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ABSTRACT
Requesters on crowdsourcing platforms, such as Amazon
Mechanical Turk, routinely insert gold questions to verify
that a worker is diligent and is providing high-quality an-
swers. However, there is no clear understanding of when and
how many gold questions to insert. Typically, requesters mix
a flat 10–30% of gold questions into the task stream of every
worker. This static policy is arbitrary and wastes valuable
budget — the exact percentage is often chosen with little
experimentation, and, more importantly, it does not adapt
to individual workers, the current mixture of spamming vs.
diligent workers, or the number of tasks workers perform
before quitting.

We formulate the problem of balancing between (1) test-
ing workers to determine their accuracy and (2) actually get-
ting work performed as a partially-observable Markov deci-
sion process (POMDP) and apply reinforcement learning to
dynamically calculate the best policy. Evaluations on both
synthetic data and with real Mechanical Turk workers show
that our agent learns adaptive testing policies that produce
up to 111% more reward than the non-adaptive policies used
by most requesters. Furthermore, our method is fully auto-
mated, easy to apply, and runs mostly out of the box.
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1. INTRODUCTION
The practice of crowdsourcing, or outsourcing tasks to a

group of unknown people (“workers”) in an open call, has be-
come extremely popular — used for solving a wide variety
of tasks, from audio transcription to annotation of training
data for machine learning. However, ensuring high-quality
results for such tasks is challenging, because of the high vari-
ability in worker skill. Accordingly, many AI researchers
have investigated quality control algorithms. Two promi-
nent techniques have emerged for the problem [24]: (1) peri-
odically inserting gold questions (those with known answers)
for each worker, in order to estimate worker reliability, and
firing workers who fall below an acceptable accuracy thresh-
old, and (2) employing agreement-based approaches that do
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not use gold data, instead using expectation maximization
(EM) or similar unsupervised methods to jointly estimate
worker reliability and task output quality.

These two methods have complementary strengths and
weaknesses. While the former is simpler and easy to under-
stand, it puts the onus on the task designer to supply gold
questions. Moreover, it is prone to ’bot attacks where, over
time, workers identify all gold questions and create ’bots
that answer those correctly while answering other questions
randomly [18]. On the other hand, the unsupervised ap-
proach is technically more sophisticated, but requires sig-
nificant amounts of data per worker and workers per task
before low-quality workers can be reliably identified. Thus,
it does not provide a quick filter for firing errant workers.

In practice, while unsupervised techniques have garnered
significant research interest (e.g., [26, 25, 7]), the simpler
technique of inserting gold questions is the norm in industry.
CrowdFlower, a major crowdsourcing platform and consult-
ing company, calls gold questions “the best way to ensure
high quality data from a job” [2]. Furthermore, many re-
search projects that use crowdsourcing to generate training
data eschew EM-based quality control and simply insert gold
questions [11, 6, 28, 3].

While insertion of gold questions is popular in practice, to
the best of our knowledge, there is no formal model of when
and how many gold questions to insert. CrowdFlower’s rule
of thumb is to have 10–20% of data as gold, and to insert
one gold question per page [2]. Such a policy is arbitrary
and may waste valuable budget. Moreover, and more im-
portantly, such a policy is static and does not adapt to indi-
vidual workers or the current mix of spamming and diligent
workers. The percentage of testing questions should only be
high if a large percentage of the labor pool are poor qual-
ity workers or spammers. Similarly, an adaptive policy that
tests less once it is certain that a worker is diligent will likely
perform better than a static one.

We formulate the problem of balancing between (1) test-
ing workers to ensure their accuracy and (2) getting work
done as a Partially Observable Markov Decision Process
(POMDP). Our worker model captures the possibility that
worker performance may degrade over time and workers may
leave our system after any question. Our model also takes
as input a desired accuracy of the final output, and a base
testing policy. We apply reinforcement learning over our
POMDP to dynamically improve the given base policy with
experience. Evaluations on both synthetic data and real
data, from Amazon Mechanical Turk, show that our agent
is robust to various parameter settings, and typically beats
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the baseline policies used by most requesters, as well as the
input base policy. Furthermore, our method is fully auto-
mated, easy to apply, and runs mostly out of the box. We
release our software for further use by the research commu-
nity.1 Overall, we make the following contributions:

1. We use a POMDP model to formulate the problem of
varying the number and placement of gold test ques-
tions in order to optimally balance the quality-cost
tradeoff for crowdsourcing.

