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ABSTRACT
Reinforcement learning (RL) is a challenging task, especially
in highly competitive multiagent scenarios. We consider the
route choice problem, in which self-interested drivers aim at
choosing routes that minimise their travel times. Employing
RL here is challenging because agents must adapt to each
others’ decisions. In this paper, we investigate how agents
can overcome such condition by minimising the regret as-
sociated with their decisions. Regret measures how much
worse an agent performs on average compared to the best
fixed action in hindsight. We present a simple yet effective
regret-minimising algorithm to address this scenario. To this
regard, we introduce the action regret, which measures the
performance of each route in comparison to the best one, and
employ it as reinforcement signal. Given that agents do not
know the cost of all routes (except for the currently taken
ones) in advance, we also devise a method through which
they can estimate the action regret. We analyse the theo-
retical properties of our method and prove it minimises the
agents’ regret by means of the action regret. Furthermore,
we provide formal guarantees on the agents’ convergence to
a φ-approximate User Equilibrium, where φ is the bound on
the agents’ regret. To the best of our knowledge, this is the
first work in which RL-agents are formally proven to con-
verge to an approximate UE, without further assumptions,
in the context of route choice.

CCS Concepts
•Theory of computation → Multi-agent reinforce-
ment learning; Exact and approximate computation of equi-
libria; Convergence and learning in games; •Computing
methodologies → Multi-agent reinforcement learn-
ing; Multi-agent systems;

Keywords
regret minimisation, route choice, multiagent reinforcement
learning, action regret, user equilibrium, regret estimation

1. INTRODUCTION
Reinforcement learning (RL) in multiagent domains is a

challenging task. An RL agent must learn by trial-and-error
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how to behave in the environment in order to maximise its
utility. When multiple agents share a common environment,
they must adapt their behaviour to those of others. The
problem becomes even harder when the agents are selfish
and compete for a common resource.

We consider the route choice problem, which concerns how
rational drivers1 behave when choosing routes between their
origins and destinations in order to minimise their travel
costs. Learning is a fundamental aspect of route choice be-
cause the agents must adapt their choices to account for
the changing traffic conditions. In other words, agents must
adapt to each others’ decisions.

An interesting class of multiagent RL techniques com-
prises the regret minimisation approaches. Different notions
of regret are considered in literature [11]. The most common
one is that of external regret, which measures how much
worse an agent performs on average in comparison to the
best fixed action in hindsight. In this sense, regret minimi-
sation can be seen as an inherent definition on how rational
agents behave over time.

The use of regret in the context of route choice and cor-
related problems has been widely explored in the literature.
Within RL, regret has been mainly employed as a perfor-
mance measure [12, 8, 24]. Unlike previous approaches, we
use regret to guide the learning process. A few approaches
[38, 35] indeed use regret as reinforcement signal, but as-
suming it is known by the agents. However, we highlight
that calculating regret requires complete knowledge of the
environment (i.e., the reward associated with every action
along time). Investigating methods to accomplish such a
task in the absence of any global information is more chal-
lenging and is also relevant [31], especially in highly compet-
itive scenarios like traffic [9]. Hence, we not only use regret
to guide the learning process but also provide methods for
estimating it without further assumptions.

The framework of online optimisation has also been ap-
plied to minimise the regret of route choice [5, 37, 6, 18, 1, 2,
36], but usually making strong assumptions about the struc-
ture of the cost functions. Alternative regret formulations
were also considered in the literature [3, 21, 38], but mostly
assuming full knowledge of the environment. Some progress
has been made in the congestion games literature [26, 27, 17,
19, 16]. However, again, most works assume full knowledge
of the environment. Interesting results were achieved in the
work of Blum et al. [10], which guarantees the convergence
of routing games to an approximate equilibrium when all
agents are using regret-minimising strategies, under certain

1Henceforth, we use the terms agent and driver alternately.

846



conditions. However, they assume that such strategies exist.
Therefore, as opposed to previous approaches, we drop the
full knowledge assumption and investigate how agents can
learn using only their own travel times.

In this paper, we address the route choice problem by min-
imising regret and provide formal performance guarantees.
Specifically, we investigate how the agents can estimate their
regret locally (i.e., based exclusively on their experience) and
how such estimates can be employed to guide the RL pro-
cess. To this regard, each agent keeps an internal history
of observed rewards, which is used for estimating the regret
associated with each of its actions. We refer to such mea-
sure as the estimated action regret and use it for updating
the agents’ policies. The expected outcome corresponds to
the User Equilibrium (UE) [33], i.e., an equilibrium point in
the space of policies in which no driver benefits by deviat-
ing from its policy. We provide a theoretical analysis of the
system’s convergence, showing that our approach minimises
the agents’ regret and reaches an approximate UE. To the
best of our knowledge, this is the first time that, without
further assumptions, RL-agents are proven to converge to
an approximate UE in the context of route choice.

The main contributions of this work are:

• We define the estimated action regret, which measures
the regret of single actions. In this way, action regret
can be employed by RL-agents as reinforcement signal
for their routes. Moreover, we prove that learning with
action regret minimises the agent’s external regret.

• We introduce a method for agents to estimate their ac-
tion regret relying only on their experience (i.e., travel
time of current route). In this sense, we eliminate the
assumption of full information. We show that such es-
timates converge to the true values in the limit and
that they are useful in the learning process.

• We develop an RL algorithmic solution that employs
action regret as the reinforcement signal for updating
the agent’s policy. In this way, the agents learn to
choose the actions that minimise their external regret.

