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ABSTRACT
Protest is a collective action problem and can be modeled as a
coordination game in which two or more people each take an
action with the potential to achieve shared mutual benefits, only
if their actions coincide. In the context of protest participation,
successful coordination requires that people know each others’
willingness to participate, and that this information is common
knowledge. Social networks can facilitate the creation of common
knowledge through the flow of messages. Although there is a rich
experimental literature that documents behavior in coordination
games with and without communication, little is known about
how people coordinate behaviors within a social network and how
different types of communication structures affect behavior.

In this paper, we develop a theoretically based on-line experi-
ment with Amazon Mechanical Turk participants to characterize
the emergence of common knowledge and coordination through
interactions within a network. Our experiment is designed to iden-
tify the effects of both social network topology and communication
and to falsify the game-theoretic predictions. Our data reveal that
choices are affected by the network structure and they move to-
wards the theoretical predictions with communication. We use our
behavioral findings to simulate dynamics in more complex net-
works through agent-based modeling. Thus, we combine human
behaviors identified in experiments with realistic social network
structures to reveal patterns not previously observed.
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1 INTRODUCTION
A single protester risks prosecution in authoritarian regimes and
has little chance of success. This risk can be reduced if a million
people successfully coordinate their actions. Thus the protest is a
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collective action problem where an individual wants to protest only
if joined by an “enough" number of other protesters. Game theorists
refer to this type of collective action problem as a coordination
game in which two or more people each take an action with the
potential to achieve shared mutual benefits, only if their actions
coincide [30, 37]. Critically, in the context of protest participation,
successful coordination requires that people know each others’
willingness to participate, and that this information is common
knowledge. Common knowledge is defined as an infinite string of
embedded levels of knowledge (i.e., I know they will participate,
they know I will participate, I know that they know, they know
that I know, I know that they know that I know, and so on).

Clearly, communication technologies play an important role
in the creation of common knowledge. Social networks, such as
Facebook, Twitter, and Youtube can facilitate information sharing
and the generation of common knowledge within groups of users.
Coordination within social network sites was a distinctive feature
of the infamous uprisings against authoritarian regimes such as
the Arab spring and Gezi protests in Istanbul. In contrast to tra-
ditional media that broadcast widely to a crowd, social networks
can facilitate actionable common knowledge through local inter-
actions. These interactions generate patterns of contact that allow
for the flow of messages among communicators through time and
space [33]. Here, message should be understood in its broadest
sense to refer to information and knowledge that can flow from
one point in a network to another and can be co-created by net-
work members. The ways in which individuals can share messages
(i.e., the communication mechanisms such as electronic mail, social
media, nonverbal: eye-contact, blushing, etc.) and the structural
features of the local interactions (i.e., network topology) affect the
generation and distribution of messages.

Previous studies by Chwe [13, 14] and Korkmaz et al. [28] com-
bined social structure and individual incentives to provide a rigor-
ous game-theoretic formalization of common knowledge on social
networks (and the characterizing network structures) within the
context of collective action (e.g., protests). The former emphasized
simple node-to-node or bilateral communication, whereas the latter
studied the effects of "richer" on-line communication mechanism,
such as Facebook. However, there is little empirical evidence that
supports these stylized common knowledge models, nor do these
models incorporate behavioral factors, and psychological processes.

In this paper, we develop a theoretically based experimental
framework to characterize the emergence of common knowledge
through interactions among individuals in networks. We test novel
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hypotheses derived from the mathematical model [14] at the indi-
vidual level by conducting human subject experiments in an on-line
setting. The objectives are (i) to characterize how communication
can facilitate an individual’s awareness of common knowledge
through local interactions, and (ii) to understand the effect of net-
work structure. More specifically, we designed an experiment with
Amazon Mechanical Turk (AMT) workers in which human subjects
and bots participated in several rounds of one-shot coordination
games within three different kind of network structures: Clique,
Circle and Star. Treatments varied with respect to whether players
could send messages, and whether they could observe the com-
plete graph. Choices consisted of either participating in a group
event or not participating. Participation was profitable only when
a threshold number of others also participated in the event. In
our experiments, human subjects were matched with bots to make
decisions within a network. Bots were programed to follow the the-
oretical prediction. We matched human subjects with bots, because
this allowed us to isolate the network and message effects from
other group dynamics that may arise from humans playing humans
and having different decision rules.

