
Object-Oriented Curriculum Generation for Reinforcement
Learning

Felipe Leno Da Silva
University of São Paulo

São Paulo, Brazil
f.leno@usp.br

Anna Helena Reali Costa
University of São Paulo

São Paulo, Brazil
anna.reali@usp.br

ABSTRACT
Autonomously learning a complex task takes a very long time for
Reinforcement Learning (RL) agents. One way to learn faster is by
dividing a complex task into several simple subtasks and organizing
them into a Curriculum that guides Transfer Learning (TL) methods
to reuse knowledge in a convenient sequence. However, previous
works do not take into account the TL method to build special-
ized Curricula, leaving the burden of a careful subtask selection
to a human. We here contribute novel procedures for: (i) dividing
the target task into simpler ones under minimal human supervi-
sion; (ii) automatically generating Curricula based on object-oriented
task descriptions; and (iii) using generated Curricula for reusing
knowledge across tasks. Our experiments show that our proposal
achieves a better performance using both manually given and gen-
erated subtasks when compared to the state-of-the-art technique
in two different domains.

KEYWORDS
Reinforcement Learning; Transfer Learning; Curriculum Learning
ACM Reference Format:
Felipe Leno Da Silva and Anna Helena Reali Costa. 2018. Object-Oriented
Curriculum Generation for Reinforcement Learning. In Proc. of the 17th
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2018), M. Dastani, G. Sukthankar, E. Andre, S. Koenig (eds.), Stockholm,
Sweden, July 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Although Reinforcement Learning (RL)[29] has been used for au-
tonomous task training, learning how to deliver a good performance
takes a very long time, especially in the challenging tasks for which
autonomous agents are starting to be employed [17]. As the classi-
cal RL algorithms are not scalable enough to be directly applied to
such difficult problems, a growing body of literature studies how
to reuse past knowledge to accelerate the learning process [34].

More recently, inspired by the Curriculum Learning approach
initially applied for Supervised Learning methods [2], Curricula
started to be employed for RL agents. The main idea of Curriculum
Learning is to decompose a hard learning task (target task) into
several simple ones (source tasks). Then, the learning agent can
master source tasks and reuse the gathered knowledge to solve
a target task (hopefully) faster than directly learning in it. For
some domains, learning in smaller tasks might also be more cost
effective (e.g., a robot learning in a simulated environment and then

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. Andre, S. Koenig (eds.),
, July 2018, Stockholm, Sweden. © 2018 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

transferring knowledge for actuating in the real world [10]), hence
using the Curriculum may be beneficial even when the agent does
not learn faster but needs fewer steps in the target task.

This paper deals with the challenge of autonomously building
Curricula that are useful to the agent. We here generate a Cur-
riculum taking into account the TL method to better reuse the
gathered knowledge. The Object-Oriented representation [6] is used
to both generate a Curriculum in the form of a graph and to reuse
knowledge, profiting from the generalization provided by the task
description. Themain contributions of this paper are: (i) a procedure
for automatic construction of the set of source tasks under minimal
human supervision; (ii) a method for automatically generating Cur-
ricula by using an intuitively-given Object-Oriented representation;
(iii) a procedure for using large Curriculum graphs through a bi-
ased Random Walk approach. Moreover, we perform experimental
evaluations in two domains, including a challenging Robot Soccer
simulation.

Our experiments show that our proposal generates useful Cur-
ricula, which achieve advantages over the ones generated by the
state-of-the-art method [30]. Our source task generation procedure
was also successful in building a set of source tasks that lead to a
useful Curriculum. An earlier version of this paper proposed us-
ing the object-oriented representation to build Curricula [23], but
here we improve the experimental evaluation and propose a novel
method for using those Curricula.

The remainder of this paper is organized as follows: Section 2
presents the background knowledge required for understanding
our work; Section 3 presents our proposal adapting the Curriculum
generation procedure to make better use of the Object-Oriented
description; then, Section 4 describes our source task generation
procedure; Section 5 presents our experimental setup and evalua-
tion; Section 6 relates our proposal with the most relevant works
in the literature; finally, Section 7 concludes the paper and points
towards future works.

2 BACKGROUND
We here present the related concepts in the RL, Object-Oriented RL,
and Curriculum Learning areas.

2.1 Reinforcement Learning
AMarkov Decision Process (MDP) is the most widely adopted model
for RL problems. An MDP is composed of ⟨S,A,T ,R⟩, where S is a
(possibly infinite) set of environment states, A is a set of available
actions, T is the transition function, and R is the reward function.
At each perception-action cycle, the agent observes the current
state s , chooses one action a, and receives one reward r = R(s,a, s ′),
s ′ = T (s,a). Each executed step results in a tuple ⟨s,a, s ′, r ⟩, which

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1026

is the only feedback the agent has to learn how to solve the task (i.e.,
maximize the long-term sum of expected rewards). Since in learn-
ing problems R and T are unknown, the agent has to explore the
environment by (initially) choosing random actions, until gathering
enough knowledge to induce a policy π : S → A, that returns one
action to be applied in each state. A possible way to learn in this set-
ting is by applying the Q-Learning [39] or SARSA [28] algorithms,
which iteratively update an estimate of action qualities for each state
Q : S ×A→ R. This estimate eventually converges to the optimal
Q-function: Q∗(s,a) = E

[∑∞
i=0 γ

iri
]
, where γ is a discount factor.

Q can be used to define an optimal policy π∗(s) = argmaxa Q∗(s,a)
(the task solution). However, learning Q takes very long even for
simple tasks, and much effort has been devoted to accelerate the
learning process.

2.2 Object-Oriented MDPs
The use of task descriptions that allow abstraction can help to ac-
celerate the learning process. The Object-Oriented representation
[6] enables generalization opportunities through an intuitively-
given task description. In Object-Oriented MDPs (OO-MDP) the
state space is abstracted through the description of a set of classes
C = {C1, . . . ,Cc }, where each class Ci is composed of a set of at-
tributes denoted as Att(Ci) = {Ci .b1, . . . ,Ci .bb }. Each attribute bj
has a domain, Dom(Ci .bj), specifying the set of values this attribute
can assume. O = {o1, . . . ,oo } is the set of objects that exist in a
particular environment, where each object oi is an instance of one
classCi = C(oi), so that oi is described by the set of attributes from
its class, oi :: Att(C(oi)). Now, the MDP state is observed as the
union of all object states, s =

⋃
o∈O o.state , where an object state

is the set of values assumed by each of its attributes at a given time,
oi .state =

(∏
b ∈Att (C(oi))

oi .b
)
. Note that the definition of object

here is not exactly the same as in OO programming. For RL, there
is no class hierarchy. Also, the equality of objects in the point of
view of the agent is usually computed comparing if two objects
belong to the same class and have the same attribute values.