• We provide theoretical results bounding the system’s
performance. Specifically, we show that an agent’s av-

erage external regret is O
((

K−1
TK

)(
µT+1−µ
µ−1

))
after T

timesteps, where K is the number of available routes
and µ is the decay rate of the exploration parame-
ter. Moreover, we show that the system converges to
a φ-approximate UE when all agents use our method.

This paper is organised as follows. Section 2 provides
a background on the topics related to this work. Sections
3 and 4 present the proposed methods and the theoretical
analysis. These results are empirically validated in Section
5. Concluding remarks are presented in Section 6.

2. BACKGROUND

2.1 Route Choice Problem
The route choice problem concerns how drivers behave

when choosing routes between their origins and destinations
(OD pair, henceforth). In this section, we introduce the
basic concepts related to route choice. For a more compre-
hensive overview, we refer the reader to [9] and [23].

A road network can be represented as a directed graph
G = (N,L), where the set of nodes N represents the inter-
sections and the set of links L represents the roads between
intersections. The demand for trips generates a flow of vehi-
cles on the links, where fl is the flow on link l. A trip is made
by means of a route R, which is a sequence of links connect-
ing an OD pair. Each link l ∈ L has a cost cl : fl → R+

associated with it. The cost of a route R is CR =
∑
l∈R cl.

Such costs are typically modelled using the volume-delay
function (VDF) abstraction. A possible way of defining a
VDF is presented in Equation (1), with tl denoting the free
flow travel time (i.e., minimum travel time, when the link is
not congested). In this particular VDF, the travel time on
link l is increased by 0.02 for each vehicle/hour of flow.

cl(fl) = tl + 0.02× fl (1)

In the route choice process, drivers decide which route
to take every day to reach their destinations. Usually, this
process is modelled as a commuting scenario, where drivers’
daily trips occur under approximately the same conditions.
In this sense, each driver i ∈ D, with |D| = d, is mod-
elled as an agent, which repeatedly deals with the problem
of choosing the route that takes the least time to its desti-
nation. The reward r : R → R+ received by driver i after
taking route R is inversely associated with the route’s cost,
i.e., r(R) = −CR. The solution to this problem can be intu-
itively described by the Wardrop’s first principle: “the cost
on all the routes actually used are equal, and less than those
which would be experienced by a single vehicle on any un-
used route” [33]. Such a solution concept is known as User
Equilibrium (UE) and is equivalent to the Nash equilibrium.

2.2 Reinforcement Learning
Reinforcement learning (RL) is the problem of an agent

learning its behaviour by reward and punishment from in-
teractions with its environment. We can formulate the RL
problem as a Markov decision process (MDP). An MDP is a
tuple 〈S,A, T , r〉, where S is the set of environment states,
A is the set of actions, T : S×A×S → [0, 1] is the transition
function, and r : S ×A → R is the reward function [32].

In the context of route choice, the actions of an agent rep-
resent the choice of routes between its origin and destination.
We can define the reward received after taking action a ∈ A
as r(a) = r(R), with a = R. Given the actions are known a
priori (though their costs are not), the problem is typically
modelled as a stateless MDP.

Solving a stateless MDP involves finding a policy π (i.e.,
which route to take) that maximises the average reward.
When the model of the environment dynamics (i.e., the re-
ward function r) is known by the agent, finding such an
optimal policy is trivial. However, this is rarely the case,
especially in multiagent settings. To this regard, the agent
must repeatedly interact with the environment to learn a
model of its dynamics. A particularly suitable class of RL
algorithms here comprises the so-called temporal-difference
(TD) algorithms, through which an agent can learn without
an explicit model of the environment.

The Q-learning algorithm is a commonly used TD method
[34]. In the case of a stateless MDP, a Q-learning agent
learns the expected return Q(a) for selecting each action
a by exploring the environment. Such process must bal-
ance exploration (gain of knowledge) and exploitation (use
of knowledge). A typical strategy here is ε-greedy explo-

847



ration, in which the agent chooses a random action with
probability ε (exploration) or the best action with probabil-
ity 1 − ε (exploitation), with ε ∈ (0, 1]. After taking action
a and receiving reward r(a), the stateless Q-learning algo-
rithm updates Q(a) using Equation (2), where the learning
rate α ∈ (0, 1] weights how much of the previous estimate
should be retained. The Q-learning algorithm is guaranteed
to converge to an optimal policy if all state-action pairs are
experienced an infinite number of times, and the learning
and exploration rates go to zero in the limit [34]. To this
regard, the learning and exploration rates are typically mul-
tiplied by decay rates λ ∈ (0, 1] and µ ∈ (0, 1], respectively.

Q(a) = (1− α)Q(a) + αr(a) (2)

2.3 Regret Minimisation
In this section, we present a succinct overview on the re-

gret literature. The interested reader is referred to [11, 15]
for a more detailed overview.

The regret concept was introduced in the context of eval-
uating the performance of learning rules [20]. The so-called
external regret of an agent measures the difference between
its average reward2 and the reward of the best fixed action
in hindsight. Precisely, the regret RTi of agent i up to time
T is given by Equation (3), where r(ati) represents the re-
ward of action ati at time t and ȧti denotes the action chosen
by agent i at time t. An algorithm satisfies the so-called
no-regret property (a.k.a. Hannan’s consistency) if it learns
a policy for which RTi → 0 as T →∞ [20].