2. We present an adaptive reinforcement learning algo-
rithm that simultaneously estimates worker reliability
(by inserting gold questions) and assigns work to pro-
duce high-quality output.

3. We comprehensively test our model using simulation
experiments and show that our algorithm is robust to
variations in desired output accuracy, worker mix, and
other parameters.

4. Additional experiments on three live data sets (col-
lected using Amazon Mechanical Turk) show that our
reinforcement learning agent produces up to 111% more
reward than common policies found in the literature.

2. RELATED WORK
Most practitioners of crowdsourcing use some kind of test-

ing regimen to ensure worker quality. However, the exact
policy is usually ad hoc. For example, CrowdFlower has
two settings, the number of test questions and total num-
ber of questions per page, with the default (best practice)
settings as 1 and 5, respectively (i.e., 20% gold). It also
allows requesters to specify a minimum acceptable running
accuracy for a worker, whose default value is 80%. All these
settings can be changed by a requester, but very little advice
is offered on how to set their values [1].

Researchers also routinely insert gold questions in their
training data collection. As an example, we survey some
papers that used crowdsourcing to generate labeled data for
the task of relation extraction from text. Zhang et al. [28]
use a policy similar to CrowdFlower’s — 20% gold ques-
tions and filtering workers under 80% accuracy. Gormley
et al. [11] use three test questions every ten questions (30%
gold) and filter workers under 85% accuracy. They also boot
workers that answer three or more questions in less than
three seconds each, and they show that the combination of
these methods works better than either alone. Angeli et al.
[3] insert two gold questions into a set of fifteen (13% gold)
questions and filter the workers who have lower than 67%
accuracy. They also filter the specific sets of fifteen questions
on which a worker fails both test questions.

All these papers use a common strategy of gold question
insertion and worker filtering, but choose very different pa-
rameter settings for the same task. Moreover, no paper de-
scribes a strategy for computing these parameter settings,
which are usually chosen by gut instinct and, in rare cases,
by limited A/B testing to assess cost-quality variations em-
pirically for various parameter settings. More importantly,
these settings are static and do not respond to any change in
worker mix, or to individual worker characteristics. In this

1https://crowdlab.cs.washington.edu/
optimal-training-and-testing-for-crowd-workers

paper, we develop a POMDP-based formalism for mathe-
matically modeling this problem, present an algorithm for
automatically learning model parameters, and hence pro-
duce a suitable adaptive policy targeted to a given task and
labor market.

Our work falls in line with the existing literature on the
use of MDPs and POMDPs for crowdsourcing control. These
methods have been previously used for deciding whether to
hire another worker or to submit a crowdsourced binary an-
swer [7, 14, 19]. POMDPs are also used for controlling more
complex workflows such as iterative improvement [8], switch-
ing between multiple workflows for the same task [16], and
selecting the right worker pool for a question [21]. Similarly,
MDPs are used for optimal pricing for meeting a deadline of
task completion [10].

In the literature exploring the aggregation-based, cost-
quality tradeoff, POMDP decisions are taken based on the
needs of the question at hand: “Should one take another vote
or instead submit one’s best estimate of the answer?” Here,
the interactions with a worker are quite passive — following
a pull model, where once a question is sent to the market-
place, any worker may answer it. In practice, a worker usu-
ally has a longer relationship with a requester (crowdsourc-
ing control system), since she answers several questions in
succession. This sequence of answers can be used for actively
allocating test or work questions (push model). In our work,
we use POMDPs to decide actively when to test a worker
and whether to fire them, in case they are not performing
to expectation.

Researchers have also explored the temporal dimension
of worker behavior, for example Toomim et al.’s empirical
analysis of worker survival curves [23]. Inspired by this work,
our model uses a parameter to model the probability that a
worker is going to leave the system at the next step. Worker
retention can be improved by bonuses, making tasks more
engaging, or other incentives, but we have not yet tried to
optimize these factors. Some recent related work has used
worker-centric MDPs for optimally placing an intermediate
goal [15] or deciding whether to provide a bonus to encourage
worker quality or retention [27].

Other researchers have developed more complex time-series
models of worker reliability, e.g., using hidden Markov mod-
els [9, 27], or autoregressive models [12]. Since our focus
is test question insertion, we use a simpler model for tem-
poral reliability, including a parameter to account for the
phenomenon that a worker’s accuracy may decrease over
time,2 either due to fatigue, boredom, or deceit. Extensions
to more complex models is a topic for future work.

Finally, we note that methods that induce lower-quality
workers to leave of their own volition are complementary to
our approach. Mao et al. [17] found that some workers self-
police and stop working on tasks for which they are unsure.
Carefully designed instruction and reputation systems may
cause workers to recognize when they may be providing low-
quality work and stop working.

