
Integrated Hybrid Planning and Programmed Control for
Real–Time UAV Maneuvering

Miquel Ramirez
The University of Melbourne

miguel.ramirez@unimelb.edu.au

Michael Papasimeon∗

The University of Melbourne
michael.papasimeon@unimelb.edu.

au

Nir Lipovetzky
The University of Melbourne
nir.lipovetzky@unimelb.edu.au

Lyndon Benke2

The University of Melbourne
lbenke@student.unimelb.edu.au

Tim Miller
The University of Melbourne

tmiller@unimelb.edu.au

Adrian R. Pearce
The University of Melbourne
adrianrp@unimelb.edu.au

Enrico Scala
Foundation Bruno Kessler

escala@fbk.eu

Mohammad Zamani
The University of Melbourne

mohammad.zamani@unimelb.edu.au

ABSTRACT

The automatic generation of realistic behaviour such as tactical
intercepts for Unmanned Aerial Vehicles (UAV) in air combat is
a challenging problem. State-of-the-art solutions propose handś
crafted algorithms and heuristics whose performance depends heav-
ily on the initial conditions and aerodynamic properties of the UAVs
involved. This paper shows how to employ domainśindependent
planners, embedded into professional multiśagent simulations, to
implement twoślevel Model Predictive Control (MPC) hybrid con-
trol systems for simulated UAVs. We compare the performance of
controllers using planners with others based on behaviour trees
that implement real world tactics. Our results indicate that hybrid
planners derive novel and efective tactics from irst principles
inherent to the dynamical constraints UAVs are subject to.

KEYWORDS

planning; agent programming; hybrid systems; UAV

ACM Reference Format:

Miquel Ramirez, Michael Papasimeon, Nir Lipovetzky, Lyndon Benke, Tim

Miller, Adrian R. Pearce, Enrico Scala, and Mohammad Zamani. 2018. In-

tegrated Hybrid Planning and Programmed Control for RealśTime UAV

Maneuvering. In Proc. of the 17th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2018), Stockholm, Sweden, July

10ś15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION

In computational operations research (OR), multi-agent simulations
(MAS) are often used to model, analyse and understand complex
socio-technical systems [23]. In the defence domain, such simula-
tions are used to support the acquisition of new aircraft, to evaluate
system upgrades, to assess tactical behaviour [24, 48] and to explore

∗Michael Papasimeon is seconded to the University of Melbourne from the Australian
Defence Science and Technology (DST) Group.
2Lyndon Benke is a PhD student and is from the Australian Defence Science and
Technology (DST) Group.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10ś15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

future operational concepts such as employment of autonomous
systems [7]. Multi-agent simulations of air combat are challenging
due to both the highly dynamic and adversarial nature of the do-
main and the complexity in the systems and the team tactics being
modelled. These challenges manifest themselves across the entire
spectrum of the software engineering and operational analysis pro-
cesses, from specifying complex team tactical behaviour [12, 22], up
to representing these complex behaviours within agent reasoning
frameworks for veriication and validation.

Model Predictive Control (MPC) refers to a range of control meth-
ods, rather than a speciic control strategy, which make explicit
use of models of processes Ð aircraft dynamics in our case ś to
obtain a mixed discreteścontinuous timeśvarying control signal
that minimises a given objective function [5, 9]. While MPC is
a general framework, most existing approaches have diiculties
dealing with systems where the constraints on dynamics are other
than linear or change over time, and require substantial application-
speciic engineering in order to be applicable or scale up [8]. The
Domain Predictive Control (DPC) framework [32] presents domainś
independent planning as an alternative, to systematise heuristic
solutions [43] to these challenges [26]. Like MPC, DPC uses an
explicit model to predict future states, but instead of relying on
adśhoc descriptions of states and transitions, these are compactly
described by means of a domain theory given in a formal abstract
language. We reformulate Löhr’s DPC framework over an exten-
sion of the FSTRIPS [17] planning language that includes some of
pddl+ [14] features. This allows to represent arbitrary hybrid dy-
namical systems [20] directly, without requiring their discreteśtime
solution, and is expressive enough to account both for arbitrary
actor models [28] and procedural control knowledge [10].

In this paper we discuss a novel pilot agent for a challenging
adversarial task, stern conversion [1, 46] in which two UAVs, Blue
and Red from now on, compete to get behind each other. This is a
complex domain which allows to illustrate the potential of DPC aug-
mented with stateśofśtheśart planning languages [15] and search
algorithms [16, 30, 31]. Section 2 describes the task, which requires
some form of sub-goaling to be solved, and briely sketch the sim-
ulation environment used in Section 3.1. Section 4 discusses how
MPC controllers can be implemented with hybrid planners, and

Session 33: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1318

the semantics of the plans computed. We describe the dynamics
and constraints posed by a straightforward supervisory control
scheme that the planner uses directly in Section 5. Next we describe
the experimental setting and discuss empirical observations on the
performance of planning-based controllers that integrate proce-
dural control in several diferent ways, with an implementation of
Shaw’s heuristic [46] for stern conversion. Our results show that
the planner reveals tactics automatically from irst principles, that
sometimes outperform those taught to real world pilots.

2 AERIAL INTERCEPTS

Relative maneuvering between aircraft typically falls into two cate-
gories; Beyond Visual Range (BVR) andWithin Visual Range (WVR)
maneuvering. Tactics for BVR maneuvering make use of long range
sensors such as radar, whereas WVR tactics rely on shorter range
ones such as pilot eyesight, and optical or infra-red cameras. The
shorter relative distances in WVR maneuvering make it more dii-
cult for a pilot, whether human or an autonomous agent, to imple-
ment these tactical maneuvers in a robust and timely manner.

In air operations, the term intercept refers to maneuvering an
aerial vehicle to a desired position and orientation relative to an-
other aircraft in order to enable formation lying, the use of sen-
sors for identiication or, in defence scenarios, the engagement
of weapon systems. The two most common types of aerial inter-
cepts are forward and rear quarter intercepts [46], the latter involve
maneuvering the aircraft to be behind the vehicle being intercepted.

The most common way of achieving a rear quarter intercept is
through a stern conversion maneuver. While a stern conversion can
be achieved in many diferent ways, the most common approach,
or tactic, is described in Fig. 1 which is adapted from Shaw’s trea-
tise [46] on ighter combat. For the purposes of this paper we will
refer to this maneuver plan as Shaw’s heuristic (SH). The Figure
shows a schematic of Blue executing Shaw’s heuristic under ide-
alised conditions. In this scenario, Red lies straight and level. At
time t0, Blue begins to execute the stern conversion maneuver
against Red at a separation or turn range ∆x . At this point Blue
starts adjusting its initial heading to ϕ in order to achieve a lateral
separation or displacement of ∆y w.r.t. Red. Once the desired ∆y has
been achieved at time t1, Blue adjusts back its heading from ϕ. At
this point Blue is lying parallel to and in the opposite direction as
Red. This phase of the maneuver is referred to as lying reciprocal.
At some later time t2, the distance between Blue and Red becomes
less than or equal than what is known as the conversion range r .
This is the range at which Blue is to turn into Red, and eventually
position itself behind it. The value of r to use depends on the rela-
tive velocities Red and Blue as well as Blue’s turning capabilities
that follow from the aerodynamic properties of its airframe.