RTi = max
ati∈Ai

1

T

T∑
t=1

r(ati)−
1

T

T∑
t=1

r(ȧti) (3)

In the context of reinforcement learning, regret has been
typically used as a measure of convergence [29, 14]. Bowling
[12] devised the no-regret GIGA-WoLF algorithm, but it
only applies to 2-player-2-action games. Banerjee and Peng
[8] proposed a no-regret algorithm with fewer assumptions,
but regret is not employed to guide the learning process.
Zinkevich et al. [38] and Waugh et al. [35] minimise regret
in extensive form games. However, they assume that the
regret is known by the agents. Prabuchandran et al. [24]
aim at minimising the cumulative regret, but they assume
the optimal policy structure is known. In this paper, we take
another direction, employing regret to guide the learning
process. We remark that, by definition, computing regret
exactly requires the reward of all actions along time, which is
not available to the agents. Thus, we show how such values
can be estimated by the agents. A similar direction was
investigated in [25], but no formal guarantees were given.

Congestion games [26, 27] is another framework to ad-
dress route choice. In [17] and [19], methods for acceler-
ating the equilibrium computation are proposed. However,
they assume that only a single agent can change its route
per time step. In [16], a compact, tree-based representation
of the problem is proposed. However, their method’s effi-
ciency strongly depends on the network topology. Blum et
al. [10] guarantees the convergence of routing games to an
approximate UE when all agents are using no-regret strate-
gies. However, they assume that such no-regret strategies
exist. In this paper, we propose a regret-minimising RL ap-
proach and formally prove its convergence to an approximate
UE, without relying on previous works’ assumptions.

2We use the term reward rather than payoff, hereinafter.

The regret of route choice has also been approached in
the online optimisation literature. The agent’s feedback can
be transparent [37] or opaque [5, 6], where the environment
reveals the reward of all routes or of the taken route, respec-
tively. The latter is equivalent to the route choice problem
and was first investigated by Awerbuch and Kleinberg [6],

who bounded the regret to O(T 2/3). However, they assume
the reward functions are constant and defined a priori, re-
gardless of the current environment state. Such a bound was
later improved to O(

√
T ), but lacking an efficient algorithm

[18]. Abernethy et al. [1] achieved a regret of O(
√
T log T )

with an efficient algorithm, but assuming the reward func-
tions are constant and defined a priori. Agarwal et al. [2]

improved the bound to O(
√
T ) in expectation, but for the

multi-point version of the problem. Zhang et al. [36] consid-
ered more general reward functions, but assuming they are
monotonically increasing (given the flow of vehicles). Here,

we achieve a bound of O
((

K−1
TK

)(
µT+1−µ
µ−1

))
without re-

lying on the assumptions of previous works. Moreover, we
provide a simple, efficient algorithmic solution that provably
approximates the UE.

Recent works proposed alternative regret formulations.
Arora et al. [3] present the policy regret, which considers
the effect of actions as if they were taken. However, no one
could potentially obtain such information in traffic domains.
This concept is employed in [21] for the multi-armed ban-
dit problem. Counterfactual regret is introduced in [38] to
estimate the regret in extensive form games with imperfect
information. In this paper, we present the action regret,
which measures the regret of individual actions. Moreover,
we show how action regret can be estimated by the agents.
A similar formulation was presented in [7]. However, their
formulation relies on partial knowledge of the environment.

3. LEARNING WITH ACTION REGRET
In this section, we discuss how agents can estimate their

action regret (Section 3.1) and present an algorithmic solu-
tion for them to learn using such estimates (Section 3.2).

3.1 Estimating Regret
As discussed in Section 2.3, an agent cannot compute its

real regret (using Equation (3)) due to the lack of informa-
tion regarding the routes rewards. The point is that regret is
measured considering (i) the agent’s average reward result-
ing from its sequence of actions and (ii) the average reward
following the best fixed action in hindsight. Calculating the
latter requires knowing the rewards of all routes along time.
However, after each trip, an agent can observe the reward
of the route taken, but cannot observe the reward of the
other routes. Such a full observability property would only
be possible under strong assumptions (e.g., a central author-
ity broadcasting such information), which can be unrealistic
in traffic domains. Furthermore, investigating methods to
accomplish such a task in the absence of any supporting ser-
vice is more challenging and is also relevant, especially in
the highly competitive settings considered here [31].

In this paper, we investigate how agents can estimate their
regret based exclusively on local information (i.e., the re-
wards actually observed by them). To this regard, we pro-
pose an alternative definition of regret that describes the
estimated regret of each action.
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Let Ai ⊆ A denote the set of routes available to agent
i. At time t, agent i performs a given action3 ȧti ∈ Ai
and receives a reward of r(ȧti). We represent the history
of estimates of agent i as Hi = {r(ati) | ati ∈ Ai, t ∈ [1, T ]},
with r(ati) the reward experience of driver i for taking action
a at time t. However, recall that an agent cannot observe
the reward of action ati on time t except if it has taken
such action at that time, i.e., if ati = ȧti. In this sense, we
assume the reward of non-taken actions is stationary, i.e.,
the expected reward associated with a non-taken action can
be approximated by its most recent observation. Let r̃(ati)
represent the most recent reward estimate of agent i for
taking action a on time t (either the current reward or the
last4 actually experienced one), as given by Equation (4).
The history of estimates of agent i can then be rewritten as
Hi = {r̃(ati) | ati ∈ Ai, t ∈ [1, T ]}.

r̃(ati) =

{
r(ati) if ati = ȧti
r̃(at−1

i ) otherwise
(4)

Given the above definitions, we can now formulate the
estimated action regret of action a for agent i up to time
T as in Equation (5). The estimated action regret R̃Ti,a
can be seen as an estimate of the average amount lost by
agent i up to time T for taking action a (latter term) rather
than the best estimated action (former term). Additionally,
we can reformulate Equation (3) to obtain the estimated
external regret of agent i, as in Equation (6). The estimated

external regret R̃Ti of agent i expresses how much worse it
performed, on average, up to time T for not taking only the
best action regarding its experience. The main advantage
of this formulation over the real regret (Equation (3)) is
that it can be computed locally by the agents, eliminating
the need for a central authority. Moreover, as the required
information is already available to the agents, they can use
such measure to guide their learning process.