Results of our experiment show that communication helped
players coordinate their actions. The mechanism of coordination
being the generation of common knowledge. We found that par-
ticipation rates tended to be higher than predicted, in general, but
mostly when subjects knew more about the network. Interestingly,
communication did not always lead to more participation. Instead,
communication had the effect ofmoving participation rates closer to
the theoretical predictions, which sometimes prescribed no partici-
pation. Without communication and when the subject’s threshold
for participating was high, Clique networks performed worse than
other networks. In contrast, Star networks performed worst when
participation threshold was low. Through agent-based modeling,
we combined human behaviors identified in the experiments with
realistic social network structures. This exercise revealed interest-
ing effects from the fact that agents can participate in more than
one common knowledge set.

The rest of the paper is organized as follows. The next section
summarizes related work. In Section 3, we describe the theoretical
model presented in Chwe [13, 14] that our experiments are built on.
The experimental design, recruitment, and procedures are described
in Section 4. We introduce the agent-based modeling framework
and the real networks used for the simulations in Section 5. The
experimental and simulation results are presented in Sections 6.1
and 6.2, respectively. Section 7 discusses our findings.

2 RELATEDWORK
Common knowledge has come up in many different scholarly con-
texts; David Lewis [30], influenced by Thomas Schelling [37], first
made it explicitly, and Robert Aumann [3, 4] developed the mathe-
matical representation. The problem of coordination and common
knowledge has been examined by many disciplines, including po-
litical science [34], philosophy [27, 30, 36], economics [16, 23], lin-
guistics [17, 18, 39], sociology [42], legal theory [31], and computer
science [1, 24].

In a series of six experiments, [20] found experimentally that
2-level mutual knowledge (i knows that j knows that they both

know X) produces coordination more frequently than common
knowledge under particular conditions. Any level of knowledge
that fall short of infinity is called “shared knowledge.”

Recent psychological research shows that people represent com-
mon knowledge as qualitatively distinct from shared knowledge
and this distinction affects their strategic decisions [41]. Thomas
et al. [41] placed participants in hypothetical scenarios with the
payoffs of a Stag Hunt: they had to decide whether to work alone for
a certain but lower payoff, or to try to work together with a partner
for a higher payoff only if both made the same choice. They found
that subjects were most likely to choose to coordinate, when they
had common knowledge, in line with game-theoretic predictions.
These experiments were conducted with subjects in pairs.

More recently, there has been rapid growth of experimental plat-
forms and research on social networks, which are invaluable tools
to validate existing theoretical findings [11]. Experiments reveal
how individuals actually use network information, which may be
full or partial, and are generating behavioral data that relates net-
work structure to choices. These data, in turn, can serve as an input
for novel theoretical developments. Although there are a number
of recent papers that employ laboratory experiments to study de-
cisions within networks (e.g., [6–10]), the experimental evidence
concerning the role of network structure on collective action and
the degree to which network structure and communication interact
is not conclusive [40]. Much has been learned about behavior in
coordination games on networks (e.g., [2, 12, 21, 22]), but none of
these studies mainly focus on the formation of common knowledge
embedded in a network.

3 THE MODEL
In this paper, we focus on the game-theoretic model presented in
Chwe [13, 14]. Suppose there is a finite set of people N = {1,2, ...,n}
and each person i ∈ N chooses an action ai ∈ {0,1}, where 0
is the safe action, and 1 is the risky action (e.g., participation in
a protest). Each person i has an idiosyncratic private threshold
Ti ∈ {1,2, ...,n}, which is the minimum number of people that must
choose action 1 for i to benefit from choosing action 1. Individuals
in N are connected by edges in the social networkG , which denote
pairwise interactions. Let di denote the number of connections, i.e.,
the degree, of person i .

