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ABSTRACT
Temporally extended actions not only represent knowledge in the
hierarchical setup in reinforcement learning, they also improve
exploration while reducing the complexity of choosing actions.
The option framework provides a concrete way to implement and
reason about temporal abstraction. This work attempts to test the
utility of eligibility traces with options and find good ways of doing
multi-step intra-option updates. Three algorithms, based on off-
policy methods - importance sampling, tree-backup and retrace,
are proposed for using eligibility traces with options.
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1 INTRODUCTION
We humans cope with the extraordinary complexity of the real
world in part by thinking hierarchically. Our decision making rou-
tinely involves a choice among high-level and low-level behaviors
over a broad range of time scales. Consider a person deciding to
drink coffee. This highest level task can be broken down into: first,
the person getting to the pantry area; and second, actually making
coffee. To go to the pantry area, the person, for example, would get
to the hallway, then walk down the hallway, and then turn left to
enter. These high-level steps will be interleaved with low-level se-
ries of muscle twitches. Having reached the pantry area, the person
has to choose a coffee maker and beans at the high level. Medium
level steps would be grinding coffee beans and boiling water. Lower
level steps would be the hand movements to add coffee to filter. The
above example illustrates how humans regularly think and plan hi-
erarchically, switch between different level behaviors and strategize
about objectives at a broad time scale. The concept of hierarchical
learning and planning has a strong appeal to humans, and so does
to artificial intelligence research community. Faculty to manage
hierarchical and sequential tasks is realized in autonomous agents
through temporal abstraction, a concept where abstract actions
represent sequences of lower-level actions.
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Temporal abstraction has been explored in AI at least since the
early 1970s [9, 10, 12, 14, 17, 21, 24, 29, 35]. It has also been a fo-
cus and an appealing aspect of qualitative modeling approaches
to AI [4, 8, 15, 30] and has been explored in robotics and control
engineering [1, 5, 6, 19]. Temporally extended actions have been
shown to generate shorter plans, reduce the complexity of choos-
ing actions, increase robustness against misspecified models, and
improve exploration. In reinforcement learning, Options [34] pro-
vide an intuitive framework to represent, reason about and plan
with temporally extended actions. Interest in temporal abstraction
has recently increased substantially after successful methods of
defining and creating such abstractions [2, 7, 16, 18, 20]. The values
of the options and their models are learned by looking within the
options - intra-option learning algorithms [33]. In this paper, we
aim to significantly speedup the learning process.

Eligibility traces have been shown to speed up reinforcement
learning and make it more robust [13]. They implement multi-step
returns in a way to obtain computational advantages. To extend
learning methods for options with eligibility traces, off-policy [32]
nature of the algorithm is important. We want to learn about all
consistent options while behaving according to a particular option.

In this work, off-policy eligibility traces for intra-option learning
[33] methods have been proposed.

2 OPTIONS
The options framework [34] provides a concrete way to incorporate
temporal abstraction into reinforcement learning with no change
to the existing setup. The framework naturally represents temporal
abstractions and allows for the integration of learning and planning.
An option O is defined as a triple (Io ,πo , βo ) comprising initiation
set Io ⊆ S, stationary internal policy πo which defines a distri-
bution over all possible primitive actions from a given state, and
termination function βo defining the probability of terminating in
a given state.

An option o is feasible in a state s ≡ s ∈ Io . Given a set of options,
their initiation sets define a set of available options Os ∀s ∈ S. A
hierarchical Markov policy h(·) defines a distribution over Os . In
call-and-return execution model, once an option o is selected for
execution from h(st ), internal policy πo determines the sequence
of actions until termination condition βo (st+k ) is met, then, a new
option o′ is selected according to h(st+k ). This process is repeated
until the end of the episode. I and β limit an option’s applicability
to a part of state space S and hence policy π needs to be defined
for only that section of the state space.

As is clear from the structure of an option, actions can be con-
sidered a special case of options - primitive options. Each primitive
option is available whenever corresponding action is available, it
lasts exactly one step and selects that particular action w.p. 1. The
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term options is a generalization for primitive as well as temporally
extended actions.