R̃Ti,a = max
bti∈Ai

1

T

T∑
t=1

r̃(bti)−
1

T

T∑
t=1

r̃(ati) (5)

R̃Ti = max
ati∈Ai

1

T

T∑
t=1

r̃(ati)−
1

T

T∑
t=1

r(ȧti) (6)

3.2 Learning to Minimise Regret
Building upon the regret estimations from the previous

section, we now present a simple yet effective RL algorithm
enabling the agents to learn a no-regret policy. Every driver
i ∈ D is represented by a Q-learning agent. The route choice
problem can then be modelled as a stateless MDP. Let Ai =
{a1, . . . , aK} be the set of routes of agent i. The set of
agents’ actions is denoted by A = {Ai | i ∈ D}. Observe
that, if two agents i and j belong to the same OD pair, then
Ai = Aj . The reward for taking action a at time t is rt(a).

The learning process works as follows. At every episode
t ∈ [1, T ], each agent i ∈ D chooses an action ȧti ∈ Ai using
the ε-greedy exploration strategy. The exploration rate ε at
time t is given by ε(t) = µt. After taking the chosen action,
the agent receives reward r(ȧti). Afterwards, the agent up-

3We use ȧti to distinguish the action taken by agent i at time
t from any of its other actions ati in the same time.
4As initial value, one can consider the minimum possible
reward, i.e., the free flow travel times (Section 2.1).

dates its history Hi using Equation (4) and calculates the
estimated regret of action ȧti using Equation (5). Finally,
the agent updates Q(ȧti) using the estimated action regret
for that action, as in Equation (7). The learning rate α at
time t is given by α(t) = λt.

Q(ȧti) = (1− α)Q(ȧti) + αR̃ti,ȧti (7)

The Q-table of an agent provides an expectation over its
actions’ regret. Specifically, the higher an action’s reward,
the lower its action regret. By employing the action regret
as reinforcement signal (i.e., for updating its policy), the
agent minimises its external regret. A formal proof on this
is presented in Theorem 3.

Recall that the original definition of external regret in
Equation (3) considers the average reward of the agent over
all actions it has taken. Specifically, it accounts for ac-
tions with both good (exploitation) and bad (exploration)
rewards. The problem is that the agent cannot identify
which actions deteriorate its average reward, thus leading
the regret of good-performing actions to be penalised by
that of bad-performing ones. Moreover, the learning process
works by adjusting the expected value (or regret) of each
action of the agent, which is not possible without knowing
the contribution of each action in particular. To solve these
problems, our estimated action regret definition disaggre-
gates the regret per action, thus allowing an agent to eval-
uate how much a particular action contributes to its regret.
The estimated action regret is more suitable to evaluate how
promising a given action is as compared to the others. Thus,
action regret can be used to guide the learning process.

4. THEORETICAL ANALYSIS
In this section, we analyse the theoretical aspects of our

method. Specifically, our objective is to prove that our
method converges to an approximate UE. For simplicity and
without loss of generality, we assume the actions’ rewards
are in the interval [0, 1].

We begin with the big picture of our analysis. Initially,
we show that the environment is stabilising (randomness is
decreasing along time) and analyse the expected reward and
regret of the agents. Afterwards, we define a bound on the
algorithm’s expected regret. Building upon such a bound,
we prove that the algorithm is no-regret and converges to
an approximate UE.

Theorem 1. The environment is stabilising.

Proof (sketch). We say the environment is stabilising
if randomness is decreasing along time. Observe that such
a randomness is the result of agents exploration, i.e., the
environment is more stable when exploration is low.

As the agents are using the ε-greedy strategy, the explo-
ration is defined in terms of the ε parameter. Recall that ε is
the same for all agents and it depends only on the decay rate
µ and current timestep, i.e., the value of ε at time t is given
by ε(t) = µt. Following this idea, at time t, agent i selects
its best5 action

∗
ati = arg maxati∈Ai

Q(ati) with probability

ρ(
∗
ati) = 1− µt(K − 1)

K
5We employ the term best action to refer to the action with
highest Q-value, which is not necessarily optimal. On the
other hand, we use sub-optimal to refer to non-best actions.
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and any other action āti ∈ Ai \
∗
ati with probability

ρ(āti) =
µt(K − 1)

K
.

For simplicity, we will refer to ρ(
∗
ati) and ρ(āti) as

∗
ρti and

ρ̄ti, respectively, and even omit t and i when they are clear
from the context. We can formulate the change in the best
action probability over time as the difference between any
consecutive timesteps. Concretely,

∆
∗
ρti =

∗
ρti −

∗
ρt−1
i

= 1− µt(K−1)
K

− 1 + µt−1(K−1)
K

= (K−1)(µt−1−µt)
K

.

From the above observations, we can say that
∗
ρti → 1 and

ρ̄ti → 0 as t → ∞, meaning that randomness is decreasing.
Moreover, ∆

∗
ρti → 0 at the same rate, meaning that the

environment is stabilising.
Additionally, observe that the learning rate α may also

affect the environment’s stability due to abrupt changes in
the Q-table. The point is that the Q-value of the true best
action may be lowered so that it does not look the best
anymore. To avoid this issue, α needs to be low to properly
deal with stochastic rewards, some of which may not be
representative of the average reward. Similarly to what was
assumed for ε, α is the same for all agents and it depends
only on the decay rate λ and the current timestep t, i.e.,
the value of α at time t is given by α(t) = λt. Therefore,
the maximum change in the Q-values goes to zero as α→ 0
and t→∞. Moreover, the probability of abrupt changes in
the best Q-values also goes to zero in the limit (as shown in
Theorem 2).