The generalization provided by such task descriptions is espe-
cially helpful to Transfer Learning (TL) approaches [14], which aim
at reusing previous knowledge to solve a task faster [34]. In the
next section we describe Curriculum Learning, an emerging method
to accelerate learning by the use of TL techniques.

2.3 Curriculum Learning for RL
Curriculum Learning typically decomposes a hard (target) task Tt
into several easier (source) tasks TC. If proper task sequence (Cur-
riculum) and TL methods are available, the whole set of tasks may
be solved faster than when directly learning Tt , due to the com-
bination of a quick acquisition of knowledge in easier tasks and
knowledge reuse.

In Narvekar et al.’s description [18], the Curriculum is a sequence
of tasks within a single domainD.D has a set of degrees of freedom
F . Any possibleMDP that belongs toD can be built by a generator
given a set of values of F , τ : D × F → T . The learning agent is
assumed to have a simulator to freely learn in the simpler tasks,
and a sequence of source tasks is given by a human1. The agent
1Narvekar et al. [18] present several heuristic procedures to define a Curriculum, but
domain-specific human knowledge is required for all of them.

then learns for some time in each of the source tasks specified
by the Curriculum before trying to solve target task Tt . The steps
to build and to use a Curriculum are summarized in Algorithm
1. Given the target task Tt , a set of candidates source tasks T is
defined (manually defined in all works so far). Then, the Curriculum
C is built or given by a human, specifying a sequence of tasks
(T1,T2, . . . ,Tt),Ti ∈ TC,T ⊆ TC. All tasks are then solved in order
and previous knowledge might be reused for each new task.

Algorithm 1 Curriculum generation and use
Require: target task Tt .
1: T ← createTasks(Tt)
2: C← buildCurriculum(T,Tt)
3: learn(Tt ,C) ▷ use C to learn Tt

Svetlik et al. [30] propose building the Curriculum as a graph,
rather than an ordered list. The main idea of their proposal is
to build a graph of tasks according to a transfer potential metric,
which estimates how much a source task would benefit the learning
process of another. They calculate transfer potential as:

ν (Ti ,Tj) =
|QTi ∩QTj |

1 + |STj | − |STi |
, (1)

where ν (Ti ,Tj) defines the transfer potential between two tasks Ti
and Tj , |QTi ∩QTj | is the number of Q-values those two tasks have
in common2, and |STi | and |STj | are, respectively, the size of the
state spaces in Ti and Tj . A Curriculum graph C = {V,E}, where
V is a set of vertexes (tasks) and E is the set of edges that define the
task sequence, is generated by including all source tasks that have a
transfer potential toTt higher than a threshold parameter ϵ . Then,C
is used for learning in Algorithm 2 (which fits as a learn function in
line 3 of Alg 1). First, an unsolved task with indegree zero is selected
(line 4) and used for training until a stopping criterion is met (line
5). Then, all the edges from the selected task are removed from the
graph (line 6) and another untrained task is selected until the target
task is solved (that will be the last one). Notice that multiple tasks
with indegree zero may exist (line 4); hence more than one task
sequence might be generated from the same Curriculum depending
on the tie-breaking strategy.

Algorithm 2 learn in [30]

Require: Curriculum C = {V,E}, target task Tt .
1: L← ∅ ▷ Learned tasks
2: while V − L , ∅ do ▷While there are unsolved tasks
3: T ← V − L
4: Select a task Ti ∈ T with indeдree = 0
5: Learn Ti reusing previous knowledge
6: Remove edges from Ti in E
7: L← L ∪ Ti

Notice that every task included in theCurriculummust be learned
before proceeding to the target task. Therefore, if a big Curriculum
is given, the agent will probably spend too much time learning
2This computation is domain-specific and must be defined by the designer.

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1027

source tasks. Moreover, while previous works have shown that
building Curriculamay be beneficial to learning agents, they do not
evaluate the advantage of generalization when transferring knowl-
edge between Curriculum tasks. To the best of our knowledge the
set of source tasks is manually given in all works so far, and an
automated source task generation procedure was listed as one of
the open problems for Curriculum approaches [30]. In the next
Sections we describe our proposal to automatically generate a Cur-
riculum, how to reuse knowledge taking advantage of a relational
task description, and our source task generation procedure.

3 OBJECT-ORIENTED CURRICULUM
GENERATION

As discussed in Section 2, OO-MDPs can be used to provide gen-
eralization opportunities. We here contribute a method to take
advantage of this generalization to facilitate Curriculum construc-
tion and use.

Since all tasks within a Curriculum are in the same domain, we
have a single set of classes for all tasks, but each task may have a
different set of objects and initial state. Thus, for our purposes we
define an Object-Oriented task Ti as:

Ti = ⟨C,OTi , STi0 ,A
Ti ,T Ti ,RTi ⟩ (2)

where C is the set of classes, OTi is the set of objects in Ti , STi0 :
S → [0, 1] is the probability of task Ti starting in each state, ATi is
the set of possible actions for Ti , T Ti is the transition function, and
RTi is the reward function. Notice that we suppressed the degrees
of freedom set from Narvekar’s original definition. If attributes
not related to objects are required for Ti , an environment class
can be created for adding those attributes, hence the definition of
degrees of freedom is no longer necessary. As in [30], we consider a
Curriculum as a graph of tasks C = {V,E}. For building C, we use
a strategy similar to Svetlik’s [30], adding in the Curriculum tasks
with high transfer potential, which we here calculate based on the
Object-Oriented description as:

ν (Ts ,Tt ,TC) =
simC(Ts ,Tt)

maxTi ∈TC simC(Ts ,Ti)
.
|St |(|OTt | + 1)
|Ss |(|OTs | + 1)

(3)

where Ts is the task to measure the transfer potential, Tt is the
target task, TC is the set of tasks already defined to be executed3
before Tt , simC(Ti ,Tj) is a similarity value between tasks Ti and Tj ,
|Si | is the size of the state space in Ti , and OTi is the set of objects
of task Ti .

