
Burn-In Demonstrations for Multi-Modal Imitation Learning
Alex Kuefler
Osaro, Inc.∗

San Francisco, CA
alex@osaro.com

Mykel J. Kochenderfer
Stanford University

Stanford, CA
mykel@stanford.edu

ABSTRACT
Recent work on imitation learning has generated policies that re-
produce expert behavior from multi-modal data. However, past ap-
proaches have focused only on recreating a small number of distinct,
expert maneuvers, or have relied on supervised learning techniques
that produce unstable policies. This work extends InfoGAIL, an al-
gorithm for multi-modal imitation learning, to reproduce behavior
over an extended period of time. Our approach involves reformu-
lating the typical imitation learning setting to include “burn-in
demonstrations” upon which policies are conditioned at test time.
We demonstrate that our approach outperforms standard InfoGAIL
in maximizing the mutual information between predicted and un-
seen style labels in road scene simulations, and we show that our
method leads to policies that imitate expert autonomous driving
systems over long time horizons.

KEYWORDS
Modelling for agent based simulation; Deep learning; Reward struc-
tures for learning
ACM Reference Format:
Alex Kuefler and Mykel J. Kochenderfer. 2018. Burn-In Demonstrations for
Multi-Modal Imitation Learning. In Proc. of the 17th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm,
Sweden, July 10–15, 2018, IFAAMAS, 8 pages.

1 INTRODUCTION
Modeling human behavior is necessary for developing and validat-
ing autonomous systems. In the context of autonomous driving,
modeling drivers is challenging because there is significant variabil-
ity in driving style and behavior. Latent factors, such as a person’s
degree of attentiveness or their willingness to take risks may influ-
ence the type of driving behavior they demonstrate. As a result, a
distribution of expert demonstrations of some sequential decision
making task may have multiple modes, resulting from factors that
are difficult to measure.

One line of research attempts to discover latent factors underly-
ing expert demonstrations using fully differentiable models trained
with stochastic gradient variational Bayes [12, 22]. In robotics, vari-
ational autoencoders (VAE) have been used to discover latent em-
beddings of human demonstrations, allowing classical controllers to
act in feature spaces that obey desirable properties [22]. VAEs have
also been used to learn shared embedding spaces for different sensor
modalities, allowing a single model to reconstruct, for example, the
motion of a stroke from an image of a handwritten digit [23]. More
∗ Work carried out at the Stanford Intelligent Systems Laboratory.
Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

recently, this model family has been applied to discover different
actuation modalities, as in the case of demonstrations that share
the same observation space, but were sampled from experts who
obey different policies. In the context of autonomous driving, driver
modeling is treated as a conditional density estimation problem,
where the model is trained by conditioning on driver observations
and predicting actions (e.g., acceleration and turnrate) from the
expert demonstrations alone. Such models can be fit without gath-
ering new data in simulation, and can thus discover latent factors
in expert demonstrations directly [15]. However, policies trained
with supervised learning are sensitive to minor prediction errors,
making this approach impractical for many sequential decision
making problems [16].

Methods based on Generative Adversarial Imitation Learning
(GAIL) combine supervised and reinforcement learning by conduct-
ing rollouts in simulation [8]. Human demonstrations and policy
rollouts can then be compared by a critic, which is trained to provide
high reward when the policy’s behavior becomes indistinguishable
from those of experts. Information Maximizing GAIL (InfoGAIL),
in particular, addresses the problem of learning policies from multi-
modal demonstrations, and has been used to produce driver models
that exhibit different passing and turning behaviors [14]. However,
InfoGAIL and related techniques [7] involve sampling a latent code
at the beginning of each trial. If the simulated ego-vehicle is initial-
ized with the velocity and heading of a real driver, random sampling
of latent codes can not ensure consistency between the policy’s
subsequent actions and the driver’s true style. This shortcoming
limits the applicability of InfoGAIL to real highway scenes, where
ego vehicles are sampled from playbacks of recorded data [13].