Recall that, although the environment is stabilising, one
of the key Q-learning properties is that every action should
be infinitely explored. The ε parameter ensures this. In
fact, the ε-greedy exploration strategy does not invalidate
the no-regret property, given that it allows the agents to
occasionally explore sub-optimal actions as soon as their av-
erage performance is no-regret [10]. However, even after ex-
perimenting every action enough, abrupt changes in the Q-
values may lead a so far optimal action to seem sub-optimal.
However, the probability of such abrupt changes also goes to
zero in the limit. The next proposition demonstrates that.
We remark that even small changes in the Q-values can have
this effect. However, as the environment is stabilising, the
amplitude of such changes needs to be higher to affect the
Q-values. Thus, we will refer to such changes as abrupt
throughout this paper.

Theorem 2. Suppose ∇ agents decide to explore a sub-
optimal action. The probability that such an event changes
abruptly the Q-values of best actions (of any agent) is bounded
by O(ρ̄∇(

∗
ρ+ ρ̄)). Such a probability goes to zero as t→∞,

α→ 0 and ε→ 0.

Proof (sketch). An abrupt change may occur in the
Q-table if the agent receives a reward that leads the Q-value
of a sub-optimal action to become better than that of the
optimal one. Recall that, in the case of Q-learning, only the
currently taken action has its Q-value updated. To this re-
gard, an abrupt change is only relevant in two cases: (i) the
Q-value of the best action drops to below those of other ac-

tions, (ii) the Q-value of a sub-optimal action rises to above
that of the best action.

CASE (i) - an abrupt drop of the best Q-value of agent i
may occur if it decides to exploit its best action

∗
ati while, at

the same time, ∇ agents (that so far consider any other ac-
tion

∗
atj 6=

∗
ati,∀j ∈ ∇ as their best one) decide to explore their

sub-optimal action ātj =
∗
ati,∀j ∈ ∇. Assume that, at this

point, agent i receives a reward r(
∗
ati) >

Q(āti)−(1−α)Q(
∗
ati)

α
,

and that ∇ > dQ(āti)−(1−α)Q(
∗
ati)

yα
e, with āti ∈ Ai \

∗
ati and y

representing the contribution of each agent to the reward
function (e.g., in Equation (1), each agent contributes with
−0.02 to the reward). Then, after the Q-value is updated,
we have that ∃āti ∈ Ai \

∗
ati : Q(āti) > Q(

∗
ati). In the following

timestep, the agent shall exploit with probability
∗
ρ the ac-

tion āti (whose value is Q(āti)) and the ∇ agents back to their
best action, making the reward of

∗
ati once again better than

āti (indeed, some of them may not back, as the explored
action may be better; however, even one agent is enough
so that the condition holds). However, at this point, the
agent shall exploit with probability

∗
ρ the action āti, whose

value Q(āti) became better than Q(
∗
ati) in the previous step.

Therefore, an abrupt rise only occurs if the above scenar-
ios happens, which is the case with probability ρ̌ =

∗
ρ× ρ̄∇,

which goes to zero as t→∞.
CASE (ii) - an abrupt rise of a sub-optimal Q-value of

agent i may occur if it decides to explore a sub-optimal ac-
tion āti (rather than exploiting

∗
ati) and ∇ agents from āti

(that were exploiting āti) decide to explore any other action.
Assuming that, at this point, the agent receives a reward

r(āti) >
Q(

∗
ati)−(1−α)Q(āti)

α
and that ∇ > dQ(

∗
ati)−(1−α)Q(āti)

yα
e,

then, after the Q-value is updated, we shall have Q(āti) >
Q(

∗
ati). In the following timestep, the ∇ agents back to their

best action (again, even one agent is enough), making the
reward of āti worse than of

∗
ati, and thus leading the agent to

believe this action is the best when it actually is not. There-
fore, an abrupt rise only occurs if the above scenarios hap-
pens, which is the case with probability ρ̂ = ρ̄× ρ̄∇ = ρ̄∇+1,
which goes to zero as t→∞.

Putting altogether, we have that the probability of any of
the above scenarios is ρ̌+ ρ̂ =

∗
ρ× ρ̄∇+ ρ̄∇+1 ≤ O(ρ̄∇(

∗
ρ+ ρ̄)),

thus completing the proof.

The above theorems state that, when the agents are learn-
ing, as times goes to infinity, the value of α and ε become so
small that the probability of noisy observations changing the
Q-table (and, mainly, the best action) goes to zero. Observe
that an agent can, eventually, change its best action given
it is learning. However, the agent should be able to prevent
its Q-values from reflecting unrealistic observations.

In the long run, we can say that a learning agent explores
the available routes until it is confident enough (environ-
ment is stable) about the best one (maximising reward). Of
course, stability does not imply that the Q-value estimates
are correct and that the agents are under UE. These are
shown next, in Theorems 5 and 12, respectively.

Having proved that the environment is stabilising, we can
turn our attention to the agents’ behaviour. Recall that, in
our approach, the agents learn using action regret definition.
However, the action and external regret definitions are not
equivalent. The next theorem shows that, if an agent em-
ploys the action regret in the learning process, then it will
minimise its external regret.
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Theorem 3. Learning with action regret as reinforcement
signal minimises the agent’s external regret.