3. WORKER CONTROL
We propose a controller that automatically decides at each

time step whether a specific worker should answer a test

2We do not model increase in accuracy, since most fielded
crowdsourcing workflows do not provide continued feedback
(after an initial tutorial) that would cause workers to im-
prove over time.
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Figure 1: Transition dynamics of the Worker Controller
POMDP. Note that the reward and observation model for
Work and Test actions are different, but their transition
models are the same, as shown.

question, a work question, or whether this worker’s perfor-
mance is not up to the mark, and so this worker should be
fired and a replacement worker hired. The actuators that ac-
tually perform these actions are part of a web application,
which selects new questions from a database of questions
and interacts with a crowdsourcing platform to recruit new
workers. Our controller should be adaptive, i.e., it should
make decisions for each worker, based on their past behav-
ior, instead of following some pre-defined static policy. The
global objective of the controller is to get workers to answer
as many questions as possible while obtaining a minimum
target accuracy supplied by the requester. We first describe
key design decisions in formulating this controller.

At a high level, this is clearly a sequential control prob-
lem, where the controller gets successive observations about
a worker from test questions, and needs to take successive
actions based on this history. This problem is partially ob-
servable because a worker’s accuracy isn’t known exactly and
can change over time. However, the controller can maintain
a probability distribution over each worker’s accuracy based
on its observations. This suggests a controller based on a
Partially Observable Markov Decision Process (POMDP).

A POMDP [13] is a popular AI formalism for modeling
sequential decision making problems under uncertainty. In
a POMDP the state is not fully observed, although observa-
tions from information-gathering actions help the agent to
maintain a belief, which is a probability distribution over the
possible world states. A POMDP’s objective is to maximize
the long-term expected reward minus cost. The solution of
a POMDP is a policy that maps a belief into an action.

One natural modeling choice for our worker controller
POMDP would be to include the exact accuracy of the
worker, a number in [0, 1], in the world state. This accu-
racy could then be estimated over time based on the test
questions. Unfortunately, solving POMDPs over a continu-
ous state space is known to be notoriously hard [20]. Dis-
cretizing the accuracy space might be a workable alternative,
though it may still be unnecessarily complex since many ac-
curacy bins may result in the same policy.

In response, we adopt a two-class3 worker model, assum-
ing that a worker is randomly drawn from one of the two

3We performed preliminary experiments with larger state
spaces and found the gains to be insignificant. Moreover,

classes: skillful and unskillful. Both classes of workers have
their own (initially unknown) accuracy distributions with
mean accuracy of the skillful class higher than that of the un-
skillful class. This abstraction is beneficial for three reasons.
First, for each individual worker the information gathering
is limited to ascertaining which class they belong to, and no
estimation of individual accuracy or accuracy bin is needed.
Second, the worker population mix is abstracted into class
means, which can be estimated using an initial exploration
phase; these parameters are global, and once estimated ap-
ply to the whole population and need not be re-estimated
per worker. Third, we can estimate these latent variables in
closed form without the need for computationally-expensive
approximate inference subroutines within our reinforcement-
learning algorithm.

Our model also includes a parameter for workers leaving
the task at will. We treat this as a global parameter for
the whole worker population. Finally, we also realize that a
key reason for repeated testing is that workers can become
complacent and their performance may lapse over time. We
model this by adding a variable (D) in the state, which,
when to set to 1, represents that the worker is diligent (not
complacent), and answering to the best of their ability. We
now describe the controller in detail.

3.1 The POMDP Model
Defining a POMDP requires specifying (or learning) a

state space, action space, transition and observation prob-
abilities, and a reward function. We first describe these
aspects of our controller POMDP.

• The state space S can be factored as 〈C,D〉, where C
is a variable indicating the worker class (skillful or un-
skillful) andD is a Boolean variable indicating whether
the worker is diligent (D = 1). The state variable D
captures behavior where workers may lapse and start
answering without focusing on the problem (with a
consequent drop in accuracy); it also models the possi-
bility of spammers faking high-quality work until they
think a requester has stopped testing. Additionally,
we define a special terminal state denoting the end of
process.

• The set of actions A available to our agent in any non-
terminal state consists of test (administer a test using a
gold question), work (ask an unknown question), and
boot (terminate employment and hire a replacement
worker). No action is available in the terminal state.