Chwe [13, 14] models social structure as a communication net-
work through which every person i tells her neighbors her willing-
ness to participate, represented by her threshold Ti . The communi-
cation network helps coordination by creating common knowledge
at each discrete time. Given person i’s threshold Ti and everyone’s
actions as = (a1s ,a2s, . . . ,ans ), his utility at time s ∈ {0,1, . . . ,S }
can be formulated as

Uis =



0 if ais = 0
1 if ais = 1 ∧ #{j ∈ N : ajs = 1} ≥ Ti
−z if ais = 1 ∧ #{j ∈ N : ajs = 1} < Ti

(1)

where−z < 0 is the penalty he gets if he participates and not enough
people join him. Thus, a person will participate as long as he is
sure that there is a sufficient number of people (in the population)
choosing the risky action. A person always gets utility 0 by staying
at home regardless of what others do since we do not consider
free-riding problems. When he participates, he gets utility 1 if the
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total number of people participating is at least Ti . Each individual
must take into account what she expects the other agents to do. As
described before, in game-theoretic contexts, coordination requires
that people know each others’ willingness to participate, and that
this information is common knowledge among a sufficient number
of people. Common knowledge among a set of people implies that:
they know each others’ thresholds and they know that they know their
thresholds. Therefore, they can count on each other.

The Chwe model [15] assumes that the network itself is com-
mon knowledge, so that agents know all communication channels
that exist between all pairs of members of the population. One
of the key features of large social networks prevailing in the real
world is that agents only have local information about the network.
Therefore, in our experimental setup we also test the network-
knowledge and consider the cases when the network structure –
who is connected to whom – is commonly known (referred to as
global network-knowledge), and only locally known. In our set-up,
common knowledge can also arise from the interaction of commu-
nication and network topology.

4 THE EXPERIMENT
4.1 Subjects
We recruited a total of 165 subjects from Amazon Mechanical Turk.
The experiment consisted of a questionnaire to extract demographic
information and personality traits, a set of hypothetical choice tasks
to elicit preferences over lotteries and over future payments, and
a series of decision trials. In each of these decision trials, each
subject made a one-shot decision on whether to participate in a
group event. Each group consisted of five decision-makers: four
bots and one human subject. Subjects were compensated for their
participation and for the earnings they got in one randomly chosen
trial. On average, subjects made 78.3 Experiment Currency Units
(ECU) where a single ECU was worth $0.03. The experiment took,
on average, 36 minutes to complete. Subject characteristics were
broad: 60% of the subjects were between 18-35; close to 60% were
male, more than 50% had a Bachelor’s degree, and close to 35% had
a household income in the range of $25K-$49K.

4.2 Design
The main objective of the study is to experimentally identify the
effect of network topology (clique, circle, or star) and messages
on coordination in threshold participation games under global in-
formation (where subjects observe the complete graph) and local
network information (where subjects observe their own links only).

Our main outcome variable is participation rates. In each trial,
subjects made decisions of whether to participate or not in a group
project. The choice of no participation guaranteed a payoff of 50
units, whereas the payoffs from participation were 150 units or 0
units depending on the subject’s threshold. The threshold repre-
sented the minimum number of other players needed for profitable
participation. Low thresholds (L) required that at least one other
person participated to earn 150 units. High thresholds (H) required
that at least 3 other people participated in order to earn 150 units.

At the beginning of each trial, each subject was randomly as-
signed an avatar, a threshold (H or L) and a group that consisted of 4

bots with varying threshold levels. Unknown to the subject, the bots
played the strategies that aligned with the theoretical predictions.

Our experiment consisted of a between and within subject mixed
design. There were a total of 4 treatments that varied with respect
to communication: no communication or bi-lateral, and whether
the subject had local or complete knowledge of the network: local
or global. In each of these treatments, subjects made a series of
one-shot decisions under differing network topology: star, circle
or clique. Table 1 summarizes the treatments and the number of
observations in each condition. The degrees (d) of the nodes in each
network are given in brackets.

Starp Circle Star Clique
Condition Subjects (d=1) (d=2) (d=4) (d=4)
Local – No Comm. 44 176 352 0 440
Local – With Comm. 39 156 312 0 390
Global – No Comm. 39 156 312 390 390
Global – With Comm. 43 172 344 430 430

Table 1: Summary of treatments and the number of trials
and subjects per condition.

Communication. In the communication treatments, subjects had
the option to send messages to and receive messages from those
with whom they had a direct link. In other words, we implemented
node-to-node or bi-lateral communication. Messages were chosen
from a set of predetermined options: “I will Participate” or “I will
NOT Participate”. In contrast, in the no communication condition,
participants were unable to send or receive any messages.