Proof. Recall that an agent’s Q-table provides an expec-
tation over its actions’ regret. Specifically, in a certain time
t, the action with greatest Q-value

∗
ati = arg maxati∈Ai

Q(ati)

is the one expected to incur agent i with the lowest action
regret. Recall that the higher an action’s reward, the lower
its action regret. Whenever the agent exploits its best ac-
tion, it receives the highest reward, which decreases its ex-
ternal regret (as shown in Lemma 4). On the other hand,
if the agent decides to explore another action, its external
regret increases. However, considering the environment is
stabilising and the probability of exploration ρ̄ is decreas-
ing, then the agent’s external regret approaches zero in the
limit. Thus, the action that minimises the external regret is
precisely the one with smallest action regret.

Lemma 4. Consider an agent i at timestep t. If the agent
exploits (which occurs with probability

∗
ρ), then we have that

RT+1
i ≤ RTi , i.e., its external regret does not increase.

Proof (sketch). Analysing the external regret formula-
tion, it can only increase if the difference between its terms
increases. Considering the environment is stabilising, such
change may only occur in the following situations: (i) the
agent is exploring, (ii) abrupt changes occur in the Q-values.
However, following Theorems 1 and 2, we have that, in the
limit, the probability of the above situations tends to zero.
Moreover, even if situation (ii) occurs in the limit, as all ac-
tions are infinitely explored, the agent will inevitably update
its Q-values so that they reflect the real expectation over its
actions. In this case, after the best action is finally found,
the agent’s external regret stops to increase.

In Section 3.1, we presented a method for estimating the
actions’ rewards based on the agent’s experiences. When
estimating values, accuracy matters. In our context, a good
precision in the rewards estimations is fundamental to ob-
tain good regret estimations. Empirically, we have observed
that the higher the precision, the better the agents learn.
Thus, establishing bounds on the quality of the action re-
gret estimates is desired.

Theorem 5. The error of any action’s estimated reward

is δ ≤
√
− ln(β/2)

2S
in the (1−β) confidence interval after the

action is sampled S times. In other words, after an action
is sampled S times, the estimation error is lower than (or
equal to) δ with probability greater than (or equal to) 1− β.

Proof (sketch). Here we show that the estimation er-
ror tends to zero as time goes to infinity and the environment
becomes more stable. Consider an agent i and its set of ac-
tions Ai. To analyse the precision of its estimations, we can
apply the Hoeffding’s bound [22], which states that:

P
(∣∣∣r̃(aSi )− r(aS)

∣∣∣ ≥ δ) ≤ 2 exp
(
−2Sδ2) , (8)

where S is the number of times agent i has taken action a
(i.e., the amount of reward samples for action a), r̃(aSi ) =
1
S

∑S
t=1 r̃(a

t
i) is the average estimated reward, and r(aS) =

1
S

∑S
t=1 r(a

t) is the true average reward. Let β denote the
left-hand side P (·) of the above inequality. The intuition
behind Hoeffding’s bound is that, after action a is sampled
S times, agent i’s estimation on a is no worse than δ with

a high probability 1 − β. Hoeffding’s bound assumes the
samples are independent and identically distributed, which
is usually not the case, given such samples depend on what
other agents are doing. However, given the environment is
stabilising and that agents typically have low α (Theorem
1), we have that, locally in time, the environment is quasi-
stationary. In other words, within any short period of time,
actions have similar rewards, meaning they are sampled in-
dependently from approximately the same distribution.

Solving Equation (8) for S, the minimum amount of sam-
ples required for the estimation errors being lower than δ
with probability 1− β is given by Equation (9).

S ≥ − ln(β/2)

2δ2
(9)

Moreover, solving Equation (8) for δ, we obtain the esti-
mation error in the (1− β) confidence interval after S sam-
ples, as in Equation (10).

δ ≤
√
− ln(β/2)

2S
(10)

To prove this theorem, one needs to show that the agent
chooses each action at least S times so that the above bound
holds. We highlight that, in the limit, all actions are chosen
infinitely. What remains is to estimate when each action
will be sampled for the S-th time. In the case of the best
action, we have: ∑T

t=1

∗
ρ ≥ S∑T

t=1

(
1− µt(K−1)

K

)
≥ S

T ≥ S + µ(K−1)(µT−1)
K(µ−1)

T ≥ S − µ(K−1)
K(µ−1)

,

considering µT → 0 as T → ∞, and for each sub-optimal
action we have:∑T

t=1 ρ̄
(

1
K−1

)
≥ S∑T

t=1
µt

K
≥ S

T ≥ log(SK(µ−1)+µ)
log µ

− 1.

From these inequalities, we conclude that every action is
sampled enough in the limit, which completes the proof.

Corollary 6. Applying Theorem 5, if we want the es-
timation error of a given action to be up to 0.05 with 95%
confidence level then, from Equation (9), we would need ap-
proximately 738 samples of that action.

Observe that the above prove is not tight, given the sub-
optimal actions only achieve S samples asymptotically. A
further step, left as future work, would be building upon the
analysis by Auer et al. [4]. Specifically, their third theorem

could be employed by defining µ = t

√
cK
d2t

and setting the

parameters as c = d = 1, thus achieving stronger results.
We now provide a bound on the external regret of the

agents, which is useful for establishing the bound on the UE.
We begin with the following proposition, which defines the
expected instantaneous reward and regret of the agents. We
call these values instantaneous because they refer to a single
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timestep (rather than the average over all timesteps) and
expected to account for the stochastic nature of the choices.

Proposition 7. The expected instantaneous reward E[rti ]
and regret E[Rti] of agent i at time t are given by Equations
(11) and (12), respectively.

E[rti ] =

(
1− µt(K − 1)

K

)
r(

∗
ati) +

µt

K

∑
āti∈Ai\

∗
ati

r(āti) (11)

E[Rti] = r(
∗
ati)− E[rti ] (12)

Observe that E[rti ] → r(
∗
ati) as ε → 0 and t → ∞. More-

over, E[Rti]→ 0 as E[rti ]→ r(
∗
ati).

