
A new Hierarchical Agent Protocol Notation
JAAMAS Track

Michael Winikoff
University of Otago

Dunedin, New Zealand
michael.winikoff@otago.ac.nz

Nitin Yadav
University of Melbourne
Melbourne, Australia

nitin.yadav@unimelb.edu.au

Lin Padgham
RMIT University

Melbourne, Australia
lin.padgham@rmit.eduau

ABSTRACT

Agent interaction protocols are a key aspect of the design of multi-
agent systems. However, commonly-used notations are, we argue,
difficult to use, and lack expressiveness in certain areas. In this paper
we present a new notation for expressing interaction protocols,
focussing on key issues that we have found to be problematic. The
notation is evaluated against criteria, and using a human subject
evaluation of usability.

KEYWORDS

Protocol notations; agent-based systems

ACM Reference Format:

Michael Winikoff, Nitin Yadav, and Lin Padgham. 2018. A new Hierarchical
Agent Protocol Notation. In Proc. of the 17th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm, Sweden,
July 10–15, 2018, IFAAMAS, 3 pages.

1 MOTIVATION

When designing multi-agent systems one important aspect of the
software engineering design process is designing interactions be-
tween the agents. The outcome of this activity is captured as inter-
action protocols expressed in an agent protocol notation. However,
in our 20 years of experience in designing, developing and teaching
about agent systems, we have found protocol design to be one of the
more problematic aspects, and a key issue concerns the notations
used. Existing notations, of which Agent UML (AUML) is perhaps
most popular, are, in our experience, difficult to use correctly, and
are unable to capture certain key aspects of interactions.

One area where expressivity is lacking is in providing adequate
support for modularity. For example, if we have a manufacturing
cell, where a rotating table needs to be locked in order to perform
some task, wewould like to lift out the locking protocol, and use it in
many places. However, it is not possible in AUML to express a lock-
ing protocol consisting of the sequence of messages request-Lock,
receive-Lock, release-Lock and allow a variety of steps (depending
on situation and who took the lock), between receive and release.

Another area where we have encountered difficulties is in the
clean specification of protocols for collecting some specific set of
data, where the data does not need to be collected in a particular
order. This is typical of protocols for interacting with a human, and
is indeed where we have encountered the issue multiple times. For
example, a protocol for collecting from a person the information

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

required to schedule a meeting may need to allow for information
to be provided in (almost) any order.

These issues (and others) relate to the expressiveness of the no-
tation. However, we also want a notation that is both pragmatic
and precise. Precision means that the notation’s syntax and seman-
tics are clearly and unambiguously defined, which is important
for comprehensibility, for avoiding ambiguity in the meaning of a
given protocol, and for providing advanced tool support. A prag-
matic notation is one that is usable by practicing software designers,
which typically implies a graphical notation, eschewing logics, and
dealing simply with common cases, such as sequence, selection and
iteration. It is also desirable that a notation be as simple as possi-
ble. What makes developing a good notation hard is that there is a
trade-off between these objectives. For instance, a simpler notation is
easier to specify precisely, but is more likely to lack expressiveness.

This paper presents a new notational framework (Hapn: Hierar-
chical Agent Protocol Notation) that we have developed to address
these issues. We are very aware that many notations have been
proposed in the past. However, perhaps due to premature conver-
gence in the field, we do not believe that there exists a notation
that meets the needs outlined in this section. For further details
we refer the reader to the JAAMAS paper [7]. An earlier version of
the Hapn notation was presented at a COIN workshop [9], and a
support tool was demonstrated at AAMAS 2015 [8].

2 THE HAPN NOTATION

The Hapn notation is based on hierarchical Finite State Machines
(FSMs). We chose to use FSMs as the starting point since they are
familiar, graphical, simple, and precisely defined. However, FSMs
are not sufficiently expressive, and so we extend them by:

(1) Adding variables to protocols;
(2) Precisely defining the structure of transitions (Sender →

Recipient(s) : msg(arдs)[guard]/effects), where a guard is
a logical formula that can test, for example, conditions of
variables, and an effect captures e.g. the binding of variables
to values, and domain-specific actions; and

(3) Extending to hierarchical protocols by allowing states in a
protocol to have sub-protocols. A crucial property of Hapn
is synchronisation: where two protocols that are concur-
rently active transition on the same message, they must both
transition simultaneously. This allows protocols to be reused
and combined.

Figure 1 shows an example: an English auction protocol in Hapn.
This protocol illustrates the use of these extensions to FSMs. The
left side of Figure 1 shows the top level protocol PA , with the
start node having interface variables I for the item, and T for the
finishing time, which are bound for the particular auction instance.

Session 28: Communication AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1180

32 Michael Winikoff et al.

PA : s0
[I, T]

s1
||b2BsPB[b, I]

s2 s4

s3

A)Bs : announce(I, price, T)
/bind(newbid,?); bind(res, price);

A)Bs : announce(I, res, T)
[newbid = > ^ systime < T]/bind(newbid,?)