Network Topology. As mentioned above, there were a total of
4 treatment conditions (2 communication conditions x 2 network
knowledge conditions). In each of these treatments, the same sub-
jects made a series of one-shot participation decisions under differ-
ing network topology and threshold distribution. We studied three
graphs: circle, star, and clique, illustrated in Figure 1. The Circle
block type is a condition where each of the 5 players is connected to
2 others by communication links (i.e., a pentagon). The Star block
type is a condition where 1 of the 5 players is connected to each of
the other 4 (i.e., a cross). Subjects were exposed to trials in the star
condition as a periphery point (starp) and again as the center point
(star). Lastly, the Clique block type is a condition where each of the
5 participants are connected to everyone else.

Knowledge of Network. In the global network knowledge treat-
ments, subjects were given the complete network graph includ-
ing the names and thresholds of all other players (represented by
avatars) and all players’ neighbors (see Figure 1). Thus, the subject
knew his own position in the network, and who could commu-
nicate with whom. In the local network knowledge treatments,
subjects did not observe the complete network and were only given
threshold information for those with whom they were directly con-
nected (see Figure 2); however, the avatars of all other players were
revealed on a list.

4.3 Procedures
We recruited and rewarded subjects through Amazon Mechanical
Turk (AMT). AMT is an on-line marketplace for tasks. Workers
can login and perform tasks posted by requestors. Requestors, in
turn, provide payment to the workers through the AMT interface.
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Figure 1: Network topologies and arrangements for Global
network-knowledge condition. The subject is shown in blue.

Figure 2: Network topologies and arrangements for Local
network-knowledge condition. The subject is shown in blue.

AMT has become a popular site to deploy tasks, called "Human
Intelligence Tasks (HITS)", that are easy for humans but difficult
for machines. AMT has several benefits. It is relatively inexpensive,
it provides a diverse subject pool ([26, 29, 35]), and it is fast. Repli-
cation of results between the lab and AMT ([5, 19]) suggests that
AMT can be an useful proxy for laboratory experiments.

The experiment was run in two phases. In the first phase, a task
was posted on Amazon Mechanical Turk asking for workers to
complete the survey. We requested, and received, 575 responses to
the task. In the second phase, we posted a task to participate in the
experiment and restricted it to only subjects who had completed our
survey. We received 167 responses to the HIT for the experiment.

After consenting to participate in the experiment, subjects were
shown the instructions for the decision task. Upon finishing with
the instructions, subjects were given a quiz to ensure that they
understood the information presented throughout and they knew
how to navigate through the game platform. No one could move
on to the decision task before answering all questions correctly.

The timing of each trial started with all participants being as-
signed a new avatar and threshold that appeared on their screen or
"web-page". They were also able to see diagrams of their network
according to their “Network Knowledge” (i.e., local or global), and
a list of their direct connections with their connections’ thresholds
(either H or L) (see Figure 3). In the “communication” sessions,
players had the option to send a pre-determined message “I will
participate" or “I will NOT participate" to his/her direct connections.
After all messages were sent, they were able to read the messages
sent to them. When the players were finished reading messages,
they had to make the final decision to either “Participate (P)” or
“Not Participate (NP)” for that trial. Once the decision to partici-
pate was made, the next trial began without any feedback, and the
process repeated for a total of 22 or 32 trials in the local or global
network knowledge treatments, respectively. After all trials in a
session were completed, participants were paid privately according
to the outcomes of a randomly chosen trial.

4.4 Bot Behavior
As mentioned above, in each trial, each human subject was matched
with 4 bots to form a group. This was unknown to the subjects,

Figure 3: Subject messaging screen. In this trial the subject
is in the "Bilateral" communication condition.

who made repeated decisions matched with bots only. Bots were
programmed to follow the theoretical decisions and to send mes-
sages that truthfully reflected their intentions to either participate
or not participate. Table 2 describes the bots’ decision rules. The
decision rule r1 represents: "If there is at least one friend that has a
Low threshold, I Participate (P) else I do Not Participate (NP)".

