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ABSTRACT
Crowdsourcing systems have become a valuable solution for vari-

ous organizations to outsource work on a temporary basis. Quality

assurance in these systems remains a key issue due to the dis-

tributed setup of the crowdsourcing platforms and the absence of a

priori information about the workers. Our work develops a notion

of Limited-information Crowdsourcing Systems (LCS), where the

task master can assign the work based on some knowledge of the

workers’ ability acquired over time. The key challenges in this new

setup are determining an efficient workers’ selection policy and

estimating the abilities of the workers. To address the first chal-

lenge, we reduce the problem to an arm-limited, budget limited,

multi-armed bandit (MAB) set-up, and use the simplified bounded

KUBE (B-KUBE) algorithm as a solution. This algorithm has previ-

ously only been experimentally evaluated, and we provide provable

performance guarantees, showing that it is order optimal, namely

the expected regret of B-KUBE is O(log(B)) where B is the total

budget of the task master. The second challenge is solved by formal-

izing the notion of workers’ ability mathematically, and proposing

a strategy for its estimation. We experimentally evaluate B-KUBE

in conjunction with this strategy, showing that it outperforms other

state-of- the-art MAB algorithms when applied in the same setting.
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Multi-Armed Bandits; Crowdsourcing Systems; Bounded Knapsack

Problem.
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1 INTRODUCTION
Crowdsourcing systems (CS) have emerged as a valuable tool for

several organizations to outsource a variety of tasks to a population

of diverse workers at low cost. Some of the key players in the

crowdsourcing market include for example Amazon Mechanical
Turk, Upwork, Freelancer and uTest. In these systems, guaranteeing

the quality of the work remains a key challenge, due to the limited

a priori information about the ability of the workers. Thus, there is

interest in developing automated methods for the collection and
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aggregation of information from the workers, incentive schemes

to hire expert workers, and schemes for determining the quality of

the tasks being done.

CS research has mostly focused on distributed methods where

there is very limited interaction between workers and task master.

The interaction is typically limited to the assignment of a gold-set of

tasks to evaluate workers’ performance prior to the assignment of

the actual set of tasks, and does not provide a way to continuously

monitor the quality of the work in real time. Dishonest workers

can perform well on a gold-set of tasks and, not being evaluated

on-line on a competitive basis, underperform during the actual

working phase. Alternatively, the gold set can be mixed with all

the assigned tasks in a way that the workers cannot distinguish

between them. This is helpful to detect underperforming workers,

but it wastes resources, and does not ensure continuous monitoring

of the quality of the work.

In this paper, we develop a notion of Limited-information Crowd-
sourcing Systems (LCS) that is desirable from both the task master

and workers perspective. In LCS, workers express their interest in

doing the tasks, quote their charges per task, and provide an upper

limit on the number of tasks they are willing to perform. The tasks

can then be assigned in burst or one-by-one to the workers, as long

as the workers’ constraints are satisfied. Given these constraints,

unlike traditional CS, the workers do not need to be assigned all of

their tasks at the same time. The workers’ selection policy is not

limited to be of the form “take-it” or “leave-it,” but it can include

workers who are still available after having completed a certain

number of tasks, and that may be assigned additional tasks at a later

time. This eliminates the requirement of having gold-set of tasks,

and allows the task master to continuously monitor the quality of

the work and assign tasks based on the estimated workers’ ability,

thus creating a competitive environment. Additionally, the workers

are incentivized to perform tasks satisfactorily in order to maximize

their earnings, while satisfying their load constraint.