The intuition behind this equation is to prioritize the inclusion of
tasks that are: (i) similar to the target task, increasing the usefulness
of the learned policy; (ii) dissimilar from the previously included
tasks, to reduce the amount of redundant knowledge; and that (iii)
have a smaller state space than in the target task, to first train in
smaller tasks. Here, the similarity between tasks is calculated as:

simC(Ts ,Tt) =
∑
Ci ∈C

|OTsCi ∩O
Tt
Ci
|

max(|OTsCi |, |O
Tt
Ci
|)
+
|Ss ∩ St |

|St |
(4)

3If TC = ∅, consider maxTi ∈TC simC(Ts , Ti) = 1.

where Ts and Tt are tasks from the same domain, Ci is one class
from the setC , OTsCi ∩O

Tt
Ci

is the set of objects that belong to class
Ci and have the same attribute values in the initial state for both
Ts and Tt , and |Ss ∩ St | is an estimate of the number of states the
two tasks have in common4. Notice that the real similarity between
two tasks cannot be computed because it depends on the transition
and reward functions that are unknown to the agent. The proposed
equation gives a good indication of the true similarity if: (i) object
attributes have the same semantic meaning in both tasks; and (ii)
similar tasks in this domain have some objects in common. We
believe that those are reasonable assumptions for the purpose of
building Curricula.

We generate C by following Algorithm 3 (which fits as a
buildCurriculum function in Alg. 1 line 2). The set of source tasks
T to be used as a parameter has been manually defined by humans
in the works so far, but an automatically generated set could also
be used (as in our proposed method detailed in the next section).

Algorithm 3 Automatic Curriculum Generation
Require: set of source tasks T, target task Tt , threshold for task

inclusion ϵ .
1: V ← ∅,E ← ∅ ▷ Initializing the Curriculum Graph
2: (G,TC) = дroupTasks(T,Tt , ϵ) ▷ Algorithm 4
3: V ← TC ∪ Tt
4: for ∀д ∈ G do ▷ Intra-group Transfer
5: for ∀Ti ∈ д do
6: Tm = argmaxTj ∈д |j>i ν (Tj ,Ti , children(Ti)) ▷ Eq. (3)
7: if ν (Tm ,Ti , children(Ti)) > ϵ then
8: E ← E ∪ ⟨Tm ,Ti ⟩
9: for ∀д ∈ G do ▷ Inter-group Transfer
10: for ∀д′ : д′ ∈ G and д. f eatures ⊂ д′. f eatures do
11: for ∀Ti ∈ д do
12: Tm = argmaxTj ∈д′ ν (Tj ,Ti , children(Ti)) ▷ Eq. (3)
13: if ν (Tm ,Ti , children(Ti)) > ϵ then
14: E ← E ∪ ⟨Tm ,Ti ⟩
15: for ∀Ti : Ti ∈ TC and deд+(Ti) = 0 do ▷ Add edges to target
16: E ← E ∪ ⟨Ti ,Tt ⟩
17: C← {V,E}
18: return C

The first step is to split the set of source tasks T in groups
according to their parameters (line 2). The grouping procedure
has two purposes: (i) discarding tasks that are not expected to be
beneficial for transfer and (ii) organizing T into groups of tasks
with the same parameters. Imagine that Tt is a robot soccer task
against two opponents. A possible resulting set of groups would be:
one group composed of tasks with no opponents; one composed
of one-opponent tasks; and one with two-opponent tasks, where
the tasks in which the initial states are very different from the one
in Tt are discarded. Our grouping procedure is fully described in
Algorithm 4 and the main idea is to build a set of candidate tasks
TC discarding tasks with low Object-Oriented transfer potential
(Equation (3)).
4This estimate is computed by evaluating the intersection of the object attribute
domains in the tasks. Thus, no additional knowledge is needed.

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1028

Algorithm 4 groupTasks
Require: set of source tasks T, target task Tt , threshold for task

inclusion ϵ .
1: TC ← ∅
2: G ← ∅
3: for ∀Ti ∈ T do
4: if ν (Ti ,Tt ,TC) > ϵ then ▷ Eq. (3)
5: if ∄д : д ∈ G and д. f eatures = Ti . f eatures then
6: G ← G ∪ дroup(Ti . f eatures) ▷ New group
7: д = {д ∈ G |д. f eatures = Ti . f eatures}
8: д← д ∪ Ti
9: TC ← TC ∪ Ti
10: Sort tasks within each group (Ti ∈ д) by ν (Ti ,Tt)
11: return (G,TC)

Algorithm 4 returns a group for each possible task parameter in
which there exists at least one task with transfer potential higher
than threshold ϵ (Alg 4 line 4).

After the set of task groupsG is built, we define the edges of the
Curriculum as proposed by Svetlik et al. [30]. Firstly we search for
pairs of tasks that have a high transfer potential between themselves
within the same task group (Alg. 3 lines 4-8), thenwe search for pairs
that belong to different groups, as long as the features of one task
are contained in another’s (lines 9-14). Here, operation children(Ti)
returns the set of tasks already included in the Curriculum that have
an edge to Ti . In the example of a Robot Soccer task, д. f eatures ⊂
д′. f eatures if the number of opponents in tasks inside д is smaller
than for the tasks inside д′. Hence, the knowledge from the simpler
tasks will be transferred to the most complex ones. Finally, we
create an edge from the tasks with outdegree zero5 to the target
task (line 16).

As an alternative for Algorithm 2, which is ineffective for big
Curricula, we propose a novel procedure to use only portions of a
Curriculum (Algorithm 5). We use a biased RandomWalk to traverse
the Curriculum graph C starting from the target task (a back-to-
front path - line 5), without, however, visiting every vertex in C.
Then, we walk nsteps steps from Tt , biasing each step according
to the transfer potential of each of its children, i.e., tasks with high
transfer potential are more likely to be selected (lines 5-9):

p(Ti) =
ν (Ti , curTask,T)∑

Tj ∈children(curT ask) ν (Tj , curTask,T)
. (5)

Each of the selected tasks are labeled6 for posterior use, and we
keep a list of selected tasks for computing the transfer potential
(lines 7 and 9). This procedure is repeated ntraj times. Finally, all
labeled tasks are used for learning, finishing in the target task (lines
10-13).

Then, a procedure for reusing knowledge from the previously
solved tasks must be defined. We use a method based on value
function reuse as performed by Narvekar et al. [18], but taking
advantage of the Object-Oriented representation. For that, we firstly
map the current state to a set of similar states in the source tasks.
5outdegree zero means that no edge is starting from the task, i.e., it still has no
parents.
6A label here is binary mark on a vertex, posteriorly used for defining the tasks that
were chosen for execution.

Algorithm 5 learn with biased Random Walk.