Network Type Knowledge Threshold H Threshold L
Clique Local NP r1

Global P P
Star Local NP r1

Global NP r1
Starp Local NP r1

Global NP r1
Circle Local NP r1

Global NP r1
Table 2: Bot decision making. Columns "T=H" and "T=L" re-
fer to the bot threshold. The entries indicate whether the
bot chose Participate (P) or Not Participate (NP). The deci-
sion rule of bots, denoted as r1, is described in Section 4.4.

5 AGENT-BASED MODELING
5.1 Two Types of ABMs and Simulations
To understand the implications of the human subjects experiments
on larger, real-world populations, we performed simulations of the
initiation and spread of CK using agent-based modeling (ABM)
and social networks. We constructed simulations for two models.
First, we constructed the agent-based simulation (ABS) for Chwe
model of Section 3, called theoretical simulation (TS). Our second
model, experimentally augmented TS (EATS), augments the Chwe
model with data from experiments on cliques where players know
the network structure (global knowledge). In these simulations,
we used the experimental data for the case of no communication
among agents. The algorithm is given immediately below.
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5.2 Algorithm
We first focus on the algorithm for computing nodes that transition
from state 0 to state 1 with a CK set M at time step s . We use the
term agent “state” as a synonym for agent “action.” Also, we use
states 0 and 1 to represent actions participate (P) and not participate
(NP), respectively. Algorithm 1 is used in both the TS and EATS
simulations for this purpose. Thereafter, we put this algorithm in
the context of the overall simulations.

In Algorithm 1, we address the case where all nodesvj in a CK set
M are in state 0 (aj = 0). In the for loop, starting with the maximum
threshold Tmax,0 (M ) of all nodes ofM , we determine whether this
maximum is less than or equal to the number of nodes in state 0. If so,
all nodes in state 0 (i.e., in set Sk0T ) transition to state 1, according to
the Chwe model. If not, then the nodes with the maximum threshold
are removed, and the for loop repeats. If the nodes in Sk0T do
transition for some loop index, and an EATS is being executed,
then each node’s actual transition is determined probabilistically,
using the distribution in Table 3, according to whether each node
in M , in turn, has a low or high threshold. In essence, Table 3
contains probabilities of agent transition, conditioned on the TS
model prediction of transition, for configurations ofM . Thus, in this
last step the theoretical model is augmented by a probabilistic model
constructed with the experimental data of this study. By setting a
flag, the simulations can be run in each of two modes: TS and EATS.
Finally, we note that by conditioning the experimentally augmented
transitions on the pure-theory prediction in Table 3, we extend the
range of conditions (e.g., network structures, thresholds) over which
these experimental data may be used in modeling. Algorithm 1 is
executed within the context of a simulation that includes a user-
specified number of diffusion instances or runs, and a user-specified
number of time steps for each run.

Node Threshold 0.0 0.25 0.50 0.75 1.0
L 0.7949 0.9231 0.9487 0.8974 0.9487
H 0.6410 0.6154 0.6923 0.7436 0.7949

Table 3: Experimentally augmented transition probabilities,
Pr(state transition | w1, w2, w3, w4, w5), for a single node in
a CK set M for EATS, based on the fraction of other nodes
in M that have low threshold L (from 0 to 1.0 in 0.25 incre-
ment), where the conditions are w1: the particular CK sub-
structure [here, clique];w2: whether the nodes know the lo-
cal or global clique substructure [here, global]; w3: commu-
nication type [here, no communication]; w4: theory predic-
tion of state transition [here, for the case where the theory
predicts that the node will transition]; and w5: whether the
node evaluated has a low L or high H threshold. This prob-
ability is used in Algorithm 1. Linear interpolation is used
for other values of the fraction of other nodes with L. These
data were produced from the results in Section 6.1.

5.3 Networks
The two social networks used in ABS to evaluate CK spreading on
realistic populations are given in Table 4. NRV is a human social
contact network for a high school in the New River Vally (NRV),
Virginia. AH is an mutual friendship network fromAdd-Health [25].

Algorithm 1 CK-based state transition algorithm for agents in one
common knowledge setM .
1: Inputs: time t,CK set M ; ∀vj ∈ M , tuples (vj ,Tj ,aj ); simula-

tion type (TS or EATS).
2: Outputs: Set Sk0T ⊆ M for TS ABS, or Q ⊆ Sk0T for EATS
ABS, the set of agents changing to state 1. (Sk0T or Q may
possibly be the empty set.)

