificially adding to the utility, we do not count the social
welfare garnered from items priced at 0. Our measure shows
the differences between different equilibria under the same
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budgetary constraint, and is, therefore, an indicator of how
bad equilibria can become. Surprisingly. and in contrast to
the results in [4], which showed that without a budget the
PoA is 1, we discover the PoA can be arbitrarily bad for
submodular functions. Moreover, with budgets, even in the
additive case, the PoS can be greater than 1, as is shown by
Theorem 2, and examples such as Example 1. Therefore, we
can have PoA > PoA

PoS
≥ PoS > 1.

Theorem 5. The PoA
PoS

(and hence the PoA) can be un-
bounded and approaching n − 2 even for additive valuation
functions. A corresponding upper bound is n, even for sub-
modular functions.

Proof. We first show that the ratio is unbounded for
the additive case and approaching n− 2, and then show the
upper bound of n for submodular functions.

Let v be an additive function. Let the value of item 1 be
2, the value of item n− 1 and n be 0.55, and all the rest of
the items (from 2 to n − 2) have a value of 1. The budget
is 1. It is easy to see the set L only contains the first item,
and therefore there is an equilibrium in which all the budget
goes to this item, and all others items priced at 0. Hence the
utility of this equilibrium is 2 (note that as any equilibrium
must include L, this is the worst possible equilibrium).

Now consider the following pricing: item 1 is priced at 1
2
,

items valued at 1 have a price of 1
2(n−3)

, and the final two

items are priced at 0.25 each. This is a Nash equilibrium
in which all items but the last two are sold. None of the
items valued at 1 can increase their price (as then they will
be the item providing the least utility and be thrown out),
and neither can the items valued at 0.55 lower their price to
be purchased, as even then they provide too little utility. If
item 1 tries to raise its price (which necessitates throwing
out one of the items valued at 1), it is better for the buyer
not to purchase item 1, and instead add both items n − 1
and n to the purchases set. The value of this equilibrium
is 2 + (n − 3). Thanks to Theorem 2, we know there is no
market clearing equilibrium, and as is shown in the next
paragraph, there can be no equilibrium with n − 1 items.

Hence PoA
PoS

= 2+(n−3)
2

, which is unbounded.
Notice that replacing the valuation of the top item to any

k ∈ N and the next n−3 items to k−1, does not change the

existence of both equilibria, and PoA
PoS

≥ k(n−2)−0.1
k+1

−−−−→
k→∞

n− 2
Looking at an upper bound, note that PoA

PoS
is actually

value of best NE
value of worst NE

. The best equilibrium is, at most, the value
of the whole set, v(N), and thanks to submodularity, v(N) ≤
n · maxi∈N v({i}). Furthermore, in any equilibrium, the
buyer gets at least a value≥ maxi∈N v({i}). If not, suppose
i′ is the value maximizing v({i}), and there is an equilib-
rium where the buyer purchases a set S ⊆ (N \ {i′}) at
price b ≤ B, and v(S) < v({i′}). Vendor i′ can improve
its situation (a utility of 0), by changing its price to b, and
being bought instead of set S, proving that buying set S
for a price of b is not an equilibrium. Hence the utility of
the worst equilibrium is at least maxi∈N v({i}). Therefore,
PoA
PoS
≤ n.

6. CONCLUSION AND FUTURE WORK
The addition of budgets to the work of [4] introduces in-

teresting and strategic behaviour amongst agents. We iden-
tify the relative valuation constraint and prove it is both

sufficient and necessary to ensure market clearance with sub-
modular valuations, and in the additive case, we show the
market clearing equilibrium is unique. This market clearing
equilibrium is conceptually interesting, as in it each vendor
provides equal marginal utility to the buyer for completing
the universe of items. We also show how the constraint does
not extend to XOS valuations where an equal marginal util-
ity equilibrium is no longer guaranteed to exist. Furthermore
we generalize the relative valuation constraint to subsets of
the vendors for the additive case, and using this general-
ization, we identify a maximal base set of items (values)
that can form an equilibrium similar to the market clear-
ing one excluding other sellers. Finally we provide examples
illustrating how the budget can influence the game in unex-
pected ways. Perhaps most striking of which is example 4
which can be interpreted as showing that a buyer announc-
ing their budget may induce new and inferior equilibrium
where they pay more and receive less compared to not an-
nouncing the budget at all.

Generalizing our model to many items per seller, as in [12],
would be a likely logical extension to our work. When sellers
hold many items the problem domain is significantly more
complex. It is unknown even with simple additive valuations
what Nash equilibrium this setting permits. It would also be
interesting to see if with a budgeted and submodular buyer
we also encounter the issue of no equilibria. Also, while [4,
12] are able to avoid the issue of item cost, due to the lack of
budget, this issue becomes more interesting in our setting,
and is yet to be explored.

Another direction that requires more attention is the multi
buyer setting. The simplicity of our model where there
is one idealized buyer lends itself to simple analysis. It is
known [10] that with multiple buyers there is no Walrasian
equilibrium unless the valuation class is essentially the class
of Gross Substitutes [10, 5]. However, there may still be
interesting results for a bounded, small number of buyers.
Another open problem is whether the budgeted model may
preclude any Nash equilibria (not just market clearing ones)
in certain settings.

We suspect our results for the relative valuation constraint
should generalize to XOS valuations. While the PNE would
not be an equal marginal utility one, as our example shows
is impossible, we do believe it is a necessary and sufficient
condition for market clearance. Beyond this it would be
interesting to study more general valuation functions, even
ones that exhibit complements.

All of these directions are reasonable intermediate steps
towards the most general pricing model with sellers holding
many items and many buyers with complex valuations and
differing budgets.
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