Active option ot , at time t, depends on the current state st , and
on whether previously active option ot−1 terminated in st or not.
The process of selecting active option can be made easier by folding
the termination conditions β in the hierarchical distribution over
options h(·). After folding, the new hierarchical policy over options
µ can be described as:

µ(o |st ,ot−1) =

{
(1−βot−1 (st ))+βot−1 (st )h(ot−1 |st ) if o=ot−1
βot−1 (st ) h(o |st ) else

(1)

Overlaying a set of options over a base MDP leads to a semi-
Markov decision process (SMDP) [27]. The time difference in occur-
rence of decision points in the induced SMDP is a random variable.
Based on the optimal Bellman equations, state-option values and
option models can be learned using the SMDP learning methods
[3, 25]. For example, option values can be learned using SMDP
Q-learning as -

Q(s,o)← Q(s,o) + α[r + γkmaxo′∈OQ(s ′,o′) −Q(s,o)], (2)

where s ′ is the state in which option o terminates, k denotes the
random time difference between states s and s ′, and r denotes the
cumulative discounted reward during this time.

2.1 Intra-Option Methods
SMDP learning methods treat options as black boxes- an algorithm
based on SMDP methods would execute an option to completion,
accumulating rewards at each step and then at termination would
make one single update to the executing option. An interesting idea
is to take advantage of each fragment of the experience.

If an option is Markov, in some sense, it is initiated at every
time step. By looking at experience during an option’s execution,
more efficient Intra-Option methods [33] have been devised. For
Markov options, after each time step, experience can be used to
update all Os options that could take the consistent action with
some non-zero probability. Intra-Option methods are off-policy
learning methods because updates can be applied to all relevant
options while behaving according to a particular option’s internal
policy. A single step intra-option update to learn option values can
be performed as -

Q(st ,o)← Q(st ,o) + α[rt+1 + γ (1 − βo (st ))Q(st+1,o)
+ γ βo (st+1) max

o′∈O
Q(st+1,o

′) −Q(st ,o)] (3)

Similar updates can be used to learn the reward and transition
models of the set of options. These estimates of true options values
and option models have been shown to converge to optimal values
under normal Q-learning constraints [33].

3 ELIGIBILITY TRACES FOR OPTIONS
TD methods are 1-step algorithms which bootstrap from the value
of subsequent states. Monte Carlo methods, on the other hand, wait
for the exact return at the end of an episode. TD(λ) methods, i.e.
TD augmented with eligibility traces, produce a family of methods
spanning a spectrum that has Monte Carlo on one end and 1-step
TD at another. In this sense, eligibility traces interpolate between
TD and Monte Carlo methods.

A more mechanistic way of seeing eligibility traces is to interpret
these traces as a short term fading memory of occurrence of events.
The trace marks the parameters associated with an event with it’s
eligibility for updates. When an update is to be made, only eligible
states get credit or blame for the error weighted according to their
eligibility. Eligibility of events decreases as they get temporally far.

Eligibility traces implement multi-step returns in a way to obtain
computational advantages. Reinforcement learning algorithms are
usually formulated as updates based on events that follow an action
over multiple future time steps. The n-step TD methods require all
of the intermediate rewards and the state n steps after the state being
updated. Such formulations, based on looking forward from the
updated state, are called forward views. Forward views are complex
to implement because the update depends on later events/rewards
that are not available at the time. However similar updates can
be achieved with an algorithm that uses the current TD error and
looks backward to recently visited states using an eligibility trace.
These alternate ways of implementing learning algorithms are
called backward views.

While extending options to multi-step return targets, the algo-
rithm needs to learn about the options values and the reward and
the transition models of all the different option parallelly. We want
to apply updates to all consistent options which assign non-zero
probability to the realized action. Therefore, off-policy [32] nature
of such an algorithm is important. There are several methods for
doing off-policy learning: Importance Sampling [26, 28], Off-policy
Qπ (λ) andQ∗(λ) [11], Tree-backup [26] and Retrace(λ) [23]. Follow-
ing operator R [23] represents all of the above off-policy methods
-

RQ(x ,a) = Q(x ,a) +Eµ
[∑
t ≥0

γ t
( t∏
s=1

cs
) (
rt +γEπQ(xt+1, ·)

)]
, (4)

where cs is some non-negative coefficient specific to an algorithm.
The coefficient cs can be thought of as the trace of the operator
R. Table 1 provides the value of cs and summarizes the constraints
and properties of off-policy learning algorithms. In this work, we
focused on the Importance Sampling, the Tree-backup, and the
Retrace(λ) methods.