A)Bs : end(I)
[systime � T]

A!W : pay(I, res)
[bound(W)]

[¬bound(W)]

PB : t0
[B, I]

t1 t2

B!A : bid(I, bid)
/bind(b.price, bid)

A!B : accept(I)[b.price > res]
/bind(newbid,>); bind(res, b.price); bind(W, B)

A!B : reject(I)[b.price res]

B!A : nobid()
/bind(Bs, Bs \ {B})

Compared with the previous version, this protocol requires each bidder to either bid or indicate that they
are not bidding (nobid). There is a new transition from t0 to t2 for the nobid message, and t0 is no

longer a final state. Variables are identical to the previous version.

Fig. 11: Realisable Auction protocol in HAPN

When time expires, s1 transitions to s2 with the auctioneer broadcasting an end
message. The auctioneer then sends a message to the winner, if there is one, request-
ing payment of res for the item I . If no-one made a bid which was accepted, then
W will not have been bound, and the protocol transitions to s4, where it ends.

Note that the sub-protocol PB has states t0 and t2 indicated as final states. As
discussed earlier, this constrains the transition from s1 to s2 so that it cannot occur if
any instance of PB is in state t1. However, this demonstrates an issue in the design
of protocols with a global viewpoint. As discussed earlier, by providing the designer
with the convenient fiction that messages are synchronous, and that the protocol can
be viewed from a global perspective, we make it possible to specify unrealisable pro-
tocols. In this case, the protocol given in Figure 9 is unrealisable, since there is a race
condition between a bidder sending a bid (t0 ! t1) and the auctioneer sending an
end or an announce (s1 ! s2 or s1 ! s1). As discussed earlier, the design process
for protocols involves checking for realisability, and fixing unrealisable protocols. In
this case one way to make the protocol realisable is to make it compulsory for each
bidder to either bid, or to indicate that they are not bidding (see Figure 11).

We believe that the HAPN auction protocol is simple and clear. Comparing it
with a typical AUML representation of an auction protocol (as in Figure 10, which is
redrawn from [?, Figure 31]) we highlight that the AUML protocol8:

1. Relies on English text to explain certain relationships, for instance the text in-
dicating that there is one accept-proposal if a bid higher than the current bid is
received. This is problematic since English is notoriously ambiguous. Indeed, in

8 Note that this protocol, which is taken from the literature, is not a great design (e.g. using goto/label
instead of a loop, and terminating the Initiator when a not-understood message is sent).

Figure 1: Auction protocol in Hapn

The first transition occurs when the auctioneer broadcasts an an-
nouncement stating the item, the starting price, and the finish time.
The variables newbid and res are bound to ⊥ (False) and the start-
ing price respectively, as the effect of this transition. The state s1
has a bidding sub-protocol, which conceptually is a set of protocol
instances, one for each bidder, with the particular bidder bound to
b, and the item to I as previously.

The sub-protocol PB (right side of Figure 1) then specifies the
interaction between the auctioneer and an individual bidder. One
feature of the semantics of Hapn is that a state with sub-protocols
may not be transitioned from unless all the sub-protocols are in a
final state. In this case, state s1 cannot proceed to another round, or
(once time has elapsed) to the end of the auction, unless all bidding
agents have either indicated nobid, or have bid, and had their bids
accepted or rejected.

The Hapn notation has been precisely and formally defined. The
longer description [7] includes two other case studies: a playdate
scenario that demonstrates how flexible information collection can
be easily yet precisely specified using Hapn, and a Holonic man-
ufacturing protocol that demonstrates how modular and reusable
protocols (e.g. locking) can be specified and reused.

3 EVALUATING HAPN

In order to evaluateHapnwe conducted a feature evaluation, where
we assessed Hapn against a number of prominent existing nota-
tions1 with respect to features that we identify and argue are impor-
tant, and a usability evaluation using an empirical human subject
experiment. Space precludes a discussion of more than just the
key findings, and we refer the reader to the JAAMAS paper for
details [7].

In order to evaluate our notation in comparison to other nota-
tions we consider a number of features: being precisely defined,
having a graphical notation, being simple, supporting modularity,
and allowing various important interaction patterns to be specified.
We assess a notation’s simplicity by counting distinct graphical
1FSMs, Petri nets [4], AUML [2], Statecharts [1], Commitment Machines (CMs) [6, 10],
and BSPL [5]

Petri State-
FSM Nets AUML charts CMs BSPL HAPN

Precise ✔ ✔ ✔* ✔ ✔ ✔

Graphical ✔ ✔ ✔ ✔ ✔

Simple 4 3 17 11 N/A N/A 5
Modularity ✔ ✔ ✔ ✔ ✔

Express. 0 1 3* 3 2 3 4*

Table 1: Criteria-based evaluation (key: “✔” = “yes”, “*” =

“yes, but . . . ” (see [7])

element types following the methodology of Moody and van Hil-
legersberg [3, p30-31]. The expressiveness score in Table 1 is how
many of the four interaction types2 are handled.