3: Steps:
4: Tmax,0 (M ) is the maximum threshold of all agents in M in

state 0.
5: Tmin,0 (M ) is the minimum threshold of all agents inM in state 0.
6: for (k = Tmax,0 (M ); k ≥ Tmin,0; −−k) do
7: Sk0T = {vj ∈ M : aj = 0 and Tj ≤ k }.
8: if (|Sk0T | ≥ k) then
9: // All nodes in Sk0T transition according to theory.
10: if (simulation type == TS) then
11: Return (Sk0T )
12: else
13: // Running EATS.
14: From nodes vj ∈ Sk0T , compute the set Q ⊆ Sk0T

of experimentally augmented state transitions according to
Table 3.

15: return(Q).
16: end if
17: end if
18: end for
19: // No agent transitions; return the empty set.
20: return(0).

Network Type n m dave dmax nc C∗

NRV High School 769 4551 11.8 20 1495 9
AH Friendship 2448 5277 4.31 10 1140 9

Table 4: Networks used in simulations, which are 2 and 3
orders of magnitude larger than the experimental networks
(in terms of n). n andm are numbers of nodes and edges; dave
and dmax are average and maximum degrees; nc is number
of cliques in the graph and C∗ is the maximum clique size.

6 RESULTS
6.1 Experimental Results
We collected data from 165 AMT participants: 82 of whom were
randomly assigned to the bi-lateral “communication” condition and
83 of whom were in the “no communication” condition.

In the Clique with communication, participation rates were not
statistically different from the theoretical predictions. Figure 4 il-
lustrates the participation decision of subjects with low threshold,
L, in the clique network. In this network, each player has 4 neigh-
bors. Since the subject’s threshold is 1, s/he needs at least one other
player to benefit from choosing P. The red bars correspond to the
case in which none of the neighbors had low threshold, and the
blue ones represent the case which at least one of the neighbors
had low threshold. Based on the theoretical models, subjects should
choose NP in the former, and P in the latter.

Yet, we observed that there was a bias towards participation that
is most likely due to an "irrational" expectation that others would
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Figure 4: Percentage of subjects with low threshold, L, that
chose “Participate" in the clique network. Error bars repre-
sent standard error. The theoretical prediction is 0% partic-
ipation under the local condition when all neighbors have
high threshold (red bars), and 100% under the global condi-
tion for both threshold configurations.

participate. We found that 86% of the subjects choose P (under
local - no communication condition), although they did not have
any neighbors with low thresholds. Introducing communication
reduced this percentage to 18%. The bias to participate disappeared
with communication, because the bots sent truthful messages (as
prescribed in the model) that they would not participate. Given that
no participation was common knowledge, subjects had no reason
to believe that others, all H, would participate.

In the global network-knowledge condition, high participation
levels ranging from 79%-95% with no communication and partici-
pation rates increased to almost full participation, 98%-100%, with
communication. These results follow the theoretical prediction.

Figure 5: Percentage of subjects with high threshold, H, that
chose “Participate" in the clique network. The number of
neighbors (nbrs) with threshold L is on the x-axis. The theo-
retical prediction is 0% participation under local, 100% under
global conditions.

When subjects’ thresholdswere high, communication alsomoved
decisions towards theoretical predictions (Figure 5). A high thresh-
old means that the subject needed at least three others to partici-
pate. Under the local-no communication condition, the theoretical
prediction was "NP" for all threshold allocations. However, the
participation probability ranged from 59%-79% (the red line in Fig-
ure 5). Under the global network knowledge condition on a clique,
the subject observed everyone’s thresholds and that everyone was
connected to everyone else (hence everyone knew everyone else’s

thresholds). Everyone ’should have known’ that if everyone (regard-
less of thresholds) participated, everyone would benefit, because
the threshold would be met. In comparison to the local condition (in
which theory predicts zero participation for H-type), the model pre-
dicts full participation in the global network condition. However,
the participation probability we obtained in the global network
knowledge was in the range 61%-79% (the green line in Figure 5),
which was not statistically different from the 59%-79% range.