Table 1: Summary of off-policy algorithms defined in terms
of the Eq. (4), where π is the target policy and b is the be-
havior. Columns represent algorithm coefficient, variance
in the estimates, condition of convergence and use of full
return respectively.

cs Var Convergence Full
retn.

IS π (as |xs )
b(as |xs ) High for any π ,b yes

Qπ (λ) λ Low for π close to b yes
TB(λ) λπ (as |xs ) Low for any π ,b no
Retrace(λ) λ min(1, π (as |xs )

b(as |xs ) ) Low for any π ,b yes

In the following subsections, forward views are derived using
different off-policy techniques. Then, the derived forward views
are transformed in computationally advantageous backward views.
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These transformations are exactly equivalent and provide online
update methods.

3.1 Importance Sampling
The primary method of doing off-policy learning is to correct ex-
pectation of the update from behavior policy to target policy - the
Importance Sampling (IS) technique [28]. IS is a classical method
of handling mismatch between two different distributions. [26]
proposed Per Decision Importance Sampling (PDIS) algorithm, an
eligibility trace mechanism for off-policy evaluation using impor-
tance sampling technique. Themethod uses a product of importance
sampling ratios to correct for the trajectory probabilities.

Assuming st ,ot ,at , rt , st+1,ot+1,at+1, rt+1, st+2, . . . as a trajec-
tory over states, options, actions and rewards, updates ∀o ∈ Ost
consistent with action at can be performed after correcting for
the difference in probability of trajectories. An update term for an
option o ̸= ot assumes: action at was selected according to πo (·|st ),
transition is made to state st+1, and then option ot+1 is used to select
action at+1 with probability πot+1 (·|st+1). µ, as defined in Eq 1, gives
the distribution over all the options available in state st+1 taking
into consideration termination probability of previously running
option. Importance Sampling ratio ρ correcting for the transition
to option ot+1 from option o instead of ot is:

ρt+1 =
µ(ot+1 |st+1,o)πot+1 (at+1 |st+1)
µ(ot+1 |st+1,ot )πot+1 (at+1 |st+1)

=
µ(ot+1 |st+1,o)
µ(ot+1 |st+1,ot )

(5)

Using the backup diagram for Importance Sampling, as seen in
Fig 1, n-step returns can be written as:

G1
t = r (st ,at ) + γ ρt+1Q(st+1,ot+1,at+1)

G2
t = r (st ,at ) + γ ρt+1r (st+1,at+1)

+ γ 2ρt+1ρt+2Q(st+2,ot+2,at+2)

(6)

Further steps can be derived in a similar fashion. λ-Return, a com-
pound return combining all the n-step return targets, can be used
as a target for the learning updates. TD error ∀o ∈ Ost can be
computed using Gλ

t as:

∆Q(st ,o,at ) = Gλ
t −Q(st ,o,at )

= −Q(st ,o,at )

+ (1 − λ)
[
r (st ,at ) + γ ρt+1Q(st+1,ot+1,at+1)

]
+ (1 − λ)λ

[
r (st ,at ) + γ ρt+1r (st+1,at+1)

+ γ 2ρt+1ρt+2Q(st+2,ot+2,at+2)
]

+ (1 − λ)λ2
[
r (st ,at ) + γ ρt+1r (st+1,at+1)

+ γ 2ρt+1ρt+2r (st+2,at+2)

+ γ 3ρt+1ρt+2ρt+3Q(st+3,ot+3,at+3)
]

+ . . .