This new formulation also poses new challenges. In our setting,

the workers’ selection algorithm needs to balance an exploration-

exploitation trade-off, since theworkers’ ability is initially unknown

to the task master and is learned on-line. This trade-off is not con-

sidered in traditional CS due to the limited interaction between

the workers and the task master, but it is a classic one in the field

of Multi-Armed Bandits (MAB) [18]. This is a class of problems

dealing with decision making under uncertainty, where the actions

have rewards that have to be learned through observations. Thus,

the main challenge in LCS is to determine an efficient workers’

selection scheme and to estimate of the abilities of the workers. To

exploit the similarity of LCS with MAB, we reformulate the LCS
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problem in terms of a Bounded Knapsack Problem (BKP) that is

equivalent to an arm-limited, budget-limited MAB. Given a strategy

to estimate the workers’ ability in real time, we use the B-KUBE

algorithm developed in [23] for workers’ selection. This algorithm

has previously only been evaluated experimentally, and we provide

provable performance guarantees, showing that its expected regret

is O(logB), where B is the maximum available budget. Since it has

been shown in [4] that the expected regret for any algorithm is at

least Ω(logB), our results imply that B-KUBE is order optimal. Thus,

we close the gap in the literature of arm-limited, budget-limited

MAB by providing the first order optimal bounds of an algorithm

in the current MAB setup. We then formalize the notion of workers’

ability and propose an online strategy to estimate it. We also exper-

imentally evaluate B-KUBE in conjunction with our strategy for

estimating the workers’ ability, showing that it outperforms other

state-of-the-art MAB algorithms applied in the same setting. Thus,

the contributions of the work are two fold: providing an optimal

scheme for a MAB setup and using it in a crowdsourcing setting

conjunction with an estimation scheme.

The organization of the paper is as follows: Section 2 describes

the problem formulation; Section 3 discusses related work; Section

4 describes usage of B-KUBE for workers’ selection and gives its

performance guarantees; section 5 describes a strategy for esti-

mating the workers’ performance in real time; section 6 provides

experimental evaluation of of B-KUBE in conjunction with this

strategy; section 7 concludes the work.

2 PROBLEM FORMULATION
We consider a labeling task in LCS, but this formulation can be easily

modified to accommodate a different type of work. We assume the

task master has a budget B and needs to label data with one of L
labels. There are K workers interested in performing the labeling

tasks. For every k ∈ [K], the number of evaluations a worker can

perform is limited byMk and the cost of each evaluation is ck . The
objective of the task master is to minimize the average classification

error

ϵ =
1

T

∑
i
P(ˆli , l

∗
i ) (1)

where
ˆli and l∗i are the predicted label and true label of the task

i respectively, and T is the total number of labeling tasks. This is

a common measure of performance considered in crowdsourcing

systems works [14, 15, 17]. Thus, letting xk be the number of eval-

uations assigned to each worker, we define the LCS problem as

follows

min ϵ s.t.∑
k

xkck ≤ B,

∀k ∈ [K] : 0 ≤ xk ≤ Mk ,

and xk is an integer.

(2)

We now reformulate the problem in (2) as a Bounded Knapsack

problem (BKP). Assume that the measure of a worker’s performance

is given by a value contribution vk . This value contribution is a

measure of information contributed by a worker to the system after

each evaluation. Minimizing ϵ in the LCS problem is then analogous

to maximizing the aggregated value contributions in the following

BKP

max

{xk }

∑
k

xkvk s.t.∑
k

xkck ≤ B,

∀k ∈ [K] : 0 ≤ xk ≤ Mk ,

and xk is an integer.

(3)

The key benefit of the reformulation to BKP is that it provides

an insight on the optimal aggregation of two different attributes,

cost and value contribution, of the workers. Despite this equiva-

lent formulation, the original LCS problem cannot be solved using

standard BKP techniques. The value contributions typically are

assumed to be known in BKP [16], while they need to be estimated

in our setting. Nevertheless, the problem in (3) is also equivalent

to an arm-limited, budget-limited stochastic MAB problem, whose

expected rewards correspond to the unknown value contributions.

In a stochasticMAB problem, there areK arms of a single “bandit”

machine. Pulling of each arm delivers a reward that is independently

drawn from an unknown distribution. An agent chooses to pull

arms with the goal of maximizing the expected sum of the rewards

received over a sequence of pulls.