• The transition function P (s′ | s, a), depicted picto-
rially in Figure 1, specifies a probability distribution
over new states s′ given that the agent takes action a
from state s. We assume that workers are diligent to
start, so any new worker starts from a state with D = 1
and C unknown. The POMDP’s belief is a probabil-
ity distribution over C which is initialized with a prior
distribution over classes. This prior is estimated by a
single class mix parameter that learns what fraction of
workers are a priori skillful and what fraction unskill-
ful.

When the controller agent takes test or work actions,
the worker may decide to leave the task with (un-

these more expressive models require significantly more data
to learn, which reduces their empirical effectiveness.
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known) probability pleave and transition to the ter-
minal state. Moreover, if the worker is in a state
〈C,D = 1〉, she may transition to a spamming state
〈C,D = 0〉 with probability plapse(1−pleave) or remain
in the same state with probability (1−plapse)(1−pleave).
If the worker is already in spamming state 〈C,D = 0〉,
she remains there with probability (1 − pleave). The
boot action fires this worker and hires a replacement
worker with initial belief as described above.

• Observation function: The agent can only directly ob-
serve responses to test actions. If the worker is in a
state with D = 1, we assume she answers correctly
according to her unknown class accuracy µc. Work-
ers with state variable D = 0 spam with accuracy
0.5, i.e., they resort to random guessing of a binary-
valued question. Additionally, the agent directly ob-
serves when a worker leaves.

• Reward function: The agent incurs a cost c for each
test and work action it takes (assuming the worker pro-
vides a response). Additionally for work actions, our
reward model incurs a penalty PN for each incorrect
answer and a reward RW for each correct answer it re-
ceives. Since work actions ask questions with unknown
answers, the POMDP needs to compute an expected
reward, as follows:

R = EY,X [f(y, x)] ,

where

f(y, x) =

{
RW, if y = x

PN, otherwise.

Here Y and X are binary random variables for the
latent true answer to the question and the worker re-
sponse, respectively. This expectation can be com-
puted using joint probabilities P (Y,X) = P (Y )P (X |
Y ), where P (X = y | Y = y) is the worker accu-
racy. This accuracy depends on the current state in the
POMDP. We assume that each worker class c has its
own latent mean accuracy, µc, but that when D = 0,
workers generate random answers.

So that the requester may specify this reward function in
an intuitive way, our experiments focus on the setting where
RW = 1 and the value of PN will vary depending on the
requester’s desired accuracy. If the requester would like to
gather answers from workers with accuracy greater than a∗,
she may specify PN = a∗/(a∗−1), which will induce positive
reward4 only for workers with accuracy greater than a∗.

As defined, the POMDP, in its pursuit to maximize its
long-term expected reward, should learn to test and boot
unskillful workers (if their class accuracy is less than a∗) in
order to obtain a positive reward. It should also periodically
test skillful workers in order to verify that their performance
hasn’t begun to degrade. The exact parameters of how often
and how much to test depend on the unknown mix of the
worker classes, target accuracy, model parameters plapse and
pleave, as well as the belief on the current worker at hand.

Our POMDP need only reason about distributions over
five world-states (based on different assignments of C and

4This formula comes from setting the expected reward
(aRW + (1− a)PN) to 0 when RW = 1.

D, and the terminal state), and three actions; thus, it can
easily be solved using most modern POMDP algorithms.

3.2 Reinforcement learning
When our system is deployed in a new crowdsourcing envi-

ronment, it must also learn the POMDP model parameters.
This necessitates a reinforcement learning solution with an
exploration-exploitation tradeoff.

Five parameters need to be learned: pleave, plapse, the class
mix in the worker population, and the mean accuracies µ1

and µ2 for the two classes. Learning these parameters accu-
rately could be data intensive, which means that a typical
controller starting from scratch may waste significant budget
in learning the model. It may, as part of exploration, boot
skillful workers, leading to worker dissatisfaction and sub-
sequent bad requester rating by workers. Most requesters
would not be able to afford this.

To alleviate this concern, we allow the requesters to spec-
ify a base policy, say, something similar to CrowdFlower’s
recommended best practice policy. Our reinforcement learner
can start with this base policy instead of a random policy.
It will gradually transition to following the POMDP policy
once it has observed enough workers to estimate parameters.
Common base policies that insert a fraction of test questions
are desirable because (1) they are widely adopted and easy
to implement and (2) the inserted test questions enable our
agent to estimate parameters accurately.