The speciicway inwhich it is determined if Blue has successfully
achieved a rear quarter intercept usually depends on the context for
the intercept, but some common patterns can be identiied. Typi-
cally, the intercept is deemed as achieved whenever Blue maintains
its position behind Red for a given period of time, and subject to a
number of additional constraints. Figure 2 shows a diagram demon-
strating such constraints, which we will later formalise in Section 6.
Informally, we will consider the intercept to be achieved whenever,
besides the constraint on the antenna train angle [46]ATA between

Blue and Red, constraints on range, altitude diferences and speeds
are also upheld for 5 seconds. In addition to the intercept success
criteria, Figure 2 also deines the relative aspect and antenna train
angles between the two UAVs. Rbr is the range (in meters) between
Blue and Red, Rmin (Rmax) is the minimum (maximum) intercept
range, ϕmax is the maximum intercept angle,AA is the aspect angle

between Blue and Red [35] and V⃗b and V⃗r are the velocity vectors
of Blue and Red respectively.

3 ACE MULTIAGENT SIMULATION

The MAS environment used in this paper is ACE (Air Combat Envi-
ronment), a team-oriented MAS framework currently under devel-
opment by the Australian Defence Science and Technology (DST)
Group [33, 34]. ACE is designed to simulate teams of aircraft in
adversarial n-versus-m air combat missions. These simulations are
used in operations research studies to support the acquisition of new
aerospace systems and to explore how to best employ them [38].

The scenario we consider in this paper consists of a blue and a
red light 1 each consisting of a single entity representing a UAV.
Each UAV entity consists of three components, modelling the UAV
light dynamics, sensors and the last representing decision making.
We refer to this as the pilot agent component. Represented in the
simulated aircraft is also the state of the UAV’s primary sensor
which includes the information on the orientation of the sensor
array and the list of entities the sensor has detected and could track.
We leave the sensor component out of the discussion as we will be
assuming perfect observability of the quantities describing other
aircraft states. We briely describe the irst and third next.

3.1 Flight Dynamics

We have used a simpliied model of light dynamics to keep runś
times reasonable yet still provide a good approximation of rear quar-
ter aerial intercepts, that is, the tradeśof between speed and turn
rate. There are two components to the simulation model. Namely, a
time-stepped simulation representing simpliied light physics and a
basic control system that allows the pilot agent to request the light
dynamics model to undertake speciic maneuvers. Flight model
state variables include the UAV’s position (x , y, z), its orientation
(ψ , θ , ϕ), its speed and G-load factor. The orientation of the UAV is
represented by the Euler angles (ψ , θ , ϕ) corresponding to rotations
around the z,y and x axes. These are typically referred to as the yaw
(or heading, in global coordinates), pitch and bank angles [25]. The
model also maintains a reciprocal set of state variables known as
the command variables: xc , yc , zc ,ψc , θc , ϕc and дloadc . These are
commanded or desired values issued to the UAV by the pilot agent,
for example, zc is the desired or commanded altitude. A simple
feedback control system [28] takes these values and uses them to
steer the simulated aircraft. The equations of motion for the light
dynamics make use of a simpliied physics model and are shown in
Equations 1-2 below

ẋ =v (t) cosψ (t), ẏ =v (t) sinψ (t), ż =v (t) sinθ (t) (1)

ψ̇ =д
tanϕ (t)

v (t)
ϕ̇ =ϵϕk (2)

1A light is the terminology used to represent a team or formation of aircraft.

Session 33: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1319

t0 t0

t1

t1

t2

t2 t3 t3
�

Δy : Required

Displacement

Δx : Turn Range

r

Conversion

Range

Figure 1: A schematic for a blue UAV undertaking a stern conversion maneuvre against a red UAV.

ATA

AA �r
Rbr

Rmax

Rmin

�b
ϕmax

Figure 2: Intercept success criteria and relative angle deini-

tions between Blue and Red.

While the diferential equations above do not account for lift forces
[25], the tradeśof between speed and velocity is captured via Equa-

tion 2. ψ̇ is measured in rad/s and depends on current speed v (t)
and bank angle ϕ (t), and Earth’s gravitational constant д. The bank

angle rate of change ϕ̇ depends on ϵ = sgn(ϕc − ϕ (t)), the sign of
diference between commanded and actual bank angle, and ixed
parameter ϕk .

3.2 Pilot Agent

Four parametric commands are available to the pilot agent to con-
trol the UAV. These are sent by the pilot agent to the light con-
trol system which then interprets them and sets lowślevel control

signals ψ̇ (t), θ̇ (t), ϕ̇ (t) and v̇ (t) accordingly. SetFlyLevelCmd

() takes no parameters and sets all control signals to zero. Set-

PitchAngleCmd (θc) and SetSpeedCmd (vc) set the inputs of

straightforward feedback control systems to θ̇ and v̇ respectively.
SetHeadingGLoadCmd allows the pilot to specify a desired head-
ingψc as well as a desired g-load factorдloadc . This latter parameter
limits the magnitude of centripetal forces allowed during the turn
to achieve a change in heading.

As a baseline for the experiments discussed in Section 6, the
heuristic depicted in Figure 1 was implemented in ACE as a be-
haviour tree (BT) [10]. Figure 3 shows a graphical representation
of the BT for Shaw’s heuristic. Rectangular leaf nodes represent ac-
tions, rounded corner nodes stand for conditions. Condition and ac-
tion nodes are composed hierarchically with internal square nodes
accounting for parallel execution (=), totallyśordered sequencing

Legend

Match Speed? Match Altitude

Pure Pursuit->

Within Turn Range ?

->

Within Conversion Range Convert

->

Fly Offset

?Reached Required Displacement

Fly Relative Bearing

Action Condition

? Fallback NodeParallel Node Sequence Node

Figure 3: Behaviour tree implementing Shaw’s heuristic.

(▶) or fallbacks (?). The behaviour tree was implemented using
the open source BT++ library [10]. In describing Figure 3, we make
reference to the Shaw Heuristic schematic for a stern conversion in
Figure 1 and accompanying discussion in Section 2. The execution
of the behaviour tree starts with a parallel node with three children.
The rationale for this is that Blue is always trying to match the
speed and altitude of its opponent via the Match Speed and Match

Altitude actions. At the same time, and for each time step, it is nec-
essary to identify in which stage of the plan depicted in Figure 1 the
UAV is. For this we recursively nest fallback nodes, each checking
for the conditions that enable the behaviours necessary to achieve
the subśgoals required by the plan. The Pure Pursuit behaviour,
equivalent to Convert, is used to steer Blue towards Red when the
range is greater than Rsc . The other three behaviours implement
the turns at times t0, t1 and t2, generating the low-level control
signals that steer the aircraft as required.