We introduce Burn-InfoGAIL, an imitation learning technique
that addresses this limitation by drawing latent codes directly from
a learned, inference distribution [24]. Like recent work on one-
shot [4] and diverse imitation learning [21], our models not only
learn from a set of demonstrations, but also condition upon spe-
cific reference demonstrations at the beginning of each rollout in a
simulated environment. However, Burn-InfoGAIL assumes a new
task formulation, motivated by simulated driving. In this setting,
a policy must take over from the point at which a specific expert
demonstration ends, such as when steering is engaged in an au-
tonomous car. We refer to the partial, expert trajectory as a burn-in
demonstration, upon which the learned inference model must be
conditioned in order to draw latent codes. This work demonstrates
that Burn-InfoGAIL is able to achieve greater adjusted mutual in-
formation (AMI) with true driver styles than standard InfoGAIL or
a variational autoencoder (VAE) baseline. Furthermore, we show
that driving trajectories produced by Burn-InfoGAIL deviate less
from expert demonstrations than GAIL, InfoGAIL, or supervised
learning techniques.

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1071

Figure 1: Dynamic Bayesian network model of driver style.
A latent factor z determines the underlying style of driver
behavior. Vehicles progress according to an expert rollout
τ , which is a sequence of states and actions carried out by a
human driver or hand-crafted controller. The learned policy
is conditioned on this history to select an action a, which
positions the model in a subsequent state s ′ as determined
by the dynamics of the environment.

2 PROBLEM FORMULATION
We adopt a dynamic Bayesian network model of driver style [15].
Each vehicle is characterized by a unique style variable z, which
influences the action at taken in response to an observation st seen
at time t . In this work, we assume a vehicle’s trajectory through
this environment proceeds in two stages. First, actions are cho-
sen according to an expert policy πE obeying style z for a burn-in
demonstration lasting T time steps beginning by first observing s0.
Starting with sT+1, actions are then sampled until early termination
or time horizon H according to a learned policy πθ , parameterized
by θ . We will use τ = (s0,a0, ..., sT ,aT) to denote the sequence of
observations and actions occurring during the burn-in demonstra-
tion. The generative process that gives rise to our data (shown in
Figure 1) factorizes according to:

p(s,a, z,τ) = p(z)p(τ | z)p(s | τ)p(a | s, z) (1)
= p(τ)p(s | τ)p(z | τ)p(a | s, z) (2)

where s = sT+1, and the factors p(a | s, z) and p(τ) may be inter-
preted as πθ and a distribution over expert trajectories respectively.
The factor p(s | τ) corresponds to the transition dynamics of the
environment, which leaves p(z | τ) to be estimated from data. In
our setting, the actions a are two dimensional vectors encoding the
acceleration and turn-rate of the ego-vehicle. The observation s
consists of both hand-selected and low-level features, described in
the implementation section.

3 APPROACH
We propose a new variation to GAIL, which discovers latent factors
in expert demonstrations while learning different driving policies.
Unlike past work, we assume a setting in which our policy not only
learns from demonstrations, but conditions on individual trajecto-
ries, continuing from where expert demonstrations stopped. This
section describes the objectives we wish to optimize in order to
discover both latent intentions and stable policies.

3.1 Imitation Learning
In the imitation learning setting, we wish to train a policy πθ that
captures behavior similar to those of an expert policy πE . Because
the reward optimized by πE is unknown, GAIL [8] introduces a
discriminator Dω , parameterized by ω, that can help πθ improve
by distinguishing expert from non-expert actions. GAIL minimizes
with respect to θ and maximizes with respect to ω the objective:

V (θ ,ω) = Ea∼πE (· |s)[logDω (s,a)]+
Ea∼πθ (· |s)[log(1 − Dω (s,a))]

(3)

Recent variants of GAIL [14] replace the discriminator with a critic,
which outputs a real-valued score rather than a probability. We
adopt this formulation and train Dω to minimize the Wasserstein
objective,

W (θ ,ω) = Ea∼πθ (· |s)[Dω (s,a)]−

Ea∼πE (· |s)[Dω (s,a)]
(4)

learning to output a high score when encountering pairs produced
by πE , and a low scorewhen conditioned upon outputs from a policy.
The output of the critic Dω (s,a) can then be used as a surrogate
reward function r̃ (s,a). Assuming an appropriate value for ω, the
surrogate reward increases as actions sampled from πθ look similar
to those chosen by experts. In our setting, πθ may end a training trial
prematurely by causing a collision or going off-road. To discourage
early stopping, we define r̃ (s,a) to be always positive,

r̃ (s,a) = log(1 + eDω (s,a)) (5)

Optimizing equations 3 and 4 has lead to policies that reproduce
expert performance in a number of settings [8, 13, 14]. However, the
behavior of these policies tend to be unimodal, failing to account
for different latent styles.