Require: Curriculum C = {V,E}, target task Tt , ntraj , nsteps .
1: T ← ∅
2: for ntraj times do
3: curTask ← Tt
4: label(curTask)
5: for nsteps times do
6: Draw Ti ∈ children(curTask) according to Eq. (5)
7: label(Ti)
8: curTask ← Ti
9: T ← T ∪ Ti
10: while ∃labeled(Ti),∀Ti ∈ T do
11: Select a labeled task Ti with no labeled children
12: Learn Ti reusing previous knowledge
13: unlabel(Ti)

Then, we reuse their value functions in the new Q-table. This map-
ping is calculated with Probabilistic Inter-TAsk Mappings (PITAM),
as proposed in [24]. A PITAM is a mapping between states in two
tasks PTs ,Tt : STt × STs → [0, 1]. For defining P , a similarity met-
ric simP ITAM is calculated between the current state and all the
state space in the source task by using the Object-Oriented descrip-
tion. Then, P is calculated by normalizing the similarity values
into probabilities:

∑
s ∈STs PTs ,Tt (st , s) = 1. We here define the sim-

ilarity value as : simP ITAM (st , ss) = |Ost ∩Oss |, where |Ost ∩Oss |

denotes the number of objects that belong to the same class and
have the same attribute values for two particular states st and ss .
That is, states that have no object in common have a mapping with
zero probability, and the higher the number of common objects, the
higher the mapping probability will be. Although calculating exact
PITAM probabilities is computationally expensive, it is easy to use
domain knowledge to prune the state space search (e.g., calculating
similarity values only for states in which there are objects with
similar attribute values). After the PITAM calculation, we initialize
the Q-table in the new task Tt as:

QTt (st ,at) ←

∑
Ts ∈CTt

∑
ss ∈STs PTs ,Tt (st , ss)QTs (ss ,at)

|CTt |
, (6)

where CTt is the set of already solved tasks that had an edge to Tt
in the original Curriculum graph. Notice that the object attributes
must be agent-centered to facilitate transfer. For example, if the
agent is in a world represented by a grid, it is very hard to generalize
states if the object observations are given by their absolute positions.
However, if distances between the agent and objects are used as
attributes (agent-centered representation), it is much easier to find
state correspondences (i.e., find objects with the same attribute
values in two states).

Using the Curriculum and this transfer procedure, the agent is
expected to learn faster than when learning from scratch. In the
next Section we describe our proposal to automatically generate
source tasks (T in Algorithm 3).

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1029

4 OBJECT-ORIENTED AUTOMATIC SOURCE
TASK GENERATION

The success of a Curriculum depends on: (i) a proper set of source
tasks; (ii) a proper task ordering; (iii) the efficacy of the chosen TL
algorithm; (iv) a good stopping criterion to identify when to switch
tasks. Even though Svetlik et al. [30] had proposed a method to
define the sequence, automatically defining the set of source tasks
was still an open problem [18, 20, 30].

We here propose a method to generate source tasks by using the
Object-Oriented representation, requiring less human effort than
previous works in which this set must be manually given. The
intuition of our proposal is to randomly select a portion of the
objects from the target task to build each of the (smaller) source
tasks, assuming that smaller tasks are easier to solve.

Algorithm 6 fully describes our source task generation proce-
dure (which fits as a createTasks function in Alg. 1 line 1). At first
we define the set F simple , which is a set of possible valuations
for the environment objects in the target task (line 2). We assume
that all domains have an environment class CEnv , which has as
attributes domain features not related to other classes (e.g., the grid
size in a Gridworld). The simpli f y function creates environment
objects corresponding to simplified versions of the target task, for
example, if the environment object is the size of a grid, a possible
simplification would be a set of values corresponding to smaller
grids. Then, we define the set of objects belonging to the class with
fewer objects among the remaining classes Cmin (lines 3–4). We
then create omin tasks, each of them containing from 0 to omin
objects from Cmin (line 6), one possible set of values from F simple
(line 7), and a random number of objects from the other classes
(line 11). The initial state for this new source task if defined through
the initState function. A possible way to implement this function
is to draw random attribute values for all objects, or copy the val-
ues from the target task initial state (when applicable). The action
space, transition function, and reward functions for the new task
are then defined through the actionSpace , transitionFunction, and
rewardFunction functions7, and the task is finally added to the set
of source tasks T. This process is repeated multiple times according
to a parameter nr ep .

This procedure can be used to generate a set of source tasks when
a human is unavailable or unwilling to provide it. However, this
procedure is not valid for all possible domains, because we change
the number of objects without necessarily having knowledge about
the transition function. When using this procedure, the designer
must ensure that solvable tasks are generated. Thus, it might be
necessary to set a minimum number of objects of a given class, to
create the initial state in a domain-dependent way, or to add a final
human-guided step to reject unsolvable tasks (which is still much
easier than hand-coding the entire set).

In the next Section we present our experimental evaluation.

5 EXPERIMENTAL EVALUATION
We here describe our experiments to show that our proposal builds
useful Object-Oriented Curricula. Firstly we present our experimen-
tal setup, then the results along with discussion.
7If transition and reward functions are unknown, the environment will implicitly
provide samples of those functions to the agent.

Algorithm 6 createTasks

Require: target task Tt , repetition parameter nr ep .
1: T ← ∅
2: F simple ← simpli f y(OTtCEnv)
3: Cmin ← argminCi ∈C−CEnv |O

Tt
Ci
|

4: omin ← |OTtCmin
|

5: for nr ep times do
6: for ∀i ∈ {0, . . . ,omin } do
7: Draw F from F simple

8: O ← Draw i objects from OTtCmin
9: for ∀Ci ∈ C −CEnv do
10: Draw q from {0, . . . , |OTtCi |}
11: O ← O ∪ Draw q objects from OTtCi
12: O ← O ∪ F
13: S0 ← initState(O,Tt)
14: A← actionSpace(O,Tt ,ATt)
15: T ← transitionFunction(T Tt)
16: R ← rewardFunction(RTt)
17: T ← T ∪ ⟨C,O, S0,A,T ,R⟩
18: return T

5.1 Experimental Setup
We have chosen two domains for our experimental evaluation.
The Gridworld domain, as proposed by Sevtlik et al. [30], and the
Half Field Offense (HFO) [11] environment. The former shows the
performance of the proposedmethod in a domain easy to implement
and to gather results, while the latter shows the robustness of the
method in a very challenging multiagent task with continuous
observations8. As pointed out in Section 7, Curriculum Generation
especially tailored to MAS is still an open question for further work.
We evaluate our proposal both with manually given (OO-Given) and
generated (OO-Generated) source tasks, comparing it with Svetlik’s
[30] Curriculum generation procedure (hereafter named Svetlik)
and the regular learning without a Curriculum (Q-Learning for
Gridworld and SARSA for HFO - hereafter called as No Curriculum).
The TL procedure is carried out as defined in Section 3 for our
proposal and through transfer of value functions [35] for Svetlik.