We consider a popular stochastic model, from the literature of CS,

for modeling the workers’ responses. In this model, a worker k can

be assigned a task multiple times and the correct label is predicted

each time with probability pk independent of the past responses

of the worker about the task [1, 11, 14, 15, 17, 23, 26]. Given a

task i , for all workers k ∈ [K], we assume that the probability of

predicting any incorrect label is the same for all labels independent

of the task i and true label l∗i , namely for all
ˆli,k ∈ [L] we have

P(ˆli,k , l∗i ) = (1 − pk )/L − 1, where
ˆli,k is the predicted label of

task i by the worker k . We also assume that the value contribution

of a worker remains the same irrespective of the true label, namely

for all i ∈ [T ] and l∗i ∈ [L] we have vk (l
∗
i ) = vk . These assumptions

are only made for ease of presentation of our estimation strategy

for value contributions and all the theoretical results provided in

the paper do not rely on them.

The workers in LCS are equivalent to arms in MAB, and the

task master plays the same role as the agent in MAB. The value

contributions of the workers are analogous to the rewards of the

arms. However, while the reward realization is immediately known

after each pull, value contributions need to be estimated as the

worker’s ability in a real LCS scenario. SinceMk in LCS corresponds

to a limit on the number of times an arm can be pulled, and ck
corresponds to the cost of pulling each arm in MAB, it follows

that our problem corresponds to an arm-limited, budget-limited

MAB where the realizations of the rewards depend on the workers’

ability.

The regret of an algorithm A for a given budget B is defined as:

RA(B) = v∗(B) −vA(B)

where v∗(B) is the optimal solution of the BKP in (3) and vA(B) is
the aggregated value contributions using algorithm A.

3 RELATEDWORK
Several heuristic algorithms have been proposed for labeling tasks

in CS, however, the performance of these inference algorithms is
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typically intractable [13, 24, 27]. In [15], an algorithm was proposed

for the evaluation of homogeneous labeling tasks, i.e., all the tasks

are equally difficult to label. It was proved that the algorithm is or-

der optimal in the number of evaluations required per task required

to obtain a desired classification error, when the number of tasks

and workers tends to infinity. Thus, the work concluded that using

an adaptive algorithm for task assignment has no gain in traditional

CS. The model studied in [15] was generalized to heterogeneous

labeling tasks in [11]. In this case, the authors showed that adaptive

assignment of tasks leads to significant gains both in theory and

practice. Unlike our work, the solution in this work is limited to

weighted MV and binary labeling of the tasks. In addition, [17] pre-

sented tight achievable lower bounds for heterogeneous labeling

tasks and proposed an order optimal scheme. For a similar model,

[25] exploits the notions of iterative improvement and redundancy

for translation tasks outsourced to CS. The work in [12] proposed

an online task assignment scheme based on exploration and ex-

ploitation for heterogenous tasks. Their system model is budget

constrained by assigning a limit on the number of evaluations for

each task.

All of the above works consider equal incentives for all the

workers and minimize the number of evaluations required per task.

However, in a real life scenario a more efficient worker would

expect higher incentives for his or her work. Our model allows for

different costs per worker, and plans the assignment of the tasks

accordingly. Additionally, the model also accounts for a maximum

number of tasks that can be performed by a worker.

TheMulti-Armed Bandits (MAB) problem is closely related to our

crowdsourcing problem. A variety of budget constrained models

have been studied in the MAB setup [3, 7, 10]. These works consider

a budget-limited exploration in the initial phase followed by a cost-

free exploitation phase. However, in a real world setting such as

the one considered in LCS, the exploitation phase is not free of cost.

This limitation is addressed in the budget-limited MAB problem,

where both the exploration and exploitation phase are limited by

a single budget. This model also considers different costs for arm

selection. Two different policies were proposed in this setting, called

ϵ-first policy and KUBE [21, 22]. However, they did not consider

a limit on the number of times an arm can be pulled, which is

analogous to limiting the number of tasks a worker can do in LCS.

Later, Tran-Thanh et al. extended the ϵ-first policy from [21]

to an arm-limited, budget-limited MAB and they showed that the

regret of this new policy isO(B2/3), where B is the budget[23]. Auer

et al. showed that a lower bound on the regret for any algorithm

is of the order Ω(logB) [4]. It follows that the extended ϵ-first
policy is not optimal. Tran-Thanh et al. also extended the KUBE

algorithm to arm-limited, budget-limited MAB [23]