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ABSTRACT
Defining a reward function that, when optimized, results
in the rapid acquisition of an optimal policy, is one of the
most challenging tasks involved in applying reinforcement
learning algorithms. The behavior learned by agents is di-
rectly related to the reward function they are using. Existing
works on Optimal Reward Problem (ORP) propose mecha-
nisms to design reward functions that facilitate fast learning,
but their application is limited to specific sub-classes of sin-
gle or multi-agent reinforcement learning problems. More-
over, while these methods identify which rewards should be
given in which situation, they do not give clues regarding on
which features of the state or environment should be used
when defining a reward function. In this paper, we address
these and other issues of ORP. Experimental results on a
gridworld scenario are used to evaluate the efficacy of our
approach in designing effective reward functions.
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1. INTRODUCTION
In the traditional RL framework, a reward function re-

flects the goals of both the agent and the designer. Singh et
al. [6, 7] suggest that an RL system can benefit by decom-
posing theses goals into two functions: a reward function
that guides the learning process and a fitness function that
evaluates the quality of the learned behavior. The ORP con-
sists in finding a reward function that maximizes the fitness.
Formally, at each time step, an agent G receives an obser-
vation o ∈ O from an environment M , takes action a ∈ A,
produces a history h, composed of observations of states,
actions and rewards, and repeats this process for a certain
time horizon. The agent’s goals are represented by a reward
function R, which it tries to be maximize, while the de-
signer’s goals are represented by a fitness function F , which
produces a cumulative return FR (h) for a reward function
R over a history h. The Optimal Reward Function (ORF)
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problem is defined in Eq. 1, where R∗ is an ORF that max-
imizes the designer’s expected fitness F of agent G in M ,
and where the maximization is over a pre-defined space R
of reward functions. The notation h ∼ M〈G〉 denotes that
h is a sample history generated when agent G acts in en-
vironment M , and G (R) denotes an agent G tasked with
maximizing a reward function R.

R∗ = arg max
R∈R

E [FR0 (h) | h ∼ M〈G (R)〉] (1)

In [6, 8], the ORP is (approximately) solved through a
brute force strategy. Subsequent works [8, 5, 4, 3] pro-
pose automated and more efficient methods for dealing with
ORP in single or multi-agent settings. Such methods present
the following limitations, which are addressed by our ap-
proach, called Extended Optimal Reward Problem (EORP):
i) the situations (or state features) in which the agent may
be rewarded must be pre-defined by the designer; ii) lack of
generality for dealing with RL problems that may be either
single and multi-agent settings; iii) scalability in multi-agent
settings; iv) the trade-off between fitness and learning effort
is not considered in the standard ORP.

2. OUR APPROACH
The EORP is defined in Eq. 2, where H is the set of all

histories generated by agents i ∈ I learning with a reward
function R. Note that Eq. 2, unlike the standard ORP for-
mulation, allows for a reward function to be designed that
maximizes the expected fitness of multiple (possibly coop-
erative) agents, situated within a multi-agent system. The
two main changes of this formulation with respect to the
one in Eq. 1 are the introduction of: i) a reward design
space, R (J), corresponding to the space of reward func-
tions spanned by a given set of feature states J ; and ii) a
multi-objective function F , called evaluation function.

R∗ = arg max
R∈R(J)

E [FR0 (H) | H ∼ M〈I (R)〉] (2)

In the space of reward functions R (J), more than one
function R ∈ R (J) can produce the same fitness FR, but un-
der different learning effort. For instance, one reward func-
tion may allow the agent to learn an optimal policy in fewer
steps because it provides the agent with more informative
guidelines about the effectiveness of its current behavior.
For the designer, it is interesting to identify a reward func-
tion that, when optimized, results in the agent more rapidly
learning to solve the task. The traditional ORP does not
assist the designer in such decisions because it is only aimed
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Figure 1: CMOTP scenario.

Table 1: Fitness (f1) and effort (f2)
obtained by R∗ and RB on CMOTP.

RB R∗

f1 17.83 ± 1.74 12.4 ±0.72
f2 37.97 ± 3.03 26.83 ± 1.29
j0 1 0.77
j1 0.1 0.86
j2 - -0.47
j3 - -
j4 - -0.08
j5 - -0.28
j6 - -
j7 - -
j8 - -0.59
j9 0 -0.23

J =



j0, if the object is at the home base;

j1, if the agent grasped the object;

j2, if the agent hit a wall;

j3, if the agent tried to move the object by itself;

j4, if the agent tried to go to a cell occupied
by an agent;

j5, if the agent tried to go to a cell occuped by
an object;

j6, if other agent tried to go to a same cell;

j7, if the agent executed uncoordinated action
to move the object;

j8, if the agent chose to stand still;

j9, otherwise.