Figure 6: Percentage of subjects that chose “Participate" in
the star network. The theoretical prediction is 0% participa-
tion when subject has high threshold (right). When the sub-
ject’s threshold is T=L (left), the prediction is 100% participa-
tion when there is at least 1 neighbor with T=L (green bars),
and 0% when all neighbors of the subject have T=H (red).

In the star network under the global network-knowledge condi-
tion (see Figure 1), the subject observed the exact same network as
in the clique-local condition (see Figure 2). Not surprisingly, similar
behavior was observed in the two networks when the subjects’
thresholds were low. This is shown in Figure 4 (the first four bars)
and Figure 6 (left). Here, communication reduced the participation
rate significantly. When the subject had a high threshold and there
was no communication, behaviors were similar (red and green lines
in Figure 5 and the green line in Figure 7, respectively). However,
when communication was introduced, the participation rate was
significantly lower in the star network compared to the clique. The
purple line in Figure 7 is significantly lower than the purple line in
Figure 5. This effect is in part due to the fact that messages were
generated by truthful bots, and reflected the optimal decision.

Figure 7: Percentage of subjects with threshold H that
chose “Participate" in the star network under global net-
work knowledge condition.

In the circle network (Figure 8), when the subject had 2 neighbors,
the results are similar to those for the star network as well as
the ones for the starp network, which we omitted due to space
constraints. To summarize, communication in these conditions also
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moved the participation rates towards the theoretical prediction.
Communication yielded higher participation rates when at least
one of the neighbors had low threshold or T=L (green bars), and
lower rate when both neighbors had high thresholds or T=H (red).

Figure 8: Percentage of subjects that chose “Participate"
in the circle (d=2) network. The theoretical prediction is
100% participation when at least 1 of the neighbors has low
threshold (green), and 0% when both neighbors have T=H.

Figure 9 summarizes the findings for the networks of the study
and for all conditions when everyone in the network (the sub-
ject and the four bots) had high threshold, T=H (when T=L for
all nodes, the participation rate for all networks was high, and
communication increased it further; this figure is omitted due to
space constraints). When T=H, communication decreased the par-
ticipation significantly for three networks (circle, star and starp)
under both local and global conditions (Figure 9). In the clique net-
work, communication increased participation rates under the global
network-knowledge condition, and decreased under the local.

Figure 9: Percentage of subjects that chose “Participate"
when T=L and T=H for all subjects, respectively.

We compared and contrasted these findings with the theoretical
predictions in Figure 10. The comparison suggests that the partici-
pation rate is below the theoretical prediction for all networks when
T=L. Communication moved the rate towards the horizontal line
that represents the match between the predictions and the findings.
When the threshold was high for all nodes, communication pushed
behavior towards the theoretical predictions (although the effects
on the networks vary).

Figure 10: Deviations from theoretical predictionswhenT=L
and T=H for all subjects, respectively. The dashed horizontal
line represents thematch between the theoretical prediction
and the experimental finding.

6.2 ABM Results
We performed over 80 simulations on the two networks in Table 4,
with conditions summarized in Table 5. Within each simulation,
each run used a different threshold assignment of L and H to nodes,
with one-half the nodes possessing each threshold in expectation.
Note that nodes with threshold T > (C − 1), where C is clique size,
will not transition to state 1.

nn ns nr tmax L H Sim. Type
2 40 100 30 from 2 to H [0.2C∗,1.1C∗] TS, EATS

Table 5: Summary of simulation characteristics. Thenumber
of networksnn = 2; number of simulations per networkns =
40; number of runs per simulation nr = 100; number of time
steps per run tmax = 30; low thresholds varied from2 toH, in
increments of 2; high threshold varied from a small fraction
of the maximum clique size C∗ to slightly greater than C∗.

A notable difference between the experiments and the simula-
tions is that while the experiments and the theory-based simula-
tions (TS) are one-shot events, the EATS occur over multiple rounds.
This is because the theoretical model, as used here, is deterministic;
thus, all nodes that change state do so in one time unit. However,
the EATS are probabilistic, owing to the transition probabilities of
Table 3.

Simulation results for the NRV network (left) and AH network
(right) are given in Figure 11. The cumulative fraction of agents in
the network that transitions to state 1 is shown as a function of
time for different L,H threshold combinations in the legends.