To implement this mixed off/on-policy learning strategy,
when the controller agent hires a new worker, it follows the
base policy with probability q(b,B) and the POMDP policy
with probability (1 − q(b,B)), where b is the budget spent
so far and B is the total budget. When the agent decides to
follow the POMDP policy, it reestimates model parameters
and replans prior to hiring a new worker. We define our
particular choice of function q in the next section.

To estimate parameters, we treat the sequential data as an
input-output hidden Markov model [4] and use the Baum-
Welch (EM) algorithm initialized with parameters from the
previous episode and one random restart. We use default
uninformed priors of Beta(1, 1) on parameters, but use a
prior of Beta(5, 2) for class accuracy and a prior of Beta(2,
20) for plapse. Beta(5, 2) encodes the fact that the accuracy
should be at least 0.5 for Boolean questions, and Beta(2,
20) is an optimistic prior that workers don’t tend to become
spammers very frequently.5 We assume that each class has
its own accuracy but use parameter tying to estimate values
for pleave and plapse that are shared between classes.

We also experimented with an estimation process that is
identical, except that it does not estimate the class accura-
cies. Instead, it defines two worker accuracy bins, one on
[a∗, 1.0] for skillful workers and one on [0.5, a∗) for unskill-
ful workers and fixes µ1 = (a∗ + 1.0)/2, µ2 = (0.5 + a∗)/2.
While these accuracy means may differ from the maximum
likelihood estimates, they still allow the agent to distinguish
between workers expected to give work of sufficient quality
(positive reward) and workers the agent should boot. This
variant has two primary benefits. First, estimating only the
class ratios requires much less data than estimating both
the class ratios and the accuracy means. Second, it is pos-

5In preliminary experiments, we found an optimistic prior
was important to enable our system to distinguish between
skillful workers who may drop in accuracy and unskillful
workers who had low accuracy from the start.
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(a) 80:20 class ratio. (b) 50:50 class ratio. (c) 20:80 class ratio.

Figure 2: Our controller agent achieves significantly higher rewards than baseline policies under a variety of ratios of skillful
to unskillful workers. As can be seen by the slopes of the curves, after learning, the RL policies start performing about as well
as the optimal POMDP policy, which was given true parameters. These plots (and all subsequent reward plots) show mean
performance over 200 runs with shaded 95% confidence intervals.

sible that the maximum likelihood estimates for accuracy
means will produce means µ1, µ2 < a∗. Fixing an accuracy
bin above a∗ ensures that the agent will be able to identify
high-quality workers even if the mean accuracy µ1 for skillful
workers is below the desired accuracy a∗.

4. EXPERIMENTS
In experiments, we first test our agent with simulated

workers under a variety of settings; the goal is to assess the
robustness of our method to differing task settings and its
ability to adapt to attacks by different populations of spam-
mers. Later, we demonstrate performance on three NLP
datasets using real workers from Amazon Mechanical Turk.

We implement a reinforcement learning agent (POMDP-
RL) that improves upon a base policy of inserting 20% gold
questions and firing workers if their accuracy is less than
the desired accuracy (Test-and-boot). We compare the RL
agent with this base policy on its own, as well as a baseline
policy that inserts no gold questions (Work-only). The Test-
and-boot base policy inserts a batch of 4 test questions in
every set of 20 questions. In simulation experiments, we are
also able to compare performance with an agent that has
access to the true model parameters (POMDP-oracle).

POMDP-RL learns the class ratio, class mean accuracies
(µ1, µ2), pleave, and plapse using the priors specified in the
previous section. We use the Test-and-boot policy in each
experiment as our base exploration policy. We used the
ZMDP POMDP package,6 which implements the Focused
Real Time Dynamic Programming (FRTDP) algorithm for
solving POMDPs [22]. We ran the solver with default con-
figuration settings, maximum solve time of 1 minute,7 and
discount factor of 0.99. In order to speed up experiment run-
times, the agents recomputed the POMDP policy at most
once every 10 workers and at most 10 times total.

4.1 Agent Robustness
In our simulation experiments, we considered two classes

of workers, one of high accuracy (µ1 = 0.9) and one of
low accuracy (µ2 = 0.6). Worker accuracy in each class
varies according to a truncated normal distribution param-
eterized by the class mean and σ = 0.1 and bounded on
[0.5, 1]. Unless otherwise noted, we consider a 50:50 mixture

6https://github.com/trey0/zmdp
7Solver ran on 2.3 GHz Intel Xeon E7-8850-v2 processors.

of these two classes, where workers degrade with probabil-
ity plapse = 0.01. Only the simulator and POMDP-oracle
had access to the true worker parameters; POMDP-RL es-
timated parameters based only on observations.