4 DOMAIN PREDICTIVE CONTROL FOR

HYBRID SYSTEMS

Model Predictive Control (MPC) [9] is based on the iterative reced-
ing horizon solution of a inite horizon optimal control problem
formulated on a model of the system dynamics, plant, control con-
straints, and performance objective. Domain Predictive Control
(DPC) [32] instances MPC so that planning models are used to rep-
resent dynamics and constraints, and planners to solve the optimal
control problem or ind an approximation. In this Section we give a
formal deinition of twoślevel MPC controllers that integrate super-
visory control [28] and the generation of low-level control signals
to steer in a timely fashion the simulated vehicles.

Session 33: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1320

4.1 Receding Horizon Control

We next formalise twoślevel MPC controllers for hybrid systems
by putting together Borrelli’s [5] discussion of Receding Hori-
zon Control (RHC) in such a setting, and Di Cairano’s [8] dis-
cussion of MPC controllers in industrial settings. At any control
cycle2 t the MPC controller will perform three steps, which are
repeated. First, a inite horizon optimal control problem is set,
that uses the current state x (t) as the initial state. Second, the
control problem is solved obtaining the optimal input sequence
Ut→t+N |t = {u0,u1, . . . ,uk , . . . ,uN−1} over the horizon N . Third
and last step is to apply the computed optimal sequence until a new
state x (t + 1) becomes available. In ACE simulations, the controller
receives states at a ixed constant rate set. The inite time optimal
control problem set is given by the following equations

min
Ut→t+N |t

J
(

x (t)
)

(3)

subj . to

xk+1 = fi (xk ,uk), if

[

xk
uk

]

∈ Mi (4)

hC (xk ,uk) ≥ 0 (5)

xN ∈ Xf (6)

x0 = x (t) (7)

where t is the discrete index of the control cycle. xk ∈ R
n and uk

∈ Rm are the values of states and input signals predicted k steps
ahead of t , based on information up to t . h(·) is positive whenever
states and input signals satisfy a given set of global constraints C.
Pairs (Mi , fi) characterise the possiblemodes of the hybrid system,
Mi being a partition of the combined state and input space Rn+m .
fi is a state transition function that maps states xk and inputsuk into
future predicted states xk+1.Xf is the set of accepted terminal states
of the system, further constraining possible trajectories throughout
the state space. These are then ranked according to cost functions J

J
(

x0
)

= p
(

xN
)

+

N−1
∑

k=0

q
(

xk ,uk
)

(8)

where p (·) and q(·) are respectively the terminal and stage cost
functions. As observed by Di Cairano, from Equations 3-7 MPC
results in a nonlinear static stateśfeedback controller

u (t) = дMPC (x (t)) (9)

since at every control cycle the only changing element in Eq. 3-7 is
the initial state x (t). When analytical solutions to Eq. 9 exist, the
control algorithm becomes very simple, as it only needs to evaluate
the formula of the solution on x (t). Usually, and as it is the case
of the systems considered in this paper, the explicit feedback law
in Eq. 9 is impossible to compute exactly [3]. Many methods have
been proposed to compute approximate solutions to Eq. 3-7, like
restricting modes dynamics fi to be linearśtime invariant (LTI)
systems conined to partitions of Rn+m which are polyhedra, and
cost functions to be given as linear or quadratic functions of states
and inputs [5]. Such problem approximations [4] enable the use

2Control cycles are ixed duration time intervals, discretising the temporal evolution
of the system. The number of control cycles in an ACE simulation is inite.

of powerful mathematical programming solvers of-the-shelf [43].
Alternatively, the soścalled recursive approach to Eq. 3-7, formulates
a dynamicśprogramming task which can be solved in a variety of
forms. An example of this approach being used for the intercepts
discussed in Section 2 is the work of McGrew et al [35], that use
realśtime dynamic programming (RTDP) [2] to obtain estimates of

J∗
(

xk ,uk
)

, the optimal solution to Eq. 3-7. These estimates are then

used by a rollout algorithm implementing a one-step lookahead
that selects input signals and realise дMPC . In the literature on AI
planning these strategies are usually referred to as re-planning or
on-line planning, as action selection and execution are interleaved,
solving a planning task at each time step [19].

4.2 DPC over Functional STRIPS

Löhr et al. [32] irst observed that hybrid control systems could be
speciied as planning domains, with actions accounting for volun-
tary switching between modes (Mi , fi). Plans then describe implic-

itly the continuous time evolution of time switched closedśloop
hybrid control systems [29]. We will lift the requirement to linearise
fi and avoid the combinatorial explosion inherent to enumerating
control modes, thus signiicantly broadening the applicability of
Löhr’s original formulation of DPC.

To do so we have extended the FSTRIPS [17] modeling language
to enable the compact description of the plant, lowślevel control sig-
nals and modes without need of ofśline preśprocessing. FSTRIPS is
a general language for classical planning based on the fragment
of First Order Logic (FOL) that involves constant, functional and
relational symbols (predicates), as originally proposed by Gefner,
and recently augmented by Francès et al with support for quantii-
cation, conditional efects [15], and arbitrary procedural extensions
to denote functions [16]. These features allow us to integrate in a
parsimonious manner the syntactic fragments of pddl 2.1 Level
2 [13] and pddl+ [14] (pddl 2.1 Level 5), necessary to account for
numeric variables, general algebraic expressions, ordinary diferen-
tial equations (ode’s), instantaneous autonomous transitions and
support for the translation of existing models of hybrid systems. For
each control cycle t a (ground) FSTRIPS planning problem Pt = ⟨

V , D, st0 , A, C , ϕG , q, p ⟩ is set. V and D are state variables and
their domains, |V | =m + n. States sk are given as a valuation of
state variables V , no actual diference is made between state and
inputs. st0 is the initial state at cycle t . ϕG is the goal formula that
speciies the properties that goal states must have. A and C are
respectively a set of ground actions, and a set of global constraints
(ground formulae) over V . Domains D and constraints C are used
to construct automatically Equation 5, ϕG deines Equation 6. Our
main extensions, beyond adding data types and algebraic functions,
afect the way actions are deined and what is the interpretation
made of their efects. A consists of three distinct subsets Ac , Ax
and An corresponding to Reiters’ control, exogenous and natural

actions [42], that model respectively inputs uk , instantaneous reac-
tions of the environment and diferential equations. p and q are the
algebraic expressions over V in costśtośgo functions J like that in
Eq. 8. We next discuss the semantics of our extensions.