The above proposition holds no matter whether the envi-
ronment is stabilising or not, given the instantaneous regret
measures only the difference to the best action at that spe-
cific time t. This proposition would not hold only if the
best action changes, which occurs with a small probability,
as shown in Theorem 1. However, recall that we work with
estimates over the actions’ rewards. This point is discussed
in the next theorem.

Theorem 8. Let
∗
bti = arg maxati∈Ai

r(ati) be the action

with true highest reward and b̃ti = arg maxati∈Ai
r̃(ati) be the

action with highest estimated reward at time t for agent i.
If maxati∈Ai

r̃(ati) ≈ maxati∈Ai
r(ati) as t → ∞, then b̃ti =

∗
bti with high probability. Thus, the instantaneous regret of

agent i at time t is 0 with probability
(
1 − µt(K−1)

K

)
, which

approaches 1 as t→∞.

Proof (sketch). The agent selects its best action with
probability

∗
ρ. Regret is measured considering the agent’s ex-

pectation over received rewards. So, according to its current
Q-values, selecting the best action yields regret zero.

Observe that having good accuracy is not enough for en-
suring the best estimated action is indeed the best one.
However, from Theorem 5, it follows that, in the limit,
r̃(ati) ≈ r(ati) with probability (1−β) for every action a ∈ A.
Moreover, recall that such a probability goes to 1 as t→∞.

Therefore, whenever the agent selects its best action, its
instantaneous regret will be zero plus an estimation error δ
with probability (1−β). Such expected instantaneous regret
can be formalised as:

E[Rti] = r(
∗
ati) + δ − (E[rti ] + δ)

= r(
∗
ati)− E[rti ] + 2δ.

Finally, observe that
∗
ρ→ 1 and δ → 0 as t→∞. Conse-

quently, E[Rti]→ 0.

We now analyse the regret of our approach.

Theorem 9. The regret achieved by our approach up to

time T is bounded by O
((

K−1
TK

)(
µT+1−µ
µ−1

))
.

Proof. To establish an upper bound on the regret of any
agent i, we need to consider the worst case scenario. Assume
that there exists a single best action

∗
ai with reward always

1 and that every other (sub-optimal) action āi ∈ Ai has re-
ward 0. In such scenario, we can ignore the estimation error
because the rewards are bounded in the interval [0, 1]. In the
worst case, the agent always chooses a sub-optimal action,

which yields an instantaneous regret of 1. However, recall
that the agents tend to exploit their best actions. Regret,
then, needs to be analysed in expectation.

By employing Proposition 7, we can formulate the accu-
mulated expected reward E[rTi ] of agent i up to time T as

E[rTi ]

= 1
T

T∑
t=1

E[rti ]

= 1
T

T∑
t=1

[(
1− µt(K−1)

K

)
r(

∗
ati) + µt

K

∑
āti∈Ai\

∗
ati

r(āti)

]

≤ r(
∗
ati)

T

T∑
t=1

(
1− µt(K−1)

K

)
+

r(āti)

T

T∑
t=1

(
µt(K−1)

K

)
=

r(
∗
ati)

T

(
T −

(
K−1
K

)(
µT+1−µ
µ−1

))
+

r(āti)

T

(
K−1
K

)(
µT+1−µ
µ−1

)
= r(

∗
ati)−

r(
∗
ati)

T

(
K−1
K

)(
µT+1−µ
µ−1

)
+

r(āti)

T

(
K−1
K

)(
µT+1−µ
µ−1

)
= r(

∗
ati) +

(
1
T

)(
K−1
K

)(
µT+1−µ
µ−1

)
(r(āti)− r(

∗
ati)).

The third step of the above equation is a consequence of
the worst-case assumption that all sub-optimal actions have
zero reward. Using the above formulation, we can redefine
agent’s i external regret up to time T as

E[RTi ] = maxa∈Ai
1
T

∑T
t=1 r(a)− 1

T

∑T
t=1 r(ȧ

t
i)

≤ 1
T

∑T
t=1 r(

∗
ai)− E[rTi ]

= r(
∗
ai)− E[rTi ]

=
(

1
T

)(
K−1
K

)(
µT+1−µ
µ−1

)
(r(

∗
ati)− r(āti)).

Again, the second step is a consequence of the worst-case
assumption. Observe that (r(

∗
ati) − r(āti)) ∈ O(1). There-

fore, the expected regret of any agent i up to time T is

O
((

K−1
TK

)(
µT+1−µ
µ−1

))
. Furthermore, since this expression

goes to zero as time increases, our algorithm is no-regret.

We now turn our attention to the final step of our proofs.
As an intermediate step, we observe that, under UE, all
agents have zero regret.

Proposition 10. Under UE, all agents have zero regret.

Proof. Under UE, every agent uses its lowest cost route
and no other available route has a lower cost. Otherwise,
the agent would deviate to such lower cost route. In such
case, as the difference between the current and best routes
is always zero for all agents, we have that the regret is also
zero. Therefore, any set of strategies that reach the UE is
no-regret.

We remark that pure UE not always exist in route choice
[27]. A more realistic objective then is to find an approxi-
mate UE, as in Definition 11. Particularly, we show in The-
orem 12 that the system converges to a φ-UE in that, on
average, no driver can increase its reward by more than φ
after changing its route.

Definition 11 (φ-UE). The average cost on all routes
actually being used by the agents is within φ of the mini-
mum cost route, i.e., no driver has more than φ incentive to
deviate from the route it has learned.