3.2 Information Maximization
In standard variational information maximization [2], the objective
is to maximize the mutual information between a generator and
posterior p(z | s,a) over latent codes by optimizing a lower bound.
In contrast, we view q(z | s,a) as an inference distribution with
associated marginal q(z), rather than a variational approximation
to p(z | s,a) [24]. We propose maximizing the mutual information
between our policy and the joint inference distribution directly,
using the factorization in equation 2:

Iq (z; s,a) = Eq(s,a,z,τ)[logq(z | s,a) − logq(z)] (6)

= Eτ ,s,z′,a
[
logq(z′ | s,a)

]
− Ez′

[
logq(z′)

]
(7)

= H (Qψ (z
′)) −C(θ ,ψ) (8)

where τ ∼ p(τ) is drawn randomly from a distribution of burn-in
demonstrations, the initial observation for the rollout s ∼ p(s | τ)
is determined by the environment dynamics, and the target latent
code z′ ∼ q(· | τ) and initial action a ∼ πθ (· | s, z

′)must be sampled
from learned models.

The model Qψ is a parametric representation of the inference
distribution q(z | s,a), parameterized byψ . The objective C(θ ,ψ) is
simply the cross entropy error between the latent code z′ sampled
at the beginning of the trial, and the code predicted byQψ at the end,
which is minimized in standard InfoGAIL. However, we now sample
z′ from the inference model Qψ (z′ | τ) conditioned on the burn-in

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1072

Figure 2: Diagram of Burn-InfoGAIL. The expert πE selects actions during the burn-in demonstration, whereas learned πθ
selects actions during the rollout. Dashed lines represent the majority vote taken over predicted latent codes z to produce the
initial z′ for the rollout. Red arrows represent the contribution of the state-action pairs to the RMSProp, TRPO, and Adam
optimizers. Blue arrows represent the contribution of z, and green arrows represent the contribution of critic outputs r̃ .

demonstration τ , rather than an arbitrary prior. The termH (Qψ (z
′))

is analogous to the entropy over latent codes derived in past work [3,
7]. Because we now sample codes from Qψ (z | τ) at the beginning
of each trial, Qψ (z′) = Eτ

[
Qψ (z

′ | τ)
]
≈ Êτ

[
Qψ (z

′ | τ)
]
) must be

approximated using Monte Carlo estimation.

3.3 Burn-InfoGAIL
Combining equations 4 and 8, the final form of our objective is
given by:

min
θ

max
ω,ψ

W (θ ,ω)︸ ︷︷ ︸
Imitation

−C(θ ,ψ)︸ ︷︷ ︸
Style

+λH (Êτ
[
Qψ (z

′ | τ)
]
)︸ ︷︷ ︸

Entropy
(9)

where λ is a hyperparameter controlling the weight of the entropy.
The first term encourages the model to imitate the driver data, and
the second term allows it to perform its imitation in such a way
that the driver class can be predicted from its actions. The third
term ensures that the inference model will, on average, sample from
among all the latent codes.

Assuming that driver styles are distributed uniformly in the true
data set, H (Qψ (z

′)) can be interpreted as the Kullback-Leibler (KL)
Divergence between the expected value of the inference model and
prior distribution. In other words, we sample a code z by condi-
tioning our model on the burn-in demonstration to ensure that the
latent code reflects the actual style of the expert each trial. Because
the optimization wants to minimizeC(θ ,ψ), the sampling posterior
may attempt to push its probability mass to a single label, so as to be
maximally discriminable. Therefore, H (Qψ (z

′))must be maximized
to ensure that, on average, samples from the posterior Qψ (z | τ)
are uniformly distributed. This result leaves open the opportunity
to extend our approach to different distributions of expert data by
changing the prior over z, but we defer this question to future work.

4 IMPLEMENTATION
In practice, Burn-InfoGAIL requires an environment simulator in
which to generate rollouts and parametric, conditional density es-
timators to represent the policy, critic, and inference model. This
section explains how these components were implemented for our
experiments.