The agreement between the theory-only model simulation (TS)
results and experimentally-augmented theory simulation (EATS)
results is somewhat surprising. There is much greater agreement
than anticipated from the probabilities in Table 3 and in the experi-
ments, where high threshold nodes only transition with probability
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between 0.641 and 0.795. These results in Figure 11 hold even when H
is as low as 3 (< C for all but the cliques of size 3), so that even many
H-threshold nodes can transition.

(a) (b)
Figure 11: Simulation results showing the cumulative frac-
tion of agents in state 1 as a function of time for the two
networks: (a) NRV and (b) AH. The legend in each plot gives
L,H and simulation type. The theoretical simulation (TS) re-
sults are dashed curves and they lay under the correspond-
ing solid curves (EATS), indicating close agreement between
the two types of simulations. TS terminate at time 1 because
TS are deterministic. The EATS, because of the stochasticity,
continue on for a few more time steps, transitioning rela-
tively few nodes for s > 1. The qualitative results in these
plots hold over all of the conditions in Table 5.

The observation is explained by the fact that roughly one-half of
the nodes of AH are in at least two cliques, and one-quarter of the
nodes are in at least three cliques; see Figure 12. Since each clique
is evaluated at each time, a node that transitions with probability
p = 0.641 in Table 3 (given that the theory computes that the
node should transition) and is in q = 2 cliques, will transition with
probability Pr(state transition) = 1 − (1 − p)q = 0.902; if q = 3,
Pr=0.954. That is, nodes in more than one clique have a much
greater effective probability of transition to state 1. By comparison,
almost all nodes of NRV in Figure 12 are in more than one clique.
In fact, many social networks (we have evaluated over 10) have this
feature that nodes are in multiple cliques, so this is a phenomenon
that is applicable to many networks beyond those examined here.
Consequently, these simulations illustrate the power of modeling—
in capturing how human behavior from experiments and social
network structures interact to produce interesting and somewhat
counterintuitive results.

Figure 12: Cumulative density function showing the frac-
tion of nodes that appear in the number of CK sets on the
abscissa. In AH, one-half of the nodes are in more than one
clique; in NRV, almost all nodes are inmore than one clique.

7 DISCUSSION
Our main take-away from this experiment is that communication
and network structure interact to produce common knowledge.
Without communication and with global network knowledge, par-
ticipation rates are higher than predicted in the Star and Circle
networks and lower than predicted in the Clique. Communication
does not always lead to more participation; instead, communica-
tion allows players to make decisions that are consistent with the
theoretical predictions. Sometimes this means more participation,
other times this means less participation.

Strategically and theoretically speaking, the participants in the
local knowledge with no-communication conditions acted with an
exceptionally high risk-accepting attitude. This attitude was even
more pronounced among individuals with a high threshold, which
artificially produced risk-avoiding attitude. Indeed, participating
under these constraints would lead to a suboptimal outcome when
other players use theoretically derived behaviors. Despite of in-
herent risk of a loss in this context, a majority of subjects chose
“Participate”.

We can infer from this that subjects had an ’irrational’ belief
that others would participate. In psychology, this phenomenon is
known as unrealistic optimism. People are considered to be unre-
alistically optimistic if they predict that future outcomes will be
more personally beneficial, or less negatively harmful, than that
suggested by a relevant, objective standard [38].

Indeed, during a pilot testing, we distributed a survey to our
subjects to investigate some of the thought processes behind par-
ticipant motivation. The majority reported basing their individual
participation decisions on three sets of information: 1) “my thresh-
old”, 2) “my friends’ threshold” and 3) “my network”. In the local
knowledge with no-communication conditions, it was not longer
possible to use these to make informed participation decisions.
Thus, participants had to rely on their intuition, which can lead
individuals to underestimate the control that others have in their
lives and overlook the possible motives of others.

We believe that the illusion of control perceived by the personal
threshold being the only information available, was the mechanism
that led to the high participation rates in the local knowledge with
no-communication conditions [32]. Further evidence of this can
be seen in the comparisons to the other conditions that held much
closer to the theoretical predictions. In the case of the local knowl-
edge with communication condition, it became obvious that the
subjects’ intention was still to participate initially. The fact that the
other players all sent signals that they would “not participate”, is
what ultimately persuaded the participants to change their decision.
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