Our experiments are from the point of view of a requester
who wants to ensure data quality above a∗ = 0.75. Our
penalty function gives us PN = −3, which provides positive
rewards for data above this accuracy. The default budget
size is B = 4000 questions. In this set of experiments, we
used the sigmoid exploration function q(b,B) = 1 − 1/(1 +
exp(40(b/B− 0.4)), which approximately changes from 1 to
0 in the range of 25% to 50% of the budget.

RQ1. Is our agent robust to the ratio of skillful to unskillful
workers in the labor pool?

In these experiments, we varied the mixture of skillful
workers to unskillful workers, while keeping the worker dis-
tribution properties fixed. Figure 2 shows that as this ratio
decreases from 80:20 to 20:80, policies achieve lower reward,
as we would expect with just a few skillful workers. The
relative benefit of the POMDP agents, however, remains
significant. In all settings, POMDP-RL learns a policy that
gains roughly as much reward per question as the POMDP-
oracle. This can be seen by the fact that in the last half of
the budget, POMDP-oracle and POMDP-RL have similar
reward slopes.

Both POMDP-oracle and POMDP-RL earn significantly
higher total cumulative reward after spending the budget
than the best baseline policy (Test-and-boot), according to
two-tailed T tests (p � 0.001 for all; t = 32.5, t = 13.2
for 80:20; t = 30.9, t = 13.8 for 50:50; t = 55.3, t = 27.7
for 20:80). The differences tend to become more significant
for settings with fewer skillful workers, since careful testing
becomes more important there.

RQ2. Is our agent robust to the fraction of workers who
stop being diligent (eventually answering randomly)?

In order to test how our agent responds to workers who
may begin to spam with probabilities other than 0.01, we
experimented with plapse ∈ {0, 0.2, 0.4}, as shown in Fig-
ure 3. Note that for plapse = 0 (Figure 3a), POMDP-RL
uses the base policy of Test-and-boot-once, which tests 4
times only at the start (and fires the worker if they answer
more than one question incorrectly). For this setting, we
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(a) plapse = 0. (b) plapse = 0.02. (c) plapse = 0.04.

Figure 3: Our RL controller is also robust to the number of deceptive spam workers, beating the baseline exploration policy,
and eventually matching the performance of the POMDP-oracle model (which has knowledge of the true parameters). When
plapse = 0.04, 4% of previously diligent workers start answering randomly after each question.

(a) Penalty -1 (desired accuracy 0.5).

(b) Penalty -6 (desired accuracy 0.86).

Figure 4: Our agents perform robustly when supplied differ-
ent utility functions and produce higher relative rewards for
utility functions corresponding to higher desired accuracies.

don’t need a policy that tests at intervals; it is optimal to
do all testing at the beginning if worker performance does
not drop. This set of experiments used synthetic data from
the default equally-sized worker classes. In all experiments,
the POMDP-oracle and POMDP-RL agents again obtain
significantly higher reward than the baselines.

RQ3. Is the RL controller robust to changes in the re-
quester’s utility function (i.e., desired accuracy)?

The previous experiments used PN = −3 (desired mini-
mum accuracy of 0.75). In this set of experiments, we varied
the utility function by setting PN = −1 and PN = −6, cor-
responding to desired accuracies of 0.5 and approximately
0.86, respectively. As shown in Figure 4, the relative gains

of adaptive testing increase as the desired accuracy (and
corresponding magnitude of penalty) increase. Note that
for PN = −6 (Figure 4b), only the POMDP-oracle agent
has final positive cumulative reward. After having spent
some budget, POMDP-RL also learns a policy that improves
cumulative reward (neither baseline policy is able to im-
prove reward). In both experiments, POMDP-oracle and
POMDP-RL produce significantly higher reward than the
best baseline policy (Test-and-boot).

RQ4. How good is the learned RL policy compared to the
POMDP with known parameters?

Figures 2 through 4 show that POMDP-RL is able to
learn policies with reward slopes similar to those of POMDP-
oracle. This research question evaluates the policy learned
by POMDP-RL isolated in a pure exploitation phase on the
last 10% of an experiment with B = 2000 and the default
worker configuration (50:50 class ratio, plapse = 0.01). Fig-
ure 6 shows that the reward obtained by POMDP-RL is on
par with POMDP-oracle (there is no statistically significant
difference in cumulative reward at the end of the budget),
suggesting that the combination of base exploration policy
and exploration-exploitation tradeoff is learning effectively.