5.1.1 Gridworld. Figure 1 illustrates our Gridworld. Each cell in
the grid may have one of the following objects or be empty: fire,
pit, or treasure. The agent can move in four cardinal directions A =
{North, South,East ,West}, and the task is solved when the agent
collects the treasure. The Object-Oriented description of the task
has the classes C = {Pit , Fire,Treasure,Env}, where the environ-
ment attributes are the sizes of the grid Att(Env) = {sizeX , sizeY }
and the remaining classes have x and y attributes. The position
attributes are observed in regard to the distance between the agent
and the object, rather than the absolute position. The rewards are
defined as in [30]. At each of every executed step, the agent ob-
serves one of the following rewards: (i) +200 for collecting the

8Notice that, in the current work, we assume that the sequence of tasks is defined by
a single agent. In case those are multiagent tasks, additional agents might join the
learning agent in the tasks selected by it when required, but they cannot interfere with
the Curriculum generation and use.

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1030

treasure; (ii) -250 for getting next to a fire (4-neighborhood); (iii)
-500 for getting into a fire; (iv) -2500 for falling into a pit; and (v)
-1 if nothing else happened.

Figure 1: An illustration of the target task in Gridworld.

The target task is illustrated in Figure 1, and contains 8 pits, 11
fires, and 1 treasure. As in [30], we generate a set of source tasks
by reducing the number of objects and/or reducing the size of the
grid, defining |T | = 18 source tasks. During learning, all source
tasks given by the agent Curriculum were executed until the agent
achieved the same cumulative reward for 2 consecutive episodes,
or 30 learning episodes were carried out. Episodes start in the task
initial state (e.g., the configuration shown in Figure 1) and end when
the agent captures the treasure or falls into a pit.

The comparison metric here is the cumulative reward when try-
ing to solve the target task. The threshold parameter forCurriculum
generation was set ϵ = 1, ntraj = 3, and nsteps = 3 for our pro-
posal and ϵ = 15 for Svetlik9. The task generation parameters for
our proposal are ϵ = 0.5, nr ep = 2, ntraj = 2, and nsteps = 2.

5.1.2 HFO. This domain is a simplification of the full RoboCup
[13] simulated Soccer task. In our setting, a learning agent has to
score a goal against a team of two highly specialized defensive
agents (the initial state of the target task is illustrated in Figure 2).

Figure 2: An illustration of the target task in HFO.

The defensive team follows theHelios policy [1] (the 2012 RoboCup
champion team). The performance in this domain is defined by the
percentage of scored goals in a predefined number of attempts. A
9The parameters were defined in preliminary experiments. As Equations (1) and (3)
result in values of different magnitudes, the threshold follows a different scale for each
algorithm.

learning episode starts with all agents initiated in a random position
(defensive agents always near the goal), and the ball possession
with the offensive agent. One opponent plays the role of goalkeeper,
while the other is a defender. The episode ends when the agent
scores a goal, a defensive agents captures the ball, the ball leaves
the field, or after 200 game frames. We define the reward function
as in [11]. A reward of +1 is awarded if a goal was scored, a reward
of −1 is given in case a defensive agent captures the ball or the
ball leaves the field, and a reward of 0 is given otherwise. When
carrying the ball, the available actions are:

(1) Shoot – takes the best available shot;
(2) Dribble – advances the agent and ball towards the goal.

Without the ball possession the only available action is Move,
which is a macroaction that tries to move the agent towards the best
possible position in the field. In spite of only having two available
actions when carrying the ball, this task is still very hard to solve,
as a reward is received only when the episode ends and the agent
scores a goal only when shooting at a propitious moment. The
Helios strategy (when also playing as the offensive agent) scores in
roughly 30% of the attempts, while a random agent has a score of
roughly 3% of the attempts. We make use of the following observa-
tions of the current state10, normalized in the range [−1, 1]:
• Goal Proximity – the distance from agent to goal center;
• Goal Angle – the angle from agent to goal center;
• Goal Opening – the largest angle from agent to goal with
no blocking agent;
• Opponent Proximity – the distance between the agent and
the nearest opponent.

The observations are discretized by Tile Coding [22] config-
ured with 5 tiles of size 48 and equally spread over the range.
The Object-Oriented description of the task has the classes C =
{Aдent ,Opponent ,Env}, in which the environment attribute is the
average initial distance between the offensive agent and the goal
Att(Env) = {dist},Aдent has attributes corresponding to the afore-
mentioned observations, and Opponent has a single attribute spec-
ifying the agent strategy (Helios or Base). We generated |T | = 8
tasks, in which we vary the initial distance between the teams and
the number and strategy of opponents. The source tasks are ex-
ecuted until one of the following conditions is true: (i) the agent
scores 80% of the attempts in the last 20 episodes; (ii) no goal is
scored in the last 50 episodes; or (iii) after 500 learning episodes.

The threshold parameter for Curriculum generation was set
ϵ = 0.5, ntraj = 3, and nsteps = 3 for our proposal and ϵ = 0.75
for Svetlik. The task generation parameters for our proposal are
ϵ = 0.5, nr ep = 20, ntraj = 3, and nsteps = 3.

5.2 Results
We here present the experimental results from both domains.

5.2.1 Gridworld. Figure 3a shows the performance observed
when solving the target task in the Gridworld domain. Although
Svetlik presents very good results in [30], we found out that their
proposal is quite sensitive to parameters and to the provided source
tasks. The performance shown in our experiments is the best re-
sult observed after trying several parameters, but it is still a little
10For a list of all usable observations, refer to [11].