(7)

The summation can be simplified by the usual trick through the
geometric series. Rearranging and summing the reward terms at

Figure 1: Backup Diagram for Importance Samplingmethod
for options. Filled circles represent nodes with state, option
and action selected. Hollow circle represents state, and a
double circle stands for option.

every time step, distributing (1 − λ)λi over the bootstrapped future
reward (action-option value function) term inside the parenthesis,
pulling the γ and λ out and re-arranging the terms to form TD
errors:

∆Q(st ,o,at ) =[
r (st ,at ) + γ ρt+1Q(st+1,ot+1,at+1) −Q(st ,o,at )

]
+ γλρt+1

[
r (st+1,at+1) + γ ρt+2Q(st+2,ot+2,at+2)

−Q(st+1,ot+1,at+1)
]

+ γ 2λ2ρt+1ρt+2
[
r (st+2,at+2)

+ γ ρt+3Q(st+3,ot+3,at+3) −Q(st+2,ot+2,at+2)
]

+ γ 3λ3ρt+1ρt+2ρt+3
[
r (st+3,at+3)

+ γ ρt+4Q(st+4,ot+4,at+4) −Q(st+3,ot+3,at+3)
]

+ . . .

=
∞∑
i=t

δi
i∏

k=t+1
γλρk

(8)

Eq (8) gives the generalized forward view using importance
sampling technique when modifying an MDP with options. An
important caveat in Eq (8) is the assumption that option executing
at time = t is o instead of actual option executed ot . This affects
the importance sampling corrections ρt , and the TD error δt at
time t. Notation can be cleared using separate terms for importance
sampling correction ζ and TD error ν in the case of the first up-
date at time = t . The forward view in Eq (8) can be implemented
incrementally using eligibility trace as shown in Algorithm 1.
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Algorithm 1 Online, Eligibility Trace algorithm using Importance
Sampling method for Options

e, z : Eligibility traces initialized with all zeros
δt : TD error at time = t
νo,t : TD error assuming option o executed at time = t
ρt : Importance Sampling correction at time = t
ζo,t : Importance Sampling correction assuming option o exe-
cuted at time = t

1: Update eligibility traces ∀(s,o,a):

et (s,o,a) = λγ
{
ρtet−1 + ζo,tzt−1

}
zt (s,o,a) =

{
1 i f (s,a) = (st ,at )
0 otherwise

where λ ∈ [0, 1] is the trace decay factor.

2: Calculate TD errors: δt ,νo,t∀(s,o,a) triples as:

δt =r (st ,at ) + γ ρt+1Q(st+1,ot+1,at+1) −Q(st ,ot ,at )
νo,t =r (st ,at ) + γζo,t+1Q(st+1,ot+1,at+1) −Q(st ,o,at )

3: Apply updates to values of (s,o,a) triples:

Qt+1(s,o,a)← Qt (s,o,a) + αδtet (s,o,a)
+ ανo,tzt (s,o,a) ∀(s,o,a)

3.2 Tree Backup
Previously explained Importance Sampling method has two short-
comings - first, it requires the behavior policy to be known, and
second, if the target policy is too different from executing behavior
policy, importance sampling ratios can be very large and may in-
troduce high variance in the estimates. The motivation behind the
Tree backup algorithm, as proposed in [26], is to overcome these
two limitations.

Main idea behind tree backupmethod is to use expectation across
all the branches of the backup diagram instead of sampling a branch
as in Per Decision Importance Sampling algorithm. At each step
along the trajectory, there are several possible choices of actions
according to target policy. Tree backup algorithm forms target
values combining value estimates of actions not taken and the new
value estimate of the action taken, each weighted by corresponding
action’s probability under target policy. The only constraint on
the behavior policy is to assign non-zero probability to all possible
actions in a given state.

In the following derivation, the idea of tree backup is extended
to the case of options. According to the backup diagram for Option
Tree Backup in Fig 2, the target value for an update to option-action
values is formed using expectation of updated future returns across
all the consistent option branches and sub-branches for actions.