Session 33: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1321

4.3 Actions with Procedural Efects

Gefner [17] deines efects of (ground) actions a as a set of con-
ditional functional and relational efects e . Functional efects ϕ →
x := ω assign to state variables x the value resulting of the evalua-
tion of algebraic expression ω on a state sk , noted [ω]sk , whenever
ϕ is true in sk . Relational efects ϕ → L where L is a conjunction of
literals of state variables y whose domain Dy is {⊤,⊥}. We will de-
note the state variable afected by efect e as afe . Relational efects
are not strictly needed, yet making such distinction is convenient
from a formal and practical aspect. We change Gefner’s account
in two ways. First, efects of actions are no longer sets but rather
sequences (e1, . . ., ek). The result of executing an action a becomes
then the result of evaluating a simple program made up of k pairs
of conditional assignment instructions, each of them addressed by
the index 1 < j < k of the efect. This ensures that the result of
evaluating the action efects is wellśdeined when afei = afej ,
for any two efects ei , ej , i , j. The second change we make to
Gefner’s account is to allow a third type of conditional efect, ϕ →
Y := proc(V), where Y is a tuple of state variables Y ⊆ V . proc(V)

is an arbitrary procedure whose interpretation [proc(V)]s depends
on the values of V in state s and the programming language used3.

4.4 Instantaneous Transitions

Controlled mode transitions are handled with control [42] actions
Ac that the planner will be expected to make a decision on whether
to execute or not. Allowing for procedural action efects greatly
increases the expressiveness of the planning language, enabling for
instance to incorporate domain control knowledge in a seamless
and elegant way. For such actions, preconditions can be used to
account for the guards governing the activation of action nodes in
a behaviour tree, or stateśbased outputs in a general automaton.
Efects are deined procedurally and set the values of either state
or input variables. Uncontrolled mode transitions are interpreted as
exogenous [42] actionsAx , which implement a special case of Fox &
Long PDDL+ events [14].We restrict the interpretation of exogenous
action efects to sets where left and right hand sides are independent.
The process of determining which actions are applicable on a given
state and the execution of their efects is encapsulated in the pro-
cedural efect propaдate (V). While very limiting, this restriction
is suicient to meet the needs of the application we consider on
this paper. Namely, they are used to account for reactions of the
environment to inputs or the continuous evolution of dynamics.
An example of such reactions are used to set the commanded bank

angle and the error signal that governs bank angle rates ϕ̇. They
can also be used to implement supervisory control [28] rules, which
in this paper are used to model the pilot agent of adversaries.

4.5 Plant and Low-Level Control Dynamics

Plant and controller dynamics are conceptually natural actions [42]
An , and equivalent to PDDL+ processes [14], which are used to
describe the dynamics of the system in a compositional, modular,
bottom up fashion. Preconditions of processes p, prep , can be used

to account for the guards associated with the modes of the highś
level controller and deine the partitionsMk , or when necessary, to

3We use C++ in our planner.

approximate piecewise nonśstationary plant dynamics. The efects
efp of processes p are then combined to obtain the diferential
inclusions fk directly, as efp are sets of ode’s

efp = {ẋ = ξ | x ∈ V }

where ξ is allowed to be an arithmetic expression involving standard
arithmetic operations, any state variable y ∈ V , constants, builtś
in algebraic functions, or arbitrary functions whose codomain is
deined by means of an external procedure [17]. The passage of
time is modeled by adding automatically a process pclock with
efect ṫ = ∆t and precondition ⊤. Given a state sk , the set of active
processes [14] is deined as

Pk = {p | [prep]
sk
= ⊤} (10)

the set of processes whose preconditions are true. For each possible
set Pk there is a mode with partitionMk given by the conjunction
of preconditions prep , p ∈ Pk and ode’s for each variable x ∈ V

f x
k
=

[

∑

p∈Pk ef
x
p

]

(11)

where efxp is the expression that results from evaluating the right

hand side of ẋ = ξ on sk , and x appears in the leftśhand side, or 0
if there is no such ode. We note that f x

k
is generally not constant

throughout control cycles, as the terms featured in expressions ξ
can have their denotation changed as the efect of instantaneous
control or exogenous actions. The state transition function fi (·) in
Eq. 4 is then obtained solving numerically [6] the integral equation

xk+1 = xk +

∫ ∆t

0
f x
k
∂τ (12)

for each variable x ∈ V , where xk is the value of x in state sk . As
long as the Lifschitz condition holds over the interval [0,∆t] for
every f x

k
, Equation 12 will produce inite values. The computation

of sets Pk , diferential equations f
x
k

and the solution Eq. 12 is all

done in our planner by the procedure sim(V). It evaluates process
preconditions and sets Equation 12 automatically. Once the state
equation is established, sim(V) proceeds to calculate the values

xt+k+1 applying the integration method of choice, selected during
the planner setup. We conclude this Section by observing that the
use of numeric methods in hybrid planning is not entirely novel,
both Dellapenna et al [11] UPMurphi, Piotrowski et al [40] DiNo and
Scala et al [45] ENHSP planners do so implicitly relying on the Euler
method [6].

4.6 Plans as TimeśSwitched Hybrid Systems

At each control cycle t , we invoke an of-the-shelf, deterministic
planner on Pt . Resulting plans πt are inite sequences

a00, . . . ,a
0
l1
,wait1,a

1
0, . . . ,a

1
l2
,wait2 . . . a

i−1
li
,waiti , . . . ,b

made of control actions aij ∈ Ac , the special action wait , with

procedural efect Y := sim(propaдate (V)), ending with action b ∈
Ac ∪ {wait }. By composing the procedures propaдate () and sim()

deined over the sets of exogenous and natural actions Ax ∪An as
discussed in Sections 4.4 and 4.5,wait efectively approximates via
numeric integration the continuous time evolution of the control

Session 33: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1322

system for over the period of time ∆t . Plans π are valid when
[

xi ,ui
]T
= Λi (xi−1,ui−1) (13)

xi+1 = efwaiti (xi ,ui) (14)

hC (xi ,ui) ≥ 0 (15)

xN ∈ Xf (16)

x0 = x (t) (17)

have at least one solution. Λi is the numeric kernel of action se-
quence ai−10 , . . ., ai−1

li
[44]. Namely, the expression that results from

the recursive substitution of occurrences of variable y on the right
hand side of the efect of action ai

li
for the conditional efect

y := pre
(

ak
li

)

∧ ϕ → ω

that results from efects y := ϕ → ω in ef (ak
li
), with k < i s.t. no

action am
li
, k < m < i exists with an efect on y. If no action afects

y, then yi = yi−1. We observe that Eqs. 13ś17 describe all possible
trajectories of a timeśswitched hybrid system [29], where the timing
of the switches between modes is given by t + i∆t . Plans πt are
used directly to provide the output of the controller дMPC (x (t)),
set to be the state resulting from the execution of instantaneous
actions a00, . . ., a

0
l1
.

4.7 Approximation of Optimal Control with

Width-Based Search Methods

As we have seen above, FSTRIPS planning tasks Pt describe com-
pactly deterministic optimal control problems over hybrid systems.
In order to obtain the controller дMPC (x (t)) eiciently, we turn to
Approximate Dynamic Programming (ADP) [4]. In particular, we
instance the rollout algorithm with a lśstep, depthśselective looka-
head policy. In contrast with wellśknown algorithms such as Monte
Carlo Tree Search (MCTS) [27], our lookahead and base policies
are deterministic.