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1031

(a) (b)

Figure 3: The average discounted rewards observed in 2, 000 repetitions of the experiment in the Gridworld domain. (a) refers
to the average performance during learning; and (b) to the cumulative rewards starting from step 1, 500. Steps used to learn
source tasks are also considered in the graph. The shaded area is the 95% confidence interval.

worse than No Curriculum if the steps in source tasks are also taken
into account. In turn, both OO-Generated and OO-Given achieved
positive results when compared to No Curriculum. Both of them
achieved a slightly worse performance than No Curriculum un-
til 1, 500 learning steps. Then, our proposal learns how to avoid
the negative rewards faster, achieving better results than No Cur-
riculum between 1, 700 and 3, 000 learning steps. Then, OO-Given
achieves the optimal policy few steps before No Curriculum while
OO-Generated takes a little longer, but OO-Generated has already
settled in a very good performance (near the optimal) by then. Fig-
ure 3b shows the accumulated reward in the target task starting
from 1, 500 steps for both configurations of our proposal and No
Curriculum. All the three algorithms have similar negative cumu-
lative reward up to roughly 2, 300 learning steps, after which the
improvement in the learning process when using our proposal be-
comes clear. This shows that even though fewer steps are needed
in the target task, the performance achieved in training is better.

Although Figure 3a assumes that learning steps have the same
difficulty for the agent in both the source and target tasks, for some
applications learning in source tasks may be easier (for example, if
source tasks are learned in a virtual simulator and the target task is
in the real world [10]). Therefore, Figure 4 shows the results if the
learning steps in source tasks are not considered. The difference
is not dramatic for our approach (but still slightly better than in
Figure 3a), as the source tasks are learned very fast. However, for
Svetlik this represents a huge "speed-up". Now Svetlik learns faster
than No Curriculum how to avoid negative rewards and it is even
a little better than our proposal, despite taking longer than OO-
Given to converge to the optimal policy. The results here show that
both Svetlik’s and ours proposals might be useful if steps in the
source task are less costly than in the target task. Notice that the
transfer potential metric is easier to compute with our proposal if
an object-oriented description is available, though.

5.2.2 HFO. Figure 5a shows the goal percentage when solving
the task for all algorithms. As the agents have a challenging task to
solve, it is very hard to improve performance. At the end of training,
all algorithms score goals around 20% of the attempts. This is a
good performance, as the Helios team scores roughly in 30% of the
attempts and it uses several hand-coded specialized strategies.

None of the Curriculum Learning approaches can achieve a better
performance than No Curriculum at the end of learning, but all

Curriculum approaches learn in the target task for less time. OO-
Given starts learning in the target task around episode 6, 000, and
quickly reaches No Curriculum performance. OO-Generated takes
longer to start learning in the target task, but the performance
achieved is already similar to No Curriculum as soon as it starts
learning in the target task. Svetlik also takes very long to start
learning in the target task, which happens at roughly episode 52, 000.
After starting learning in the target task, Svetlik takes longer than
our proposal to achieve No Curriculum performance, getting the
same performance than the other algorithms at roughly episode
70, 000.

Figure 5b more clearly shows that our proposal achieved a good
performance faster than No Curriculum when taking into account
only steps in the target task. Svetlik was also slightly better than
No Curriculum but worse than both settings of our proposal. The
number of cumulative goals scored by each approach (not shown
graphically here) indicates that Svetlik achieves the same cumu-
lative performance as No Curriculum, while both OO-Given and
OO-Generated achieve a slightly better performance, thus making
our proposal a better choice for this domain.

5.2.3 Summary of Experiments. In both experiments OO-Given
and OO-Generated presented a better performance than Svetlik and
No Curriculum in general. In the Gridworld domain our proposal
achieved a good performance clearly faster than not using Cur-
riculum, presenting advantages in both performance and number
of steps executed in the target task. In the HFO domain, our pro-
posal achieved a similar performance than not using Curriculum,

Figure 4: The average discounted rewards disregarding steps
carried out in source tasks in the Gridworld domain. The
shaded area is the 95% confidence interval.

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1032

(a) (b)

Figure 5: The average percentage of goals observed in 50 repetitions of the experiment in theHFO domain when the steps used
to learn source tasks are: (a) considered; and (b) not considered. The shaded area is the 95% confidence interval.

but still required fewer steps training in the target task. Our ex-
periments also show that the performance of our proposal when
generating tasks (OO-Generated) is consistent and satisfactory, as
in both domains the use of generated tasks achieved a competitive
performance when compared to the manually generated set of tasks,
which requires more manual intervention and domain-knowledge.

6 RELATEDWORKS
Curriculum Learning for RL is a relatively new area of research.
Narvekar et al. [18] were the first to propose the use of Curricula for
RL. They showed that a Curriculum can indeed be used to accelerate
learning in the complexHalf Field Offense [11] and Pacman domains.
However, their proposal requires a human-provided set of source
tasks and a manually specified sequence of tasks to be executed
by the agent. Later works showed that building a good Curriculum
is not easy, especially if Curricula are built by non-experts human
operators [20], which agrees with our view that, whenever possible,
automatically generating Curricula could be very beneficial. Svetlik
et al. [30] then proposed a method to estimate a Curriculum graph,
which we used as base for our proposal. Narvekar et al. [19] later
proposed an alternative method to generate Curricula by build-
ing a Curriculum MDP (CMDP), that is, modeling the autonomous
construction of the task sequence as a sequential decision-making
problem. However, their proposal is focused on adapting the Cur-
riculum for the agent’s individual capabilities, and the authors state
that the complexity of learning in the CMDP makes it slower than
learning from scratch if a previous Curriculum is not reused. Com-
pared to our approach, none of those works focused on how to
reuse knowledge from the already solved source tasks, or on how
to automatically generate the set of source tasks. Sukhbaatar et al.
[27] divided an agent into two components; one component creates
Curricula to the other by manipulating when the control is shifted
between them, hence artificially creating "initial" and "goal" states.
However, this procedure is rather a manipulation of the learning
algorithm than a source task creation, as only those states change
between the generated tasks.

The area of Transfer Learning (TL) is closely related to the use of
Curricula, as we could devise many ways to reuse knowledge from
one task to another through TL. Previous works have successfully
transferred samples of low-level interactions with the environment
[16, 31, 33], policies [8, 36], value or Q functions [9, 32, 35], action

suggestions [26, 38], and heuristics or biases for a more effective ex-
ploration [3, 4], each of them presenting benefits over learning from
scratch, and they could all be potentially combined with Curriculum
Learning. Other works also made use of relational representations
to transfer knowledge [14, 15, 37], using either OO-MDPs or similar
models, such as Relational MDPs [5, 7]. Multi-task Learning [8] and
Lifelong Learning [12] are also related to our work, but under these
paradigms the sequence of source tasks and the switch between
them cannot be controlled as we do here.