4.1 Environment
The simulator used to generate data and train models is based on an
oval racetrack, shown in Figure 3. As in past work [15], we populate
our environment with vehicles simulated by the Intelligent Driver
Model [19], where lane changes are executed by the MOBIL general
lane changing model [10]. The settings of each controller are drawn
from one of four possible parameterizations, defining the style z of
each car. The resulting driving experts fall into one of four classes:

• Aggressive: High speed, large acceleration, small headway
distances.

• Passive: Low speed, low acceleration, large headway dis-
tances.

• Speeder: High speed and acceleration, but large headway
distance.

• Tailgating: Low speed and acceleration, but small headway
distances.

Furthermore, the desired speed of each car is sampled from a
Gaussian distribution, ensuring that individual cars belonging to
the same class behave differently. A total of 960 training demonstra-
tions and 480 validation demonstrations were used, each lasting 50
timesteps (or 5 seconds, at 10 Hz).

The observations are represented with a combination of LIDAR
and road features [13, 15]. We used 20 LIDAR beams, giving the
policy access to both distance and range rate for surrounding cars.

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1073

Figure 3: Scenes taken from oval track environment after
inititialization and a few seconds of driving. Over time,
tail-gaiters (green) and aggressive drivers (red) cluster be-
hind passive drivers (blue). Speeders (cyan) retain their large
headway distances.

Road features included attributes such as the ego vehicle’s speed,
lane offset, and distance to lane markings. We also include three
indicator variables in the observation vector, which detect collision
states, off-road events, and driving in reverse. We terminate training
when any of these three indicators are activated. Between LIDAR
distance, range rate, road features, and indicator variables, the
complete observation vector amounts to a total of 51 attributes.

4.2 Model Architecture
The models πθ , Dω , Qψ (shown in Figure 4) are represented by
multilayer perceptrons (MLP) with tanh activations. Actions are
sampled a ∼ N(πθ (· | s, z), Iσ) during training, where σ is also
a trainable parameter vector. The 4-dimensional latent code z is
passed into πθ using a learned, linear embedding. Because the
latent code is of a lower dimensionality than the input features,
but we desire it to have a large influence on the outputs of πθ ,
the embedding vector is concatenated with a later hidden layer of
the policy network. The policy πθ attempts to optimize the sum
of discounted r̃ (s,a), which is not differentiable with respect to θ .
However, policy gradient reinforcement learning can be used to
approximate a gradient to train the model iteratively. In this work,
we use Trust Region Policy Optimization (TRPO) [5, 17] to fit πθ .

The inference model Qψ predicts the parameters of a categori-
cal distribution. Note that although Qψ (z | s,a) is a feedforward
network, we condition on trajectories, predicting a value for each
state-action pair and taking the most frequent prediction over the
sequence. This network is simply trained to perform a 4-category
classification task, where the “labels” for each example are gen-
erated at the beginning of the trial. Therefore, Qψ can be trained

Figure 4: Network architecture for the policy πθ , inference
model Qψ , and critic Dω . Directed arrows denote feedfor-
ward connections, bidirectional arrows denote concatena-
tion, and integers denote the dimensionality of each layer.

end-to-end with Adam, which leverages both momentum and fea-
ture scaling during stochastic gradient descent [11].

Finally, the objective used to update Dω is also differentiable
with respect to ω. The class labels (whether a state-action pair was
produced by an expert, or πθ) can be determined easily as well.
However, Arjovsky et al. [2017] demonstrate that in order to obey
the K-Lipschitz property, momentum free updates must be used to
train the discriminator. Therefore, ω is fit using RMSProp [18].

5 EXPERIMENTS
In the following experiments, we evaluate πθ as a model of driving
behavior, and Qψ as an unsupervised, trajectory clustering tech-
nique. We would like to ensure that the values predicted by Qψ ,
when conditioned on expert trajectories, correlate with the under-
lying label z of the expert. As such, we use the adjusted mutual
information (AMI) to measure performance [20].

5.1 Entropy and Mutual Information
We first experimented with different settings of λ in order to assess
the role entropy maximization plays in our algorithm. Figure 5
shows that λ = 0 caused Qψ to converge to perfect classification
accuracy with AMI(Qψ (z | τ), z) = 0, as predicted. Figure 6 gives
insight into this degenerate solution. We see that because Qψ pro-
duces its own labels at the beginning of the trial, it learns to collapse
the entirety of its probability mass onto a single label (in this case,
Qψ (z | τ) = 3), so as to be maximally predictable. Conversely, when
λ = 500, both AMI and classification accuracy increase over training
epochs.