Rather than using a simulation-based policy to estimate the cost

J̃k+l at the leaf nodes of the lookahead, as MCTS does, we simply

set J̃k+l to дN (xk+l). While this may seem to be a rather unsophisti-
cated choice, we have observed it to perform very robustly. For the
lookahead policy we turn toWidth-based Search [30]. These algo-
rithms both allow to focus the lookahead and have good anyśtime
behaviour. When it comes to prioritisation of applicable control
actions, widthśbased methods select irst those that lead to states
with novel valuations of features deined over states [16]. For the
experiments in Section 6, we have implemented the simplest widthś
based algorithm, IW (1), to unroll the lookahead for l steps. Similar
strategies have been shown to perform well over ixed horizon
deterministic and stochastic control problems [18, 31]. IW (1) is a
plain breadthśirst search, guaranteed to run in linear time and space

as it only expands novel states. A state sk = [xk uk]
T is novel if and

only if it encounters a state variable x or u whose value D (x),D (u)
⊆ R it has not seen before in the current search. Note that novel
states are independent of the objective function used, as the esti-
mated cost-to-go J is not used to deine the novelty of the states.
Hence, noveltyśbased lookahead policies are orthogonal to other
strategies, such as regret minimization [27] and the evaluation of
greedy policies over approximations of costśtośgo functions, as

used by RealśTime Dynamic Programming (RTDP) [2] and Deep
Q-Learning [36]. How to combine existing costśbased approaches
with widthśbased ones is an active topic of research.

5 FSTRIPS MODEL OF PLANT AND CONTROL

DYNAMICS

We have modeled directly, without further simpliications, the plant
dynamics described in Section 3.1. In order to reduce the error dur-
ing numeric integration, we have grouped the ODE’s in Eq. 1 into
a single process. Rates of change for Euler angles and speed are
modeled independently, and depend on the control mode active at a
given time point. The FS planner analyses the input and output de-
pendencies between the integration actor blocks [28] and performs
leapfrogging automatically if no cyclic dependencies are found.

We have used a diferent control scheme than the one described
in Section 3.1, following the guidelines for the design of super-
visory control systems provided in Lee & Seeshia textbook [28].
Rather than trying to ind values for the commands to be used in
the light control system, we introduced 3 control modes for each
of the 3 degrees of freedom: pitch, bank angle and speed. Each
of these primitive control modes specify whether either of these
quantities are to decrease (increasie) according to a simple linear
law, or remain stationary, during the control cycle. The control
mode (Mt+k , ft+k) follows from the combination of valid values
of 3 diferent multiśvalued logical variables, each one with a do-
main consisting of 3 values, one for each of the primitive control
modes considered. Each of these can be activated via suitable con-
trol actions accelerate , decelerate , cruise , etc. whose efects set
the corresponding logical variable. The wait action discussed in
Section 4.6, will then resolve which of the possible 33 = 27 permu-
tations of primitive control modes needs to be used to compute
the next state. Orthogonal to these diferential, proportional con-
trol modes, we allow the planner to determine dynamically the
maximum д-load [25] allowed during a given control cycle. For
that, we have included 3 control actions, increase_д, decrease_д
and reset_д that increase (decrease) by 1 unit the current д-load of
the aircraft and reset it to 1. Besides that, these actions also set the
commanded bank angle ϕc of the aircraft according to the formula
ϕc = acos д

−1
loadc

. We note that an aircraft with a д-load of 1 will not

start turning. If it is already turning the bank angle will eventually
become zero, so the aircraft lies again along a straight line.

Obtaining command values for the control scheme used by ACE
simulated aircraft is straightforward, and results from the numerical
simulation of the timeśswitched hybrid system given by the plan
πt computed at control cycle t over the horizon N . We do not
use directly the values for ψ and θ at terminal states as they can
have very small magnitudes, and we just keep their sign which we
multiply by constantsψt = π/2 and θt = 0.017rad .

6 EXPERIMENTAL EVALUATION

We end this paper discussing the parameters under which we have
studied the performance of the MPC controllers based on planners
discussed in Section 4. We irst deine formally the goal and cost
function used in our experiments. Then we give a detailed account
of the main parameters governing the simulation runs. Finally,

Session 33: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1323

we go over the observations obtained on the performance of our
controllers compared with the baseline described in Section 3.2.

6.1 Goal & Cost Function Formulation

Goal states sG are those where the goal formula ϕG = Rmin ≤

Rbr ≤ Rmax ∧ 0 ≤ AAb ≤ 60 ∧ 0 ≤ ATAb ≤ 30 holds. Rmin and
Rmax are the lower and upper bounds on the range to the target and
are set to 100 and 1, 000 respectively. AA and ATA are, respectively
the aspect and antenna train angles. They describe in a compact
manner the tactical relations between the two UAVs [1, 35].

The cost function J we use in these experiments is task speciic,
and originally developed by McGrew et al [35]. McGrew’s function
is built around an expert developed heuristic [1], that captures the
merit of states sk and considers relative aircraft orientation and
range

h(sk) =

(1

2
−

(

AA

2π
+

ATA

2π

))

exp

(

−|R − Rd |

πλ

)

(18)

where AA is the aspect angle to the target aircraft, ATA is the
antenna train angle, R is the distance between Blue and Red, Rd is
the desired range to be maintained and λ is a scaling constant. We
set λ = 1, 000 to keep it in line within the same order of magnitude
of initial distances between Red and Blue. Equation 18 combines
two measures of performance. The irst term, which is a function of
the aspect and antenna train angles is referred by McGrew as the
orientation score, and rates highest states where the controlled UAV
is right behind the target. These values lie in the [−1, 1] interval, and
they are symmetric for Blue and Red. That is, when Blue orientation
score is 1, Red’s assigned score is −1. If Blue and Red are lying side
by side, then scores are 0 for both. The second term, the range score,
is a function mapping distance to the target into the [0, 1] interval,
assigning 1 when the range to the target is exactly at a distance Rd ,
and gently falling of according to an inverse exponential law. The
stage cost q(xk ,uk) combines h

qsc (xk ,uk) = w д(xk) + (1 −w)h(xk) (19)

with the goal indicator function д(xk), which is 1 whenever the
controlled UAV is right within the goal region in Equation 18, and 0
otherwise. The constantw ∈ [0, 1] is a weighting value determined
experimentally, and we usew = 0.8 as suggested byMcGrew in [35].
We have found experimentally that McGrew’s approach does not
suit the larger distances involved in our setting, and rather than
multiplying the orientation and range scores, we have found that
adding them together produces best results with the algorithms
discussed in Section 4.7 conirming the observations in [39]. We
inish noting that McGrew’s terminal cost p (·) is set to zero, and
we do so too.