7 CONCLUSION AND FURTHERWORK
Accelerating the learning process of Reinforcement Learning (RL)
tasks is one of the main current concerns of the Machine Learning
community. The use of Curriculum Learning in RL is an emerging
and promising technique, but the previous works require carefully
extracted domain knowledge towork, in the form ofCurriculum con-
struction and manual source task base generation. We here propose
a procedure to generate the set of source tasks for a Curriculum, re-
quiring less domain-specific knowledge than in the previous works.
We also propose procedures to Object-Oriented Curriculum genera-
tion, which builds a Curriculum graph by using an intuitively-given
Object-Oriented task description, and to use the generated Curricu-
lum through a biased Random Walk approach. We have shown in
an empirical evaluation that our proposal presents advantages over
previous works in two challenging domains.

This work opens several lines of possible developments. The first
one is the development of additional principled procedures for prun-
ing Curricula, preferably adapting it according to the agent’s unique
particularities. We also intend to work on the development of Cur-
riculum generation procedures especially tailored for Multiagent
RL Systems [4], for which an object-oriented model already exists
[25]. The Transfer of Curriculum, that is, autonomously transferring
a Curriculum and adapting it to a new agent or for a new target
task, could also be an exciting challenge for further developments
in the area. Future works can also evaluate if the Object-Oriented
representation can help humans to better understand the agent
learning process [21] and to build better Curricula.

ACKNOWLEDGMENTS
We acknowledge financial support from CNPq, grants 311608/2014-
0 and 425860/2016-7, and São Paulo Research Foundation (FAPESP),
grants 2015/16310-4, 2016/21047-3, and 2018/00344-5.

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1033

REFERENCES
[1] Hidehisa Akiyama. 2012. Helios team base code. https://osdn.jp/projects/rctools/.

(2012).
[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and JasonWeston. 2009. Cur-

riculum Learning. In Proceedings of the 26th International Conference on Machine
Learning (ICML). 41–48. https://doi.org/10.1145/1553374.1553380

[3] Reinaldo A. C. Bianchi, Luiz A. Celiberto Jr., Paulo E. Santos, Jackson P. Matsuura,
and Ramon Lopez de Mantaras. 2015. Transferring Knowledge as Heuristics
in Reinforcement Learning: A Case-Based Approach. Artificial Intelligence 226
(2015), 102 – 121. https://doi.org/10.1016/j.artint.2015.05.008

[4] Georgios Boutsioukis, Ioannis Partalas, and Ioannis Vlahavas. 2011. Transfer
Learning in Multi-agent Reinforcement Learning Domains. In Proceedings of the
9th European Workshop on Reinforcement Learning. http://ewrl.files.wordpress.
com/2011/08/ewrl2011_submission_19.pdf

[5] Tom Croonenborghs, Karl Tuyls, Jan Ramon, and Maurice Bruynooghe. 2005.
Multi-agent Relational Reinforcement Learning. In Learning and Adaption in
Multi-Agent Systems. 192–206. https://doi.org/10.1007/11691839_12

[6] Carlos Diuk, Andre Cohen, and Michael L. Littman. 2008. An Object-Oriented
Representation for Efficient Reinforcement Learning. In Proceedings of the 26th
International Conference on Machine Learning (ICML). 240–247. https://doi.org/
10.1145/1390156.1390187

[7] Sašo Džeroski, Luc De Raedt, and Kurt Driessens. 2001. Relational Reinforcement
Learning. Machine Learning 43, 1-2 (2001), 7–52. https://doi.org/10.1023/A:
1007694015589

[8] Fernando Fernández and Manuela Veloso. 2006. Probabilistic Policy Reuse in
a Reinforcement Learning Agent. In Proceedings of the 5th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS). 720–727.
https://doi.org/10.1145/1160633.1160762

[9] Ruben Glatt, Felipe Leno Da Silva, and Anna Helena Reali Costa. 2016. Towards
Knowledge Transfer in Deep Reinforcement Learning. In Proceedings of the 5th
Brazilian Conference on Intelligent Systems (BRACIS). 91–96.

[10] Josiah Hanna and Peter Stone. 2017. Grounded Action Transformation for Robot
Learning in Simulation. In Proceedings of the 31st AAAI Conference on Artificial
Intelligence (AAAI). 3834–3840.

[11] Matthew Hausknecht, Prannoy Mupparaju, Sandeep Subramanian, Shivaram
Kalyanakrishnan, and Peter Stone. 2016. Half Field Offense: An Environment for
Multiagent Learning and AdHoc Teamwork. InAAMAS Adaptive Learning Agents
(ALA) Workshop. http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/

[12] David Isele, Mohammad Rostami, and Eric Eaton. 2016. Using Task Features for
Zero-Shot Knowledge Transfer in Lifelong Learning. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI). 1620–1626.

[13] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, and
Hitoshi Matsubara. 1997. RoboCup: A challenge problem for AI. AI magazine 18,
1 (1997), 73–85.

[14] Marcelo Li Koga, Valdinei Freire da Silva, and Anna Helena Reali Costa. 2015.
Stochastic Abstract Policies: Generalizing Knowledge to Improve Reinforcement
Learning. IEEE Transactions on Cybernetics 45, 1 (2015), 77–88. https://doi.org/10.
1109/TCYB.2014.2319733

[15] Marcelo Li Koga, Valdinei Freire da Silva, Fabio Gagliardi Cozman, and Anna
Helena Reali Costa. 2013. Speeding-up Reinforcement Learning Through Abstrac-
tion and Transfer Learning. In Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 119–126.

[16] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. 2008. Transfer of
Samples in Batch Reinforcement Learning. In Proceedings of the 25th International
Conference on Machine Learning (ICML). 544–551.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland,
Georg Ostrovski, et al. 2015. Human-level Control through Deep Reinforcement
Learning. Nature 518, 7540 (2015), 529–533. https://doi.org/10.1038/nature14236

[18] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. 2016. Source
Task Creation for Curriculum Learning. In Proceedings of the 15th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). 566–574.

[19] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. 2017. Autonomous Task Se-
quencing for Customized Curriculum Design in Reinforcement Learning. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI). 2536–2542.

[20] Bei Peng, James MacGlashan, Robert Loftin, Michael L. Littman, David L. Roberts,
and Matthew E. Taylor. 2016. An Empirical Study of Non-expert Curriculum De-
sign forMachine Learners. In Proceedings of the IJCAI InteractiveMachine Learning
Workshop. http://irll.eecs.wsu.edu/wp-content/papercite-data/pdf/2016iml-peng.
pdf

[21] Ramya Ramakrishnan, Karthik Narasimhan, and Julie Shah. 2016. Interpretable
Transfer for Reinforcement Learning based on Object Similarities. In Proceedings
of the IJCAI Interactive Machine Learning Workshop.