Assuming a trajectory over states, options, actions and rewards
as in previous subsection, updates ∀o ∈ Ost consistent with action
at can be written using experience generated during the execution
of option ot at time step t . Update for an option o ̸= ot can be formed
assuming: action at was selected according to πo (·|st ), environment

Figure 2: BackupDiagram forOption Tree Backup. Filled cir-
cles represent nodes with state, option and action selected.
Hollow circle represents state, and a double circle stands for
option.

transitions to state st+1, then option ot+1 is used to select action at+1
with probability πot+1 (·|st+1) and the process continues so on. µ, as
defined in Eq (1), gives the distribution over all the options available
in state st+1 taking into consideration termination probability of
previously running option. 1-step return for an option o using tree
backup would be -

G1
t = r (st ,at )

+ γ
∑

o′ ̸=ot+1

µ(o′ |st+1,o)
∑
a

πo′ (a |st+1)Q(st+1,o
′,a)

+ γ µ(ot+1 |st+1,o)
∑
a

πot+1 (a |st+1)Q(st+1,ot+1,a)

(9)

In Eq (9), the second term is the expected return from all non-
realized options and the third term is the new estimate of expected
return from the trajectory of the realized option. Proceeding in a
similar way, the 2-step return with the additional step at t + 2 can
be written as:
G2
t = r (st ,at )

+ γ
∑

o′ ̸=ot+1

µ(o′ |st+1,o)
∑
a

πo′ (a |st+1)Q(st+1,o
′,a)

+ γ µ(ot+1 |st+1,o)
∑

a ̸=at+1

πot+1 (a |st+1)Q(st+1,ot+1,a)

+ γ µ(ot+1 |st+1,o)πot+1 (at+1 |st+1)r (st+1,at+1)

+ γ 2µ(ot+1 |st+1,o)πot+1 (at+1 |st+1)

×
∑

o′′ ̸=ot+2

µ(o′′ |st+2,ot+1)
∑
a

πo′′ (a |st+2)Q(st+2,o
′′,a)

+ γ 2µ(ot+1 |st+1,o)πot+1 (at+1 |st+1)

× µ(ot+2 |st+2,ot+1)
∑
a

πot+2 (a |st+2)Q(st+2,ot+2,a)

(10)
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Further steps can be derived in a similar fashion. TD error using
the Gλ

t ∀o ∈ Ost can be computed as:

∆Q(st ,o,at ) = Gλ
t −Q(st ,o,at )

= −Q(st ,o,at )

+ (1 − λ)
{
r (st ,at )

+ γ
∑

o′ ̸=ot+1

µ(o′ |st+1,o)
∑
a

πo′ (a |st+1)Q(st+1,o
′,a)

+ γ µ(ot+1 |st+1,o)
∑
a

πot+1 (a |st+1)Q(st+1,ot+1,a)
}

+ (1 − λ)λ
{
r (st ,at )

+ γ
∑

o′ ̸=ot+1

µ(o′ |st+1,o)
∑
a

πo′ (a |st+1)Q(st+1,o
′,a)

+ γ µ(ot+1 |st+1,o)
∑

a ̸=at+1

πot+1 (a |st+1)Q(st+1,ot+1,a)

+ γ µ(ot+1 |st+1,o)πot+1 (at+1 |st+1)
(
r (st+1,at+1)

+ γ
∑

o′′ ̸=ot+2

µ(o′′ |st+2,ot+1)
∑
a

πo′′ (a |st+2)Q(st+2,o
′′,a)

+ γ µ(ot+2 |st+2,ot+1)
∑
a

πot+2 (a |st+2)Q(st+2,ot+2,a)
)}

+ . . .
(11)

The expression in Eq (11) can again be simplified by the usual
geometric series trick. Rearranging and summing the reward terms
at every time step, distributing (1 − λ)λi over the bootstrapped
future reward (action-option value function) term from the realized
option trajectory, pulling the γ , λ and other probability terms out,
and re-arranging the terms to form TD errors:

∆Q(st ,o,at ) = Gλ
t −Q(st ,o,at )

=
{
r (st ,at ) + γ

∑
o′

µ(o′ |st+1,o)
∑
a

πo′ (a |st+1)Q(st+1,o
′,a)

−Q(st ,o,at )
}

+ λγ µ(ot+1 |st+1,o)πot+1 (at+1 |st+1)
{
r (st+1,at+1)

+ γ
∑
o′′

µ(o′′ |st+2,ot+1)
∑
a

πo′′ (a |st+2)Q(st+2,o
′′,a)

−Q(st+1,ot+1,at+1)
}

+ . . .