6.2 Planner-based Controllers

We have tested 9 diferent planningśbased controllers, all of them
using the FS planner [16]. The planner has been extended to support
the widthśbased search algorithms by Lipovetzky et al [31] tested
on the ATARI simulator, and the new FSTRIPS features discussed
in Section 4. Each of these controllers follow from the discussion
in Section 5, with some changes which we discuss next. We have
considered three diferent supervisory control schemes. The irst

one, which we refer to as Vanilla, corresponds exactly with the
one presented in Section 5. The second scheme tested, which we
will refer to as Composite and abbreviate as Comp., includes actions
with procedural efects that encapsulate the action nodes of the
behaviour tree in Figure 3. Besides those, other control actions avail-
able are those that switch the system back to neutral control modes
(e.g. cruise) and allow to adjust дloadc . This allows the planner to
explore more aggressive turning and interleave the pursuit of the
sub-goals discussed in Section 2 in novel ways. The third variant
considered, which we call Shaw, control actions allow to adjust
дloadc and there is one action whose procedural efect evaluates
the complete behaviour tree in Figure 3. The second dimension in
the controllers incorporates models of the opponent by assuming
the target aircraft to be governed by a speciic supervisory con-
trol strategy. The irst assumed control scheme, Straight, assumes
the target to ly in the same direction and velocity. The second
opponent model considered evaluates and executes the Pure Pursuit
behaviour in Figure 3. The third and last model considered, Full
Shaw, evaluates and executes the complete behaviour tree in the
same Figure. The two are implemented via exogenous actions that
update opponent control inputs each control cycle.

6.3 Experimental Settings

While initial conditions (positions, velocities) of Blue and Red
change between simulations a number of parameters and settings
remain constant. We discuss these invariant properties next. To sim-
plify the analysis and avoid having to adjust the parameters in the
behaviour tree in Figure 3 we have used the same airframe model in
all simulations. This ixes the values for the maximal turn rate (set
to 4 degrees per second), thrust-to-mass ratio (yielding a maximum
linear acceleration of 5m/s2) and the critical stall speed (set to 80
m/s). The duration of simulations is set to be 600 seconds, and the
frequency of updates and control cycles is set to 10 Hz, so every
history generated by the simulation consists of 6, 000 cycles. We
rate the performance of Blue and Red using the orientation score de-
ined in Section 6.1. Since it is symmetric, the sum of attained scores
through the simulation history is both an intuitive and meaningful
measure of relative performance. When the accumulated score is
close to zero, it follows that either Blue and Red lew along parallel
course most of the time, or more interestingly, positional advantage
changed in a balanced way through the simulation. The depth of
the lookahead l is set to 1 second, e.g. 10 control cycles, in all the
experiments. This allowed to evaluate up to ≈5,000 states4 ahead
from the current state x (t) on average, keeping the run-time asso-
ciated to each call to the planner to be about 50 ms, well below the
100 ms budget allowed by the simulation time step.

6.4 Summary of Results

We have compared the 9 controllers discussed in Section 6.2 against
the baseline pilot agent over a diverse array of initial conditions.
These are classiied as Neutral, Ofensive and Defensive, depending
on the value of McGrew’s orientation score in the irst frame of
the simulation history. Neutral initial conditions include situations
where aircraft are approaching each other head on, a coniguration

4The memory footprint of the search tree is ≈5 MBytes of memory.

Session 33: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1324

Table 1: Evaluation of the 9 controllers proposed in Sec-

tion 6.2 against the baseline discussed in Section 3.2.

Conig. Opp. ModelI N SM t p CIlb CIub

⋆Vanilla Straight Def 32 750.180 5.176 1.30 × 10−6 454.580 1045.780
Vanilla Straight Neut 229 927.185 11.268 1.06 × 10−23 765.044 1089.326
Vanilla Straight Of 39 883.935 5.674 1.59 × 10−6 568.566 1199.303

Vanilla Pursuit Def 32 648.529 5.136 1.45 × 10−5 391.000 906.058
⋆ Vanilla Pursuit Neut 229 929.402 10.240 1.73 × 10−20 750.558 1108.246
Vanilla Pursuit Of 39 1182.616 6.502 1.17 × 10−7 814.411 1550.821

Vanilla Full Shaw Def 32 647.944 5.131 1.48 × 10−5 390.386 905.502
Vanilla Full Shaw Neut 229 859.442 9.632 1.22 × 10−18 683.624 1035.261
⋆Vanilla Full Shaw Of 39 1183.473 6.514 1.13 × 10−7 815.663 1551.283

Comp. Straight Def 32 -667.954 -2.568 0.015 -1198.368 -137.539
Comp. Straight Neut 229 -631.595 -7.965 7.83 × 10−20 -787.849 -475.340
Comp. Straight Of 39 107.177 0.503 0.618 -324.028 538.383

Comp. Pursuit Def 32 -747.461 -2.947 0.006 -1264.704 -230.219
Comp. Pursuit Neut 229 -705.692 -8.389 5.15 × 10−15 -871.444 -539.940
Comp. Pursuit Of 39 -545.544 -2.355 0.024 -1014.462 -76.626

Comp. Full Shaw Def 32 -775.177 -3.042 0.005 -1294.913 -255.441
Comp. Full Shaw Neut 229 -709.601 -8.428 4.01 × 10−15 -875.509 -543.692
Comp. Full Shaw Of 39 -538.705 -2.327 0.025 -1007.296 -70.114

typically considered in the literature to be łfairž as it’s not ofer-
ing undue advantage to either aircraft [35, 39]. Defensive initial
conditions are those where the target aircraft starts behind, and
conversely, ofensive initial conditions are those where the agent
starts behind the target already.

Table 1 shows a statistical analysis of the performance observed
of each planner coniguration. For each combination of planner
coniguration (Vanilla, Composite, Shaw) and opponent modeling
(Straight Flight, Pursuit, Full Shaw) we measure the mean orien-
tation score as deined in equation 18 (column SM) throughout N
simulations for each of the three classes of initial conditions dis-
cussed above. To assess the signiicance of this observable, we have
conducted a twośsided t-test for it (column t is the statistic, column
p is the p-value) and calculated the 95% conidence interval values
(column CI). The null hypothesis tested is that the population or
actual mean accumulated score is 0. In other words, we check to
what degree the experimental observations support the hypothesis
that planners and Shaw Heuristic performance is so close that their
scores are both very close to zero. Our interpretation of the results
and statistics reported on Table 1 is that conigurations using the
Vanilla control scheme have generally attained mean scores statis-
tically signiicantly superior to those of Shaw’s heuristic. The very
low p-values for the null hypothesis and sign of the t statistic sug-
gest that indeed, it is very likely that these controllers are slightly
superior, over all initial conditions, to our baseline. We can then
conclude that the FS planner, operating over the domain theory
described in Section 5, with and without modeling of opponent
actions, have a performance superior, as measured by McGrew’s
scoring functions, to Shaw’s proposed technique. We note that this
outcome is obtained directly from the irst principles that follow
from the dynamical constraints in the light model and the struc-
ture of the cost function deined in Section 6.1. The Composite and
Shaw variants were found to be on par with Shaw’s heuristic in
situations where the aircraft controlled by the planner starts with
a tactical advantage, we omit to report these results due to lack of

Table 2: Probability of success planningśbased controllers

and the Shaw heuristic when initial conditions are neutral.