After training, we applied the model achieving the highest AMI
to a held out validation set of expert state-action pairs. Table 1
shows that the network outperforms other unsupervised learning
techniques on unseen data, including the recurrent, variational
autoencoder (VAE) first trained on this task environment [15].

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1074

Figure 5: Training progress for both the reconstruction accu-
racy and adjustedmutual information obtained by the infer-
ence model, while varying the weight of entropy. Standard
deviations were obtained by training 10 models for each ex-
perimental condition.

Table 1: Adjusted mutual information scores of different
models of q(z | s,a) on validation set. Compares approaches
that are unsupervised (U), supervised (S), and those that re-
quire a simulator to perform rollouts (R).

Method Training Validation AMI

K-Means U 0.0
VAE + K-Means U 0.24
InfoGAIL U + R 0.16
Burn-InfoGAIL U + R 0.38
SVM S 0.95
VAE + SVM S 0.22

5.2 Reproducing Driving Behavior
Our next experiment tested how policies learned by Burn-InfoGAIL
compared to other techniques for imitation learning. We randomly
sampled 1,000 initial conditions and computed the rootmean squared
error (RMSE) of the speed and global position of learned policies

Figure 6: Example frequencies with which each latent code
was sampled during model training with different λ. En-
tropy weighted models sample the classes more uniformly
throughout training, whereas models that do not use en-
tropy converge to a single value.

versus expert driving behavior over 30 second trajectories. To en-
sure that all trajectories had consistent lengths for comparison, the
validation environment did not end trials in the event of a collision,
off-road, or reversal. Table 2 shows the frequency with which these
“bad events” occurred during rollouts for each trial. Burn-InfoGAIL
finds a good trade-off between going off-road and avoiding colli-
sions, achieving a collision rate comparable to GAIL, but an off-road
rate that is significantly smaller.

We compared against three baseline models: The first baseline
is the VAE driver policy proposed by Morton and Kochenderfer
[2017]. Its encoder network consists of two Long Short-Term Mem-
ory (LSTM) [9] layers that map state-action pairs to the mean and
standard deviation of a 2-dimensional Gaussian distribution. Its
decoder, or policy, is a 2-layer MLP, also consisting of 128 units.
During testing, the encoder conditions on the burn-in demonstra-
tion and the predicted mean of the distribution is used as the latent
code for the policy. The second baseline is a GAIL model trained
on the objective in equation 4. It has the same model architecture
as πθ , with the exclusion of the learned embedding layer needed to
encode the style variable. Finally, we test against an implementa-
tion of InfoGAIL that is architecturally identical to πθ , but simply
samples z from a discrete uniform distribution at the beginning of
each trial.

As shown in Figure 7, Burn-InfoGAIL achieves the lowest error
over the longest period of driving. GAIL is able to capture differ-
ences in style for about 10 second, presumably because the imitation
objective discourages the policy from adjusting its velocity away
from its initial conditions. But as minor errors compound over long

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1075

Table 2: Frequency of dangerous events recorded over 1,000
rollouts, as a fraction of total timesteps. We found also that
expert demonstrators achieved negligible off-road, collision,
and reversal rates in this setting.

Method Off-road Collision Reversal

Burn-InfoGAIL 0.074 0.061 0.000
InfoGAIL 0.033 0.099 0.126
GAIL 0.165 0.059 0.177
VAE 0.756 0.021 0.000

Figure 7: Root mean squared error (RMSE) between learned
policies and validation trajectories. Results are averaged
over 1,000 rollouts for each model. Our model achieves the
lowest error on predicting both speed and position over 30
second trajectories.

horizons, GAIL to drifts towards an average policy due to its mode-
seeking nature [6]. In contrast, the VAE is able to use the latent
code inferred from the burn-in demonstration to maintain an ap-
propriate speed, achieving an RMSE close to the true value, rivaling
Burn-InfoGAIL. However, being trained without a simulator, the
VAE suffers from cascading errors causing it to go off road.