Theorem 12. The algorithm converges to a φ-UE, where
φ is the regret bound of the algorithm.
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Proof. The key point to establish a convergence guar-
antee is to show that, in the limit, the action with the best
Q-value is indeed the best one.

From Theorems 1 and 2, we have that the environment
is stabilising and that noisy rewards do not influence the
Q-values in the limit. At this point, the agent may have
learned the best action or not. The latter case would only
be possible if the agent were not able to explore every action
enough. However, recall that our learning and exploration
rates ensure that every action is infinitely explored. In the
limit, exploration ensures that the Q-value of the best action
becomes the best one. On the other hand, if the best action
is already learned, then Theorem 2 ensures that, in the limit,
it will remain best with high probability. Observe that, even
in the unlikely event of an abrupt change in the Q-values,
the exploration ensures that the best action will eventually
become the best Q-value. Thus, the best Q-value is that of
the best action.

Regarding the learning process, recall that the agent takes
the action with smallest action regret with higher probabil-
ity. Given the agent finds the best action in the limit, then
such action yields the smallest action regret. Consequently,
from Theorem 3, the agent will minimise its external regret.

Observe that the external regret considers the average re-
ward of the actions. To this respect, as shown in Lemma 4
and considering the environment is stabilising, whenever the
agent is exploiting its best action, then its external regret
will decrease. Moreover, considering the regret is bounded

by φ = O
((

K−1
TK

)(
µT+1−µ
µ−1

))
(from Theorem 9), which

goes to zero in the limit, we have that algorithm is no-regret.
We highlight that the estimation error of the rewards does
not invalidate the no-regret property, as δ → 0 in the limit.

Finally, considering the algorithm is no-regret, observe
that no driver has more than φ incentive to deviate from
its best route. As the environment is stable in the limit,
then such condition approximates the UE condition. An ex-
ception would be if the agent discovers that a sub-optimal
action became its best one. However, as the environment is
stabilising, the Q-value of that action will inevitably become
the best one in the limit, and the exploitation thereafter will
decrease the agent’s regret (from Lemma 4). Therefore, the
agents converge to a φ-UE, which completes the proof.

5. EXPERIMENTAL EVALUATION
In order to empirically validate our theoretical results, we

simulate our method in the expanded version of the Braess
graphs [28, 13]. Let p ∈ {1, 2, . . .} be the pth expansion of
such graph, where p = 1 is equivalent to the original graph.
We employ the {1, 2, 3}th Braess graphs, with d = 4200
drivers (all of them belonging to the same OD pair) and, by
definition, |A| = 2p + 1. For each such network, we run 30
executions of our method, each with 10,000 episodes. We
tested different values for the decay rates, with λ = µ, and
compared the results in terms of their distance to the UE.
The best decay values were 0.99, 0.995 and 0.9975 for the
1st, 2nd and 3rd Braess graphs, respectively. We compare
our approach against standard Q-learning (stdQL), which
uses rewards as reinforcement signals.

Due to lack of space, we present only the main results,
in Table 1. From Theorem 9, the external regret is upper
bounded by 0.0066, 0.0159 and 0.0342 for the 1st, 2nd and
3rd Braess graphs, respectively. As expected, the experi-

Table 1: Average (and Deviation) Performance of
Our Approach as Compared to Standard Q-Learning

external regret % of UE

p Ours stdQL Ours stdQL

1 0.0006(10−6) 0.0077(10−3) 99.9(10−5) 92.9(10−2)

2 0.0009(10−4) 0.0191(10−2) 99.9(10−4) 92.6(10−2)

3 0.0003(10−5) 0.0078(10−3) 99.5(10−4) 91.7(10−2)

mental results show that the regret achieved by our method
is consistent with the bound defined in Theorem 9. We
remark that larger networks have higher regret bounds be-
cause they require higher decay rates to ensure that agents
explore their routes sufficiently. In all networks, our ap-
proach outperformed standard Q-learning regarding regret
by at least one order of magnitude. Table 1 also presents the
average travel times in comparison to the UE values reported
in the literature [30]. As seen, our results are closer to the
UE than that of the standard Q-learning. Therefore, the ex-
periments confirm our theoretical results, showing that our
approach is no-regret and that it approaches the UE.

6. CONCLUSIONS
We investigated the route choice problem, in which each

driver must choose the route that minimises its travel time.
The use of reinforcement learning (RL) techniques in such
scenario is challenging given that agents must adapt to each
others’ decisions. In this paper, we proposed a simple yet
effective regret-minimising algorithm to address this prob-
lem. Specifically, each agent learns to choose its best route
by employing its regret as reinforcement signal. We define
the action regret, which measures the performance of each
route in comparison to the best one. Considering the agents
cannot observe the cost of all routes (except for the selected
ones), we devised a method through which they can estimate
their action regret using only the observed samples. This is
in contrast with existing approaches, which assume access to
the reward of arbitrary actions (even unexecuted ones). We
analysed the theoretical properties of our method proving it
minimises the agents’ regret. Furthermore, we provided for-
mal guarantees that the agents converge to a φ-approximate
User Equilibrium (UE), where φ is the bound on the agent’s
regret. To the best of our knowledge, this is the first time
RL-agents are proven do converge to an approximate UE in
the context of route choice.

As future work, we would like to investigate how commu-
nication among the agents might affect our results. Specifi-
cally, we want to understand how agents might benefit from
exchanging advice among themselves. We also consider ex-
tending our results to the dynamic route choice problem [6],
in which the agents do not know their routes a priori. This
problem is more complex given the agents must explore the
entire network. Finally, we also plan to extend our results to
consider mixed strategies and complement our convergence
proofs with convergence rate analyses.
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