=
∞∑
i=t

δi
i∏

k=t+1
λγ µ(ok |sk ,ok−1)πok (ak |sk )

(12)

Eq (12) gives the generalized forward view using tree-backup tar-
gets in a MDP with options. As with Importance Sampling method,
in the derivation of Eq (12) we assume that option executing at
time = t is o instead of actual executed option ot . This in turn
affects the TD errors δt at time t . Using consistent notation, TD
error at first time step update assuming option o at time = t is

represented by νo,t . Algorithm 2 gives a simple incremental imple-
mentation using eligibility trace for the Tree Backup method.

Algorithm 2 Online, Eligibility Trace version of Tree Backup for
Options

e, z : Eligibility traces initialized with all zeros
δt : TD error at time = t
νo,t : TD error assuming option o executed at time = t

1: Update eligibility traces ∀(s,o,a):

et (s,o,a) = λγ
{
µ(ot |st ,ot−1)πot (at |st )et−1

+ µ(ot |st ,o)πot (at |st )zt−1
}

zt (s,o,a) =

{
1 i f (s,a) = (st ,at )
0 otherwise

where λ ∈ [0, 1] is the trace decay factor.

2: Calculate TD errors: δt ,νo,t∀(s,o,a) triples as:

δt =r (st ,at ) + γ
∑
o′

µ(o′ |st+1,ot )
∑
a′

πo′ (a′ |st+1)Q(st+1,o
′,a′)

−Q(st ,ot ,at )

νo,t =r (st ,at ) + γ
∑
o′

µ(o′ |st+1,o)
∑
a′

πo′ (a′ |st+1)Q(st+1,o
′,a′)

−Q(st ,o,at )

3: Apply updates to values of (s,o,a) triples:

Qt+1(s,o,a)← Qt (s,o,a) + αδtet (s,o,a)
+ ανo,tzt (s,o,a) ∀(s,o,a)

3.3 Retrace
Table 1 summarized the constraints of popular off-policy algorithms.
Importance sampling method is susceptible to high variance in the
estimates and requires the behavior to be known. Tree backup
method improves on these limitations but suffers from the issue of
premature cutting of traces blocking learning from future returns.
Retrace(λ) method overcomes the shortcomings of the above two
methods. It has low variance, can be used with any behavior policy
and is efficient in its use of full returns.

Derivation of eligibility traces using Retrace(λ) is exactly same as
the derivation for Importance Sampling with the only caveat being
different trace correction factor as seen in Table 1. In Algorithm 1,
replacing correction factor (ρ) with min

(
1, π (as |xs )

b(as |xs )

)
gives a simple

incremental implementation using eligibility trace for the Retrace(λ)
method.

4 EXPERIMENTS
In our experiments, the option policies and termination conditions
are assumed to be given ahead of time. Options are formed using
different combinations of internal policies and termination con-
ditions. There are two reasons for this. First, it allows us to look
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(a) Importance Sampling (b) Tree Backup (c) Retrace

Figure 3: Performance of algorithms as a function of λ in random walk.

at the impact of the termination, which is a special construct for
options. Second, it allows a mix of scenarios where the target goes
from being very close to the behavior (same internal policy) to very
different (different internal policies). The goal is to learn option
values and the policy over options and assess the utility of eligibility
traces by varying the trace coefficient λ.

4.1 RandomWalk
We first consider random walk over MDP with 99 non-terminal
states (s0 − s98) and one terminal state (s99). An episode starts with
the agent in state s0 and terminates when it reaches s99. In each
non-terminal state, two deterministic actions are possible: to go left
and to go right. The agent receives a reward of -1 for every time
step except on reaching s99 when it receives a reward of 0. Discount
factor γ is set to 0.9 for all the random walks.