5.3 Qualitative Results
Observing that Burn-InfoGAIL obtains low RMSE over many trials,
we produced visualizations to assess individual trajectories gen-
erated by each model. Figure 8a plots the global position of cars
driven by each policy (including the IDM expert) over a 30 second
period. We see that on the initial straightaway, all models perform
comparably. However, the VAE baseline, trained with behavioral
cloning, is unable to handle the turn. The GAIL-based techniques
follow the curvature of the road more closely, but standard GAIL
loses speed over time, ending its trial short of the expert’s posi-
tion. Burn-InfoGAIL, in contrast, maintains the speed of the IDM
throughout the drive, finding an endpoint that was closer to the
ground truth than the other models.

Starting from the same road scene and ego vehicle, we next
sought to understand how sampling different latent codes affected
the policy’s behavior. Figure 8b plots the global position of the
car obeying πθ . Instead of conditioning our policy on a burn-in
demonstration, we select z for 10 trials, for each possible code. We
see that one code (red circle) seems to be designated for aggressive
driving, changing lanes more regularly and driving farther (thus
achieving a greater velocity) than the other trajectories. In contrast,
another code appears to be designated for passive driving (blue
star), performing fewer lane changes earlier on and ending closer
to the starting position. Like the speeder and tailgater experts, the
other codes tend to fall somewhere in between. When we visualize
the learned embedding space of the latent codes by projecting
its weight vectors onto two dimensions, we see a similar pattern
emerge. Figure 9 demonstrates that most of the variance between
the four embeddings is accounted for by the distance between the
aggressive and passive codes, which have the greatest Euclidean
distance from one another than the other codes.

6 CONCLUSIONS
Humans perform many tasks expertly, albeit differently from one
another. These differences between expert demonstrations are influ-
enced by latent factors, or underlying styles, thatmay be determined
long before demonstrations are recorded. InfoGAIL successfully
extracts the latent factors controlling expert behavior for brief ma-
neuvers [14]. Conversely, recurrent VAEs can identify long-term
styles but rely on behavioral cloning, and thus produce unstable
policies [15]. The contribution of this work has been to extend In-
foGAIL to control and cluster expert trajectories governed by time
invariant styles, as they may exist in sequential decision problems
solved by humans. This work also introduced a new formulation of
the imitation learning paradigm in which initial states and latent
factors are determined by a reference demonstration provided by
an expert, and we showed that adopting this formulation along
with the Burn-InfoGAIL algorithm leads to realistic models for a
simulated, autonomous driving application.

In addressing this problem, we maximize mutual information
with respect to a learned, inference distribution rather than maxi-
mizing a variational lower bound. We demonstrate that degenerate
solutions may be avoided by maximizing the entropy in the esti-
mated marginal distribution over latent codes. Our solution outper-
forms standard InfoGAIL in clustering time invariant driving styles,

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1076

Figure 8: Model trajectories on track environment. Left: Example global positions of Burn-InfoGAIL along with baseline mod-
els and ground truth ego vehicle. Burn-InfoGAIL tends to end trials closer to the true end point. Right: Driving trajectories
subject to sampling different latent codes. We see that terminal states tend to cluster on the basis of the latent code chosen.

Figure 9: Learned embedding vectors (i.e., a subset of θ).
Principal components analysis is used to express the 16 di-
mensional weight vectors in two dimensions. The difference
between the most passive and aggressive driving codes ac-
counts for most of the variance.

outperforming the state of the art on this task environment, while
producing driver models that imitate experts over long horizons.

Burn-InfoGAIL appears to produce policies that use their learned,
latent code to maintain their velocity over long time horizons.
Whereas other GAIL-based approaches regress towards average
behavior by the end of their trajectories, Burn-InfoGAIL terminates
trials near the end-points of experts. Limitations of the model in-
clude its reliance on a simulated rollout environment, limiting its
applicability as an unsupervised clustering method. Future work
may explore ways to close the reinforcement learning loop, perhaps
replacing the full simulation environment with a learned dynamics
model for planning and learning from imagined rollouts.

We evaluated our approach on the assumption that expert styles
are uniformly distributed, but Burn-InfoGAIL may extend to more
uneven distributions. A promising research direction could involve
replacing the entropy objective, here used to encourage diversity,
with a general KL divergence term between the inference model
and a more complex prior over latent codes. This approach may re-
veal connections between InfoGAIL and hierarchical reinforcement
learning paradigms, where the inference distribution intelligently
sets tasks as latent codes that the policy diligently follows.