We observe that (1) Both FSMs and Petri nets are too simple: they
are very simple (and hence amenable to being precisely defined), but
lack expressivity; (2) Both AUML and Statecharts are too complex:
they are fairly expressive (covering most desired cases), but they
are complex and are either not precisely defined (AUML), or suffer
from having multiple differing formal definitions (Statecharts); (3)
Commitment Machines and BSPL are simple and expressive, but (as
argued in the JAAMAS paper [7, Section 6.1]) there are concerns re-
lating to their usability; and (4) HAPN manages to retain simplicity
while providing expressiveness.

Finally, to assess the usability of Hapn we conducted a human-
subject evaluation. Participants’ ability to comprehend protocols
did not vary significantly depending on the notation used (Hapn,
AUML, Statecharts). This suggests that, at least as far as ability to
read and interpret protocols, the three notations lead to comparable
performance. In other words,HAPN is as easy to read and understand
as AUML or Statecharts, despite being more expressive, and having
a higher level of precision and formality. Interestingly, although
participants’ performance on a given protocol was not affected by
the notation they used, the participant’s subjective assessment of
the notations did vary. Participants considered HAPN to be some-
what harder to read and understand, but the difference was not
statistically significant. Each notation had some participants who
ranked it as easiest to understand, and each notation had partici-
pants who ranked it as least easy to understand. However, while
the notation used did not significantly affect the subjective assess-
ment, the protocol did. If we consider for each participant how they
ranked the notation that they used for the Auction task, then we
found that almost all participants ranked the specific notation they
used as easiest to understand, regardless of which notation was
used. Similarly, the majority of participants ranked the notation
that they used for the playdate protocol as being hardest to under-
stand. In other words, regarding understandability, the protocol
being considered mattered more than the notation that was used to
present the protocol. The difference between the rankings, grouped
by protocol, rather than by notation was statistically significant
(p = 0.001).

Acknowledgements This work was partially supported by the
Australian Research Council and Real Thing Entertainment Pty. Ltd.
under Linkage grant number LP110100050.
2Parallelism and synchronisation, exceptions, information-driven interactions, and
interactions with multiple role instances.

Session 28: Communication AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1181

REFERENCES

[1] David Harel. 1987. Statecharts: a visual formalism for complex systems. Sci-
ence of Computer Programming 8, 3 (1987), 231 – 274. https://doi.org/10.1016/
0167-6423(87)90035-9

[2] Marc-Philippe Huget and James Odell. 2005. Representing Agent Interaction
Protocols with Agent UML. In Agent-Oriented Software Engineering V: 5th Interna-
tional Workshop, AOSE 2004, Revised Selected Papers, James Odell, Paolo Giorgini,
and Jörg P. Müller (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 16–30.
https://doi.org/10.1007/978-3-540-30578-1_2

[3] Daniel L. Moody and Jos van Hillegersberg. 2009. Evaluating the Visual Syntax of
UML: An Analysis of the Cognitive Effectiveness of the UML Family of Diagrams.
In First International Conference on Software Language Engineering (Lecture Notes
in Computer Science), Dragan Gasevic, Ralf Lämmel, and Eric Van Wyk (Eds.),
Vol. 5452. Springer, 16–34. https://doi.org/10.1007/978-3-642-00434-6_3

[4] Wolfgang Reisig. 1985. Petri Nets: An Introduction. Springer-Verlag.
[5] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-

ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th

International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
491–498.

[6] Michael Winikoff, Wei Liu, and James Harland. 2004. Enhancing Commitment
Machines. In Declarative Agent Languages and Technologies II (Lecture Notes in
Artificial Intelligence), João Leite, Andrea Omicini, Paolo Torroni, and Pınar Yolum
(Eds.). Springer, 198–220.

[7] Michael Winikoff, Nitin Yadav, and Lin Padgham. 2018. A new Hierarchical
Agent Protocol Notation. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 32, 1 (2018), 59–133. doi:10.1007/s10458-017-9373-9.

[8] Nitin Yadav, Lin Padgham, andMichaelWinikoff. 2015. A Tool for Defining Agent
Protocols in HAPN: (Demonstration). In Autonomous Agents and MultiAgent
Systems (AAMAS). IFAAMAS, 1935–1936.

[9] Nitin Yadav, Michael Winikoff, and Lin Padgham. 2015. HAPN: Hierarchical
Agent Protocol Notation. In International Workshop on Coordination, Organisation,
Institutions and Norms in Multi-Agent Systems.

[10] P. Yolum and M.P. Singh. 2002. Commitment Machines. In Agent Theories, Archi-
tectures, and Languages (ATAL) (Lecture Notes in Computer Science), John-Jules Ch.
Meyer and Milind Tambe (Eds.), Vol. 2333. Springer, 235–247.

Session 28: Communication AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1182

https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-540-30578-1_2
https://doi.org/10.1007/978-3-642-00434-6_3
http://doi.org/10.1007/s10458-017-9373-9
http://ifaamas.org/Proceedings/aamas2015/aamas/p1935.pdf
http://ifaamas.org/Proceedings/aamas2015/aamas/p1935.pdf

	Abstract
	1 Motivation
	2 The HAPN Notation
	3 Evaluating HAPN
	References