The options are setup with the same internal policy- agent moves
right with the probability of 0.7 and left otherwise. Options have
different termination probabilities β ∈ {0.9, 0.7, 0.5, 0.3, 0.1}. In
addition to these 5 temporally extended actions, agent also selects
from 2 primitive actions: to move left and move right. Options are
selected stochastically using an ϵ-greedy policy (ϵ = 0.15) and are
executed in call-and-return manner. Behavior is selected using the
currently active option’s internal policy. The learning rate for each
curve was optimized using grid search and Table 3 in the appendix
shows the parameter settings used in the experiments. The results
for each λ value has been averaged over five independent trials.

Fig 3 shows the performance of the traces as a function of varying
trace coefficient λ. Results for Importance sampling and Retrace
methods clearly show that the performance steadily gets better as
trace coefficient λ is increases, with the best performance being
observed for λ = 1. On the other hand, difference in the performance
of eligibility trace with tree backup with varying trace coefficient
λ is not very evident. This behavior can again be explained by
the premature cutting of trace with tree backup method which
prevents use of full returns. Additional multiplication of hierarchical
distribution probabilities in the trace update makes this worse in
case of Tree backup option trace. Table 2 proves this hypothesis
showing that only very few elements in the trace have significant
eligibility values for a meaningful update.

Table 2: Premature cutting of eligibility traces for options
with tree backup. Columns represent portion of elements
in the eligibility trace with value more than the specified
column value for a particular λ row value.

λ values 10−7 10−5 10−3 10−1

0 0% 0% 0% 0%
0.3 0.106% 0.072% 0.035% 0.0006%
0.7 0.147% 0.102% 0.055% 0.0015%
1 0.153% 0.109% 0.059% 0.0016%

Figure 4: Four rooms domain

4.2 Four-rooms Domain
Next we consider the navigation task in four-rooms domain [32]
as seen in Figure 4. The agent can move up, down, left or right
with a stochastic effect. With probability 2/3, the actions cause the
agent to move one cell in the corresponding direction, and with
probability 1/3, the agent moves instead in one of the other three
directions. Rewards are zero for all transitions except ones which
lead to the goal state G. Discount factor γ is set to 0.9

In addition to the four primitive actions, there are four sets of
options, each taking the agent to a different hallway. Each set of op-
tions has same internal policy but different termination probabilities
β ∈ [0.9, 0.7, 0.5, 0.3, 0.1]. Options are selected in call-and-return
manner from an ϵ-greedy policy (ϵ = 0.15). Current option deter-
mines the behavior of the agent. Grid search was done to optimize
learning rates for different settings as seen in Table 4.

Fig 5 shows the performance of the three methods as a function
of varying λ and Fig 6 compares the algorithms based on number
of steps to episode termination.
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(a) Importance Sampling (b) Tree Backup (c) Retrace

Figure 5: Performance of algorithms as a function of λ in four rooms domain. Each curve is averaged over 25 runs.

Figure 6: Comparison of IS, TB and Retrace algorithms with
best λs in four rooms domain. Each curve is averaged over
25 runs.

As can be seen in Fig 5, algorithms perform better with increasing
trace coefficient λ values. The number of steps to episode termina-
tion reduces faster as λ value increases for Importance sampling
and Retrace methods, with minor effect on Tree backup method.
Traces in the case of Tree backup option method are cut aggres-
sively because of the hierarchical and internal policies. This leads
to the method to perform similar with different λ values, as seen
in results here. Importance sampling method has higher variance
in its estimates of option values and takes more time to converge
compared to Tree backup and Retrace methods as seen in Fig 6.

4.3 Mountain Car
Finally we consider linear function approximations with the el-
igibility trace algorithms for options. In Mountain-Car problem
[22, 31], as seen in Figure 7, an underpowered car has to climb a
one-dimensional hill to reach a target. Agent can only reach the
target position by going back and forth in the valley and building
momentum. Three discrete actions: push left, no push and push
right are available to the agent to move and build momentum. Agent

Figure 7: Mountain Car environment

gets a reward of -1 for every time step except when it transitions
to the target and episode ends. The two dimensional state space
comprises continuous position and velocity of the car. Discount
factor γ is set to 0.9