Examination of worker traces shows that POMDP-RL and
POMDP-oracle take similar actions. Both have an initial
testing phase to establish worker quality, and then periodi-
cally insert a test question in every batch of approximately
6 questions. If a worker answers the single test question in-
correctly, the agent will administer additional test questions
adaptively.

4.2 Testing on Real Workers & Tasks
To answer the question of how well our agent performs on

real datasets, we conducted experiments using three datasets
gathered on Amazon Mechanical Turk. The worker com-
pletes an Entity Linking task in which a sentence and a men-
tion (a portion of the sentence) is shown, and the worker is
asked to match the mention to the correct Wikipedia entry.
Two of our datasets, LinWiki and LinTag, were supplied by
Lin et al. [16], who had Mechanical Turk workers answer
questions using two different styles of questions, which they
called WikiFlow and TagFlow. These datasets consist of 110
questions. 135 workers supplied 3,857 answers in LinWiki,
and 149 workers supplied 3,999 answers in LinTag.
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(a) LinWiki dataset. (b) Rajpal dataset. (c) LinTag dataset.

Figure 5: Our RL controller (POMDP-RL) significantly outperforms baseline policies on all three datasets with real workers.
Figures show mean performance over 200 runs (with shaded 95% confidence intervals).

Figure 6: Zooming into the agent’s behavior during the last
10% of the budget (i.e., after most learning), there is no
statistically significant different between our RL controller
and the agent that is given the true model of workers by
an oracle. This figure uses the same worker distribution as
Figure 2b (50:50 class mixture and plapse = 0.01).

Our third dataset, Rajpal, consists of 150 questions from
the same task. Rajpal et al. [21] recruited workers with Me-
chanical Turk Masters qualifications (35 workers, 3,015 an-
swers) as well as without those qualifications (108 workers
and 5,870 answers). We combined these two sets of responses
into a single dataset (143 workers, 8,885 answers) for this ex-
periment.

When performing experiments, we set the budget B equal
to the total number of answers. The Work-only policy used
every answer from every worker exactly once upon complet-
ing this budget. Since the other policies may boot workers
and therefore require more workers than exist in the original
dataset while consuming the budget, we recycle workers as
needed for those policies. Our simulator randomizes the or-
der of workers and the order of worker answers because the
datasets do not contain metadata (e.g., timestamps) that
would let us determine the order in which answers were re-
ceived.

Since answers from a worker arrive in random order, ex-
pected worker quality should not change over time; we fix
plapse = 0. Thus, these experiments use the Test-and-boot-
once variant of the base policy, which performs one block of
testing at the start only (and boots if the accuracy in that
block is below the desired accuracy).

We set the desired accuracy to 0.85, a value close to the
upper bound of what is reasonable, since only a small frac-

tion of answers in the LinTag dataset come from workers
above this accuracy. To give the base policy enough gran-
ularity when determining worker accuracy, the base policy
tests 7 times (and boots if more than one answer is incor-
rect). We fix class mean accuracies µ1, µ2 for POMDP-RL
using the binning method to ensure that our method can
identify workers above the desired accuracy even if the max-
imum likelihood class means are below that value. Since the
agent does not need to estimate these parameters, we ex-
plore only for the first 20 workers.

Note that workers cannot distinguish a gold question from
a non-gold question; they have exactly the same effect on a
worker. Since we know the correct answers, we can (post-
hoc) treat any question as gold, and evaluate any possible
policy.

Performance on these three datasets is summarized in Fig-
ure 5 and Table 1. Note that we are only able to run the
POMDP-RL agent (not POMDP-oracle), since we do not
know the true worker parameters. After consuming the
budget, POMDP-RL generated 111% more cumulative re-
ward than the best baseline for the LinWiki dataset (1018.2
vs. 481.7) and 35% more reward for the Rajpal dataset
(1214.5 vs. 902.5). On the LinTag dataset, all methods
produced negative reward, but POMDP-RL produced only
35% as much negative reward as the best baseline. The
best baseline in each case is Test-and-boot-once. Running a
two-tailed T test on these rewards determines that the differ-
ences are significant for all datasets (t = 21.5, 13.6, and 46.7
for the LinWiki, Rajpal, and LinTag datasets, respectively;
p� 0.001).

Inspecting the distribution of worker accuracies and num-
ber of questions answered by each worker helps to explain
these results. As shown in Figure 7, some low-accuracy
workers answer a large number of questions in the LinWiki
dataset; POMDP-RL produces large gains by adaptively
testing and filtering these workers. In contrast, the lower
quality workers in the Rajpal and LinTag datasets tend to
leave on their own accord after a small number of questions,
reducing the possible benefit of testing them in order to fire
poor performers. The LinTag dataset has a small fraction of
workers above the desired accuracy, and none of the methods
were able to produce a dataset with the desired accuracy.