Coniguration Opponent Model Prob. Alone Prob. Both

Vanilla Straight 0.175 0.192
Vanilla Pursuit 0.166 0.157
Vanilla Full Shaw 0.170 0.157

Composite Straight 0.214 0.087
Composite Pursuit 0.197 0.122
Composite Full Shaw 0.197 0.122

Shaw’s Heuristic N/A 0.035 0.062

space. Our statistical signiicance test rules out the null hypothesis
in Neutral situations. Our interpretation is that the planner does not
ind useful variants on Shaw’s rules of thumb for those particular
conigurations.

Table 2 reports the success probabilities for the planner and the
implementation of Shaw’s heuristic in Figure 3. The column łProb.
Alonež in the Table reports the relative frequency of simulations
where the pilot agent corresponding to each row achieved the task,
satisfying ϕG for 50 consecutive control cycles, and also managed
to avoid its opponent to do the same. The column łProb. Bothž
reports the frequency in which agents achieved the goal yet could
not avoid the other aircraft from doing so too. Interestingly, this
Table shows a picture which is complementary to Table 1. With this
measure of performance, we see that the 9 controllers are far more
likely to achieve the goal than Shaw’s heuristic. It is remarkable
that the Composite and Shaw controllers, which are outperformed
in Table 1, are on the other hand quite efective to achieve the goal.
These results hold witness to the highly dynamic nature of the task,
as the tables can be turned on the opponent several times over the
duration of each simulation.

7 DISCUSSION & FUTUREWORK

The results presented in the previous Section demonstrate that
approximate dynamic programming techniques based on Lipovet-
zky & Gefner widthśbased search framework, running on top of
general simulators described symbolically via FSTRIPS, are a vi-
able approach to guidance and control in settings that preclude
direct application of MILPśbased approaches [5, 43]. Previously
reported results [41] showed the approach to be superior in runś
time and performance to gameśtheoretic heuristic methods [39].
We look forward to compare directly with related dynamic pro-
gramming approaches such as Monte Carlo Tree Search [27] and
Deep Reinforcement Learning [36, 47] methods, over several do-
mains, considering stochastic perturbation and partial observability.
Furthermore we seek to reduce the amount of domain expertise re-
quired by the approach, tapping into the power of stateśofśtheśart
machine learning [21] to acquire models of systems and discover
modes of lowślevel control signals relevant to the task [37] directly
from simulators.

ACKNOWLEDGMENTS

This work has been partially funded by the Australian Defence
Science Institute sponsored research grant program CERA 2017.

Session 33: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1325

REFERENCES
[1] Fred Austin, Giro Carbone, Michael Falco, and Hans Hinz. 1990. Game Theory

for Automated Maneuvering During Air-to-Air Combat. Journal of Guidance,
Control and Dynamics 13, 6 (1990), 1143ś1149.

[2] Andy G. Barto, S. J. Bradtke, and S. P. Singh. 1995. RealśTime Learning and
Control Using Asynchronous Dynamic Programming. Artiicial Intelligence
Journal 72 (1995), 81ś138.

[3] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N Pistikopoulos.
2002. The explicit linear quadratic regulator for constrained systems. Automatica
38, 1 (2002), 3ś20.

[4] Dmitri P. Bertsekas. 2017. Dynamic Programming and Optimal Control (4th ed.).
Athena Scientiic.

[5] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. 2017. Predictive
control for linear and hybrid systems. Cambridge University Press.

[6] John C. Butcher. 2008. Numerical Methods or Ordinary Diferential Equations (2nd
ed.). Wiley & Sons.

[7] Michael W. Byrnes. 2014. Nightfall: Machine Autonomy in Air-to-Air Combat.
Air and Space Power Journal (May-June 2014).

[8] Stefano Di Cairano. 2012. An industry perspective on MPC in large volumes
applications: Potential Beneits and Open Challenges. IFAC Proceedings Volumes
45, 17 (2012), 52ś59.

[9] Eduardo F. Camacho and Carlos Bordons. 2013. Model predictive control (3rd ed.).
Springer Science & Business Media.

[10] Michele Colledanchise and Petter Ögren. 2017. How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Compositions, the
Subsumption Architecture, and Decision Trees. IEEE Transactions on Robotics 33,
2 (April 2017), 372ś389. https://doi.org/10.1109/TRO.2016.2633567

[11] Giuseppe DellaPenna, Daniele Magazzeni, Fabio Mercorio, and Benedetto Intrig-
ila. 2009. UPMurphi: a tool for universal planning on PDDL+ problems. In Proc.
of the Int’l Conf. in Automated Planning and Scheduling (ICAPS).

[12] Rick Evertsz, John Thangarajah, Nitin Yadav, and Thanh Ly. 2015. A Framework
for Modelling Tactical Decision-making in Autonomous Systems. J. Syst. Softw.
110, C (Dec. 2015), 222ś238. https://doi.org/10.1016/j.jss.2015.08.046

[13] Maria Fox and Derek Long. 2003. PDDL2.1: An extension to PDDL for expressing
temporal planning domains. Journal of Artiicial Intelligence Research 20 (2003),
61ś124.

[14] Maria Fox and Derek Long. 2006. Modelling Mixed Discrete-Continous Domains
for Planning. Journal of Artiicial Intelligence Research 27 (2006), 235ś297.

[15] Guillem Frances and Hector Gefner. 2016. ∃-STRIPS: Existential Quantiication
in Planning and Constraint Satisfaction. In Proc. of Int’l Joint Conf. in Artiicial
Intelligence (IJCAI).

[16] Guillem Francès, Miquel Ramirez, Nir Lipovetzky, and Hector Gefner. 2017.
Purely Declarative Action Descriptions are Overrated: Classical Planning with
Simulators. In Proc. of Int’l Joint Conf. in Artiicial Intelligence (IJCAI).

[17] Héctor Gefner. 2000. Functional STRIPS: a more lexible language for planning
and problem solving. In Logic-based artiicial intelligence, Jack Minker (Ed.).
Springer, 187ś209.

[18] Tomás Gefner and Hector Gefner. 2015. Width-based Planning for General
Video-Game Playing. In AAAI Conference on Artiicial Intelligence and Interactive
Digital Entertainment.

[19] Malik Ghallab, Dana Nau, and Paolo Traverso. 2004. Automated Planning: theory
and practice. Elsevier.

[20] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. 2009. Hybrid Dynamical
Systems. IEEE Control Systems Magazine 29, 2 (2009), 28ś93.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The
MIT Press.