Options have been formulated with internal policies to reach
different positions: -0.2, 0, 0.2 and 0.4. There are multiple options
with their termination probabilities β ∈ [0.9, 0.7, 0.5, 0.3, 0.1] for a
internal policy. In addition to these 20 options, agent can also choose
from 3 primitive actions. Options are again selected in an ϵ-greedy
fashion on their values with a usual call-and-return executionmodel
(ϵ = 0.15). In our experiments, state space is discretized using tile
coding [32]. 9 dimensional features (1 for position of the car, and 8
for the joint space of position and velocity) is used to estimate values
of option-action pairs. Table 5, in the appendix, shows the optimized
parameter value for learning rates used in the experiment.

Fig 8 shows the performance of the traces as a function of varying
trace coefficient λ. Performance steadily gets better as λ increases
for Importance sampling and Retrace methods. Tree Backupmethod
converges for λ = 0 and λ = 0.3. Higher λ values don’t converge.
Recently, Tree Backup and Retrace(λ) algorithms have been shown
to be theoretically unstable with linear function approximation
[36].

5 CONCLUSION
In this work, we highlight the benefits of using eligibility traces
with options and searched for good ways of doing multi-step intra-
option learning updates. Furthermore, three algorithms based on
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(a) Importance Sampling (b) Tree Backup (c) Retrace

Figure 8: Performance of algorithms as a function of λ in Mountain-Car environment. Each curve is averaged over 5 runs.

off-policy learning methods were proposed for using eligibility
traces with options. Even though the derivations are shown only
for learning option values in this paper, same updates can be applied
to learn option reward and transition models for planning with
options.

The binary decision to either continue or terminate at option de-
cision boundaries makes it mathematically challenging to formulate
multi-step updates. To overcome this challenge, we treated such
decisions probabilistically in the analysis of multi-step intra-option
learning updates. This provides an effective way of handling option
decision boundaries mathematically.

The empirical results presented in this work clearly highlight
the utility of eligibility traces in hierarchical reinforcement learn-
ing. Results show that multi-step intra-option update significantly
speeds up the learning process. The problem of high variance is
common in importance sampling methods, and the importance
sampling option traces from Algorithm 1 is also susceptible to it,
though to a lesser degree as seen empirically. The known draw-
back with tree-backup of premature cutting of traces seems to be
amplified a bit with Tree backup option trace. This is justifiable
given the additional hierarchical distribution term in the updates.
Retrace(λ) algorithm provides a low variance off-policy learning
method which does not cut eligibility traces excessively and can be
used with any target and behavior policies. Retrace Option trace
performs exemplary with lower variance in its estimations and
better convergence values which is supported empirically in our
results.

Our experiments with the mountain car environment success-
fully demonstrate that the proposed multi-step intra-option learn-
ing methods using eligibility traces can be used with linear function
approximation.

A future extension to this work includes incorporating eligibility
traces to the option-critic architecture [2]. The current work can be
used directly in the option evaluation step. Classical Tree Backup
and Retrace(λ) algorithms have been shown to be theoretically
unstable with linear function approximation [36]. Another direction
for extension of our work is to consider adapting to the convergent
Tree Backup and Retrace algorithms as proposed in [36].

APPENDIX
Parameter settings used in the experiments.

Table 3: Optimized learning rate forRandomWalk fromgrid
search

Learning λ

Rate (α ) 0 0.3 0.7 1

Importance Sampling 0.05 0.05 0.05 0.05
Tree Backup 0.05 0.05 0.05 0.05
Retrace(λ) 0.064 0.064 0.064 0.064

Table 4: Learning rates used for Four-rooms experiments.

Learning λ

Rate (α ) 0 0.3 0.7 1

Importance Sampling 0.002 0.005 0.002 0.002
Tree Backup 0.4 0.4 0.4 0.2
Retrace(λ) 0.4 0.4 0.4 0.4

Table 5: Learning rates used in mountain car environment.

Learning λ

Rate (α ) 0 0.3 0.7 1

Importance Sampling 0.0008 0.0008 0.0008 0.0005
Tree Backup 0.0008 0.0008
Retrace(λ) 0.0008 0.0008 0.0008 0.0008
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