(3)

at maximizing fitness. In the EORP, we consider that the
designer has multiple goals to be maximized, such as fitness
and learning effort. The function F evaluates the fitness (f1)
and effort (f2) produced by H and returns a 2-dimensional
vector F (H) = [f1 (H) , f2 (H)]. The fitness function mea-
sures the quality of the final learned behavior achieved when
maximizing a given reward function, while the learning ef-
fort function evaluates the amount of effort spent by the
agent (e.g., time until convergence) during its lifetime. The
designer must define both functions to represent his goals
for a given learning task.

The reward design space R (J) represents the set of all
possible reward functions spanned by a given set of features
J . A feature can be seen as a situation in which the agent
may be rewarded. A reward function R ∈ R (J) is repre-

sented as R =
∑J

k=1 s (k)w (k)P (k), where for each feature
k, s (k) ∈ {0, 1} indicates that the feature k is activated in
state s or not, w (k) = {x ∈ R | −1 ≤ x ≤ 1} represents the
contribution to the reward signal of k, and P (k) = {x ∈ N |
0 ≤ x ≤ 1} is an indicator function reflecting if k is used or
not to compose R. Given a set of n features, a search space
R (J) ⊂ R2n = [{w (k0) , . . . , w (kn)}, {p (k0) , . . . , p (kn)}]
contains n indicator features P (k) and n reward signals,
w (k). The number of decision variables of an EORP with
such search space is 2n. Our method optimizes a single re-
ward function that is used by all collective of learning agents
I interacting in a given problem. This way, independently
of the amount of agents, the dimensionality of the optimiza-
tion problem is always given by the amount of features (|J |)
in the state space of one individual agent.

Solving the EORP consists in finding the set of Pareto op-
timal solutions, R∗ ∈ R (J), that maximize F . Any multi-
objective optimization algorithm that deals with real and in-
teger decision variables can be used. In this paper, we opted
to use a multi-objective version of the Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES)[2]. EORF cri-
terion does not depend on knowledge of the dynamics of the
problem M , and so even model-free optimization algorithms
can be used to optimize Eq. 2. This is unlike the approach by
Liu et al. [4, 3], which requires model-based algorithms. Ad-
ditionally, our method produces only one EORP solution per
collective of agents, so that every agent i ∈ I will learn with
an instance of this function. In [4, 3], one reward function
is optimized for each agent, which may present scalability
issues in problems with a large amount of learning agents.

3. SCENARIO AND PARTIAL RESULTS
We evaluate our approach on the Coordinated Multi-agent

Object Transportation Problem (CMOTP), presented in [1].

The learning task involves the coordinated transportation
of an object by two agents represented in Fig. 1. The two
agents (numbered circles) can move in a two-dimensional
7×6 grid, in order to transport an object to the home base in
the least amount of time. The task involves the avoidance of
obstacles (gray blocks) and coordinated moves. At each time
step, they can move by one cell to the left, right, up, down
or stand still at the current cell. The task is accomplished
when the object reaches the home base.

In this setting, each agent maximizes its reward function
using Q-Learning. The Q-learning agents, the MDP model-
ing and the parameters values were defined according to the
specifications presented by Buşoniu et al.[1]. For compari-
son purposes, we used the reward function RB proposed by
the authors as a baseline. As stopping criteria for CMA-ES,
we used 1000 evaluations of the fitness function.

Given the set of potential features in Eq. 3, the experi-
ment consists in finding which features and reward signals
produce an optimal reward function, R∗, that solves the task
with maximum fitness and minimum effort. In this experi-
ment, the fitness function evaluates the number of steps to
accomplish the task at the current episode, and the learning
effort function represents the cumulative number of decisions
taken by all agents along their lifetimes.

In Tab. 1, we present the results obtained by solving the
EORP and by applying RB . In 30 repetitions, our method
generated 102 Pareto optimal ORFs from which we selected
R∗ for comparison purposes. The reward function R∗ per-
formed better than the baseline regarding both fitness and
effort. The fitness produced by R∗ is closer to the optimal
solution for the CMOTP, which is 12 steps. A reduction
of ≈ 30% in the learning effort is also observed when com-
pared to RB . Seven features were used in R∗, all of which
automatically identified by the maximizing of Eq. 2. The
features directly related to the success of the task, j0 and
j1, are the only ones to receive positive reward signals. The
rest of the features utilized in R∗ are associated with neg-
ative reward signals that discourage those situations. This
experiment shows that the EORP can identify the features
and reward signals that compose an optimal reward func-
tion which, when optimized, produces maximum fitness and
minimum effort.

4. NEXT STEPS
As future work, we intend to perform an evaluation in

more complex scenarios, with more agents and potential re-
ward features. Investigating theoretical properties of our
method, resulting from using methods that find Pareto op-
timal solution, is also part of our future work.
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