[22] Clinton Heinze, Michael Papasimeon, and Simon Goss. 2000. Specifying Agent
Behaviour with Use Cases. Springer Berlin Heidelberg, Berlin, Heidelberg, 128ś142.
https://doi.org/10.1007/3-540-44594-3_10

[23] Clint Heinze, Michael Papasimeon, Simon Goss, Martin Cross, and Russell
Connell. 2008. Simulating Fighter Pilots. Birkhäuser Basel, Basel, 113ś130.
https://doi.org/10.1007/978-3-7643-8571-2_7

[24] Clint Heinze, Bradley Smith, and Martin Cross. 1998. Thinking quickly: Agents
for modeling air warfare. Springer Berlin Heidelberg, Berlin, Heidelberg, 47ś58.
https://doi.org/10.1007/BFb0095040

[25] David G. Hull. 2007. Fundamentals of Airplane Flight Mechanics (2nd ed.).
Springer.

[26] Falilat Jimoh and Thomas Leo McCluskey. 2016. Towards The Integration of
Model Predictive Control into an AI Planning Framework. In UK Planning Special

Interest Group Workshop.
[27] Levente Kocsis and Csaba Szepevari. 2006. Bandit Based Monte Carlo Planning.

In Proc. of European Conference in Machine Learning (ECML).
[28] Edward A. Lee and Sanjit A. Seshia. 2016. Introduction to embedded systems: A

cyber-physical systems approach. MIT Press.
[29] Daniel Liberzon. 2012. Switching in Systems and Control. Springer Science &

Business Media.
[30] Nir Lipovetzky and Héctor Gefner. 2012. Width and Serialization of Classical

Planning Problems. In Proc. of European Conference on Artiicial Intelligence
(ECAI).

[31] Nir Lipovetzky, Miquel Ramirez, and Hector Gefner. 2015. Classical planning
with simulators: results on the Atari video games. In Proc. of Int’l Joint Conf. in
Artiicial Intelligence (IJCAI).

[32] Johannes Löhr, Patrick Eyerich, Thomas Keller, and Bernhard Nebel. 2012. A
Planning Based Framework for Controlling Hybrid Systems.. In Proc. of the Int’l
Conf. in Automated Planning and Scheduling (ICAPS).

[33] Kevin McDonald, Lyndon Benke, and Michael Papasimeon. 2015. Team Oriented
Execution Models for Multi-Agent Simulation of Air Combat. In Proceedings of
the 21st International Congress on Modelling and Simulation (MODSIM 2015).

[34] Kevin McDonald and Michael Papasimeon. 2015. Augmented Reality as an Inter-
face to Air Combat Multi-Agent Simulation. In Proceedings of the 2015 Simulation
and Technology Conference (SimTect 2015).

[35] James S. McGrew and Jonathan P. How. 2010. Air Combat Strategy using Ap-
proximate Dynamic Programming. Journal of Guidance, Control and Dynamics
33 (2010), 1641 ś 1654.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518 (2015), 529.

[37] Igor Mordatch, Nikhil Mishra, Clemens Eppner, and Pieter Abbeel. 2016. Combin-
ing model-based policy search with online model learning for control of physical
humanoids. In Proc. of the IEEE Int’l Conference on Robotics and Automation
(ICRA).

[38] Michael Papasimeon, Lyndon Benke, Richard Brain, and Lily Finkelshtein. 2018.
Multiagent Simulation of Adversarial Socio-Technical Systems. In Proc. of the
Int’l Conference on Autonomous Agents and Multiagent Systems.

[39] Hyunju Park, Byung-Yoon Lee, Min-Jea Tahk, and Dong-Wan Yoo. 2016. Difer-
ential Game Based Air Combat Maneuver Generation Using Scoring Function
Matrix. International Journal Of Aeronautical AND Space Sciences 17, 2 (2016),
204ś213.

[40] Wiktor Mateusz Piotrowski, Maria Fox, Derek Long, Daniele Magazzeni, and
Fabio Mercorio. 2016. Heuristic Planning for PDDL+ Domains. In Proc. of Int’l
Joint Conf. in Artiicial Intelligence (IJCAI).

[41] Miquel Ramirez, Michael Papasimeon, Lyndon Behnke, Nir Lipovetzky, Tim
Miller, and Adrian R. Pearce. 2017. RealśTime UAV Maneuvering via Automated
Planning in Simulations. In Proc. of Int’l Joint Conf. in Artiicial Intelligence
(IJCAI).

[42] Raymond Reiter. 2001. Knowledge in action: logical foundations for specifying and
implementing dynamical systems. MIT press.

[43] Arthur Richards and Jonathan P. How. 2003. Aircraft trajectory planning with
collision avoidance using mixed integer linear programming. In American Control
Conference.

[44] Enrico Scala. 2013. Numeric Kernel for Reasoning about Plans Involving Numeric
Fluents. In AI*IA 2013: Advances in Artiicial Intelligence: Proc. Int’l Conf. of the
Italian Association for Artiicial Intelligence, Matteo Baldoni et al (Ed.). Springer
International Publishing, 263ś275.

[45] Enrico Scala, Patrik Haslum, Sylvie Thiebaux, andMiquel Ramirez. 2016. Intervalś
Based Relaxation for General Numeric Planning. In Proc. of European Conference
on Artiicial Intelligence (ECAI).

[46] Robert L. Shaw. 1985. Fighter Combat: Tactics and Maneuvering. Naval Institute
Press.

[47] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. 2016. Mastering the Game of Go with Deep Neural
Networks and Tree Search. Nature 529 (2016), 484ś489.

[48] Gil Tidhar, ClintonHeinze, andMario Selvestrel. 1998. Flying Together: Modelling
Air Mission Teams. Applied Intelligence 8, 3 (1998), 195ś218. https://doi.org/10.
1023/A:1008271016283

Session 33: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1326

https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1016/j.jss.2015.08.046
https://doi.org/10.1007/3-540-44594-3_10
https://doi.org/10.1007/978-3-7643-8571-2_7
https://doi.org/10.1007/BFb0095040
https://doi.org/10.1023/A:1008271016283
https://doi.org/10.1023/A:1008271016283

	Abstract
	1 Introduction
	2 Aerial Intercepts
	3 ACE Multiagent Simulation
	3.1 Flight Dynamics
	3.2 Pilot Agent

	4 Domain Predictive Control for Hybrid Systems
	4.1 Receding Horizon Control
	4.2 DPC over Functional STRIPS
	4.3 Actions with Procedural Effects
	4.4 Instantaneous Transitions
	4.5 Plant and Low-Level Control Dynamics
	4.6 Plans as Time–Switched Hybrid Systems
	4.7 Approximation of Optimal Control with Width-Based Search Methods

	5 FSTRIPS Model of Plant and Control Dynamics
	6 Experimental Evaluation
	6.1 Goal & Cost Function Formulation
	6.2 Planner-based Controllers
	6.3 Experimental Settings
	6.4 Summary of Results

	7 Discussion & Future Work
	Acknowledgments
	References