ACKNOWLEDGMENTS
We thank Jayesh Gupta, Jeremy Morton, Rui Shu, TimWheeler, and
Blake Wulfe for useful discussions and feedback. This material is
based upon work supported by the Ford Motor Company.

REFERENCES
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN.

arXiv preprint arXiv:1701.07875 (2017).
[2] David Barber and Felix Agakov. 2003. The IM algorithm: A variational approach to

information maximization. In Advances in Neural Information Processing Systems
(NIPS). 201–208.

[3] Xi Chen, Yan Duan, Rein Houthoof, John Schulman, Ilya Sutskever, and Pieter
Abbeel. 2016. InfoGAN: Interpretable representation learning by information
maximizing generative adversarial nets. In Advances in Neural Information Pro-
cessing Systems (NIPS). 2172–2180.

[4] Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider,
Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. 2017. One-shot imitation
learning. arXiv preprint arXiv:1703.07326 (2017).

[5] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. 2016.
Benchmarking deep reinforcement learning for continuous control. In Interna-
tional Conference on Machine Learning (ICML). 1329–1338.

[6] Ian Goodfellow. 2016. Generative adversarial networks. arXiv preprint
arXiv:1701.00160 (2016).

[7] Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph
Lim. 2017. Multi-Modal Imitation Learning from Unstructured Demonstrations
using Generative Adversarial Nets. In Advances in Neural Information Processing
Systems (NIPS).

[8] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.
In Advances in Neural Information Processing Systems (NIPS). 4565–4573.

[9] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
Computation 9, 8 (1997), 1735–1780.

[10] Arne Kesting, Martin Treiber, and Dirk Helbing. 2007. General lane-changing
model MOBIL for car-following models. Transportation Research Record 1999
(2007), 86–94.

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1077

[11] Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimiza-
tion. In International Conference on Learning Representations (ICLR).

[12] Diederik P Kingma and Max Welling. 2014. Auto-encoding variational Bayes. In
International Conference on Learning Representations (ICLR).

[13] Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. 2017. Im-
itating driver behavior with generative adversarial networks. IEEE Intelligent
Vehicles Symposium (IV).

[14] Yunzhu Li, Jiaming Song, and Stefano Ermon. 2017. Inferring The Latent
Structure of Human Decision-Making from Raw Visual Inputs. arXiv preprint
arXiv:1703.08840 (2017).

[15] Jeremy Morton and Mykel J Kochenderfer. 2017. Simultaneous Policy Learning
and Latent State Inference for Imitating Driver Behavior. In IEEE International
Conference on Intelligent Transportation Systems (ITSC).

[16] Stéphane Ross and Drew Bagnell. 2010. Efficient reductions for imitation learning.
In International Conference on Artificial Intelligence and Statistics (AISTATS). 661–
668.

[17] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International Conference on Machine
Learning (ICML). 1889–1897.

[18] Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural

networks for machine learning 4, 2 (2012).
[19] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested traffic

states in empirical observations and microscopic simulations. Physical Review E
62, 2 (2000), 1805.

[20] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2009. Information theoretic
measures for clusterings comparison: is a correction for chance necessary?. In
International Conference on Machine Learning (ICML). 1073–1080.

[21] Ziyu Wang, Josh Merel, Scott Reed, Greg Wayne, Nando de Freitas, and Nicolas
Heess. 2017. Robust imitation of diverse behaviors. arXiv preprint arXiv:1707.02747
(2017).

[22] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller.
2015. Embed to control: A locally linear latent dynamics model for control
from raw images. In Advances in Neural Information Processing Systems (NIPS).
2746–2754.

[23] Hang Yin, Francisco S Melo, Aude Billard, and Ana Paiva. 2017. Associate latent
encodings in learning from demonstrations. In AAAI Conference on Artificial
Intelligence (AAAI). 3848–3854.

[24] Shengjia Zhao, Jiaming Song, and Stefano Ermon. 2017. Towards deeper under-
standing of variational autoencoding models. arXiv preprint arXiv:1702.08658
(2017).

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1078

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Approach
	3.1 Imitation Learning
	3.2 Information Maximization
	3.3 Burn-InfoGAIL

	4 Implementation
	4.1 Environment
	4.2 Model Architecture

	5 Experiments
	5.1 Entropy and Mutual Information
	5.2 Reproducing Driving Behavior
	5.3 Qualitative Results

	6 Conclusions
	Acknowledgments
	References