[22] Alexander A. Sherstov and Peter Stone. 2005. Function Approximation via Tile
Coding: Automating Parameter Choice. In Proceedings of the Symposium on
Abstraction, Reformulation, and Approximation (SARA). 194–205.

[23] Felipe Leno Da Silva and Anna Helena Reali Costa. 2017. Automatic Object-
Oriented Curriculum Generation for Reinforcement Learning. In Proceedings of
the 1st Workshop on Scaling-Up Reinforcement Learning (SURL). http://surl.tirl.
info/proceedings/SURL-2017_paper_1.pdf

[24] Felipe Leno Da Silva and Anna Helena Reali Costa. 2017. Towards Zero-Shot
Autonomous Inter-Task Mapping through Object-Oriented Task Description. In
Proceedings of the 1st Workshop on Transfer in Reinforcement Learning (TiRL).
http://www.tirl.info/proceedings/2017/SilvaCosta-Towards.pdf

[25] Felipe Leno Da Silva, Ruben Glatt, and Anna H. R. Costa. 2017. MOO-MDP:
An Object-Oriented Representation for Cooperative Multiagent Reinforcement
Learning. IEEE Transactions on Cybernetics PP, 99 (2017), 1–13. https://doi.org/
10.1109/TCYB.2017.2781130

[26] Felipe Leno Da Silva, Ruben Glatt, and Anna Helena Reali Costa. 2017. Si-
multaneously Learning and Advising in Multiagent Reinforcement Learning.
In Proceedings of the 16th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). 1100–1108.

[27] Sainbayar Sukhbaatar, Ilya Kostrikov, Arthur Szlam, and Rob Fergus. 2018. Intrin-
sic Motivation and Automatic Curricula via Asymmetric Self-Play. In Proceedings
of the 6th International Conference on Learning Representations (ICLR).

[28] Richard S. Sutton. 1996. Generalization in Reinforcement Learning: Successful
Examples Using Sparse Coarse Coding. Advances in Neural Information Processing
Systems (1996), 1038–1044.

[29] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Intro-
duction (1st ed.). MIT Press, Cambridge, MA, USA.

[30] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker, and
Peter Stone. 2017. Automatic Curriculum Graph Generation for Reinforcement
Learning Agents. In Proceedings of the 31st AAAI Conference on Artificial Intelli-
gence (AAAI). San Francisco, CA, 2590–2596.

[31] Ming Tan. 1993. Multi-agent Reinforcement Learning: Independent vs. Coop-
erative Agents. In Proceedings of the 10th International Conference on Machine
Learning (ICML). 330–337.

[32] Adam Taylor, Ivana Dusparic, Edgar Galvan-Lopez, Siobhan Clarke, and Vinny
Cahill. 2014. Accelerating Learning in Multi-Objective Systems through Transfer
Learning. In International Joint Conference on Neural Networks (IJCNN). 2298–
2305. https://doi.org/10.1109/IJCNN.2014.6889438

[33] Matthew E. Taylor, Nicholas K. Jong, and Peter Stone. 2008. Transferring Instances
for Model-Based Reinforcement Learning. In Machine Learning and Knowledge
Discovery in Databases (Lecture Notes in Artificial Intelligence), Vol. 5212. 488–505.

[34] Matthew E. Taylor and Peter Stone. 2009. Transfer Learning for Reinforcement
Learning Domains: A Survey. Journal of Machine Learning Research 10 (2009),
1633–1685. https://doi.org/10.1145/1577069.1755839

[35] Matthew E. Taylor, Peter Stone, and Yaxin Liu. 2007. Transfer Learning via Inter-
Task Mappings for Temporal Difference Learning. Journal of Machine Learning
Research 8, 1 (2007), 2125–2167.

[36] Matthew E. Taylor, Shimon Whiteson, and Peter Stone. 2007. Transfer via Inter-
Task Mappings in Policy Search Reinforcement Learning. In Proceedings of the
6th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS). 156–163.

[37] Nicholay Topin, Nicholas Haltmeyer, Shawn Squire, John Winder, Marie des-
Jardins, and James MacGlashan. 2015. Portable Option Discovery for Automated
Learning Transfer in Object-Oriented Markov Decision Processes. In Proceed-
ings of the 24th International Joint Conference on Artificial Intelligence (IJCAI).
3856–3864.

[38] Lisa Torrey and Matthew E. Taylor. 2013. Teaching on a Budget: Agents Advis-
ing Agents in Reinforcement Learning. In Proceedings of 12th the International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS). 1053–1060.

[39] Christopher J. Watkins and Peter Dayan. 1992. Q-learning. Machine learning 8, 3
(1992), 279–292.

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1034

https://osdn.jp/projects/rctools/
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1016/j.artint.2015.05.008
http://ewrl.files.wordpress.com/2011/08/ewrl2011_submission_19.pdf
http://ewrl.files.wordpress.com/2011/08/ewrl2011_submission_19.pdf
https://doi.org/10.1007/11691839_12
https://doi.org/10.1145/1390156.1390187
https://doi.org/10.1145/1390156.1390187
https://doi.org/10.1023/A:1007694015589
https://doi.org/10.1023/A:1007694015589
https://doi.org/10.1145/1160633.1160762
http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/
https://doi.org/10.1109/TCYB.2014.2319733
https://doi.org/10.1109/TCYB.2014.2319733
https://doi.org/10.1038/nature14236
http://irll.eecs.wsu.edu/wp-content/papercite-data/pdf/2016iml-peng.pdf
http://irll.eecs.wsu.edu/wp-content/papercite-data/pdf/2016iml-peng.pdf
http://surl.tirl.info/proceedings/SURL-2017_paper_1.pdf
http://surl.tirl.info/proceedings/SURL-2017_paper_1.pdf
http://www.tirl.info/proceedings/2017/SilvaCosta-Towards.pdf
https://doi.org/10.1109/TCYB.2017.2781130
https://doi.org/10.1109/TCYB.2017.2781130
https://doi.org/10.1109/IJCNN.2014.6889438
https://doi.org/10.1145/1577069.1755839

	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Object-Oriented MDPs
	2.3 Curriculum Learning for RL

	3 Object-Oriented Curriculum Generation
	4 Object-Oriented Automatic Source Task Generation
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Related Works
	7 Conclusion and Further Work
	References