Examining the action traces and overall statistics on the
number of times the POMDP-RL agent took test, work, and
boot actions gives some insight into how the agent is able
to improve on the static Test-and-boot baseline. As the
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(a) LinWiki dataset. (b) Rajpal dataset. (c) LinTag dataset.

Figure 7: Scatter plots of worker accuracy vs. number of questions answered show that low accuracy workers leave on their
own accord after a small number of questions in the Rajpal and LinTag datasets — hence all forms of worker testing have
limited benefit in these scenarios. Adaptive testing has the most potential benefit in the LinWiki dataset.

Dataset Policy Reward Labels Acc

LinWiki POMDP-RL *1018.2 2656 90.8
LinWiki Test-and-boot-once 481.7 2895 87.5
LinWiki Work-only -1346.6 3857 79.8

Rajpal POMDP-RL *1214.5 6867 87.7
Rajpal Test-and-boot-once 902.5 7629 86.8
Rajpal Work-only -62.0 8885 84.9

LinTag POMDP-RL *-439.5 1253 79.6
LinTag Test-and-boot-once -1251.3 2842 78.4
LinTag Work-only -2320.2 3999 76.3

Table 1: Our reinforcement learning agent captures higher
rewards than the baseline policies on all three live datasets.
Asterisks indicate significantly higher rewards. Our agent
produces datasets of higher accuracy (Acc) at the expense
of gathering fewer labels.

POMDP-RL agent transitions from the base (static) explo-
ration policy to the learned adaptive policy, the mean num-
ber of test actions per worker stays constant or decreases
slightly, but the mean number of work actions per worker
decreases and the agent boots more frequently. This sug-
gests that the agent becomes more conservative with its work
actions, thus increasing accuracy.

5. CONCLUSIONS
In order to distinguish between high-quality and error-

prone workers, requesters on crowdsourcing platforms, such
as Amazon Mechanical Turk, routinely reserve 10–30% of
their workload for “gold” test questions, whose answers are
known, and then dismiss workers who fail a disproportionate
percentage. This type of static policy is arbitrary and wastes
valuable budget. The exact percentage of test questions and
dismissal rate is often chosen with little experimentation,
and, more importantly, it does not adapt to individual work-
ers, the current mixture of skillful vs. unskillful workers, nor
the number of tasks workers perform before quitting. Intu-
itively, the percentage of test questions should be high if a
large percentage of the workers are spammers. Furthermore,
once one is very certain that a worker is diligent, one can
likely decrease the testing frequency.

To develop a principled solution to the problem of balanc-
ing between (1) testing workers to determine their accuracy,
and (2) actually getting work performed by good workers, we
formulate it as a partially-observable Markov decision pro-
cess (POMDP). Our worker model captures the possibility
that worker performance may degrade over time (whether
due to fatigue, boredom, or deceit) and workers may leave
our system after any question. Our model also takes as in-
put a minimum desired accuracy of the final output, and a
base testing policy. We apply reinforcement learning over
the POMDP to dynamically improve the given base policy
with experience. We comprehensively test our model using
simulation experiments and show that our algorithm is ro-
bust to variations in desired output accuracy, worker mix,
and other parameters. Additional experiments on three live
data sets (collected using Amazon Mechanical Turk) show
that our agent performs up to 111% better than common
policies found in the literature. Importantly, our software
is fully automated, easy to apply, runs mostly out of the
box, and is made available for further use by the research
community.

We note that our method has several limitations. For
example, gold test questions are only applicable for crowd
work with objective answers. Neither our testing approach
nor methods based on expectation maximization will work
for subjective questions or descriptive tasks where correct
answers can be highly variable. However, we think our
POMDP model could be extended to schedule separate val-
idation jobs from an independent set of crowd workers. An-
other exciting direction for future work would be to extend
our model to handle instruction in addition to testing [5].
Such a model would choose between (1) teaching a worker
to improve proficiency, (2) testing to measure worker accu-
racy, and (3) getting work done, all before the worker quits
the system.
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[28] C. Zhang, F. Niu, C. Ré, and J. W. Shavlik. Big data
versus the crowd: Looking for relationships in all the
right places. In Proceedings of the 50th Annual
Meeting of the Association for Computational
Linguistics (ACL 2012), 2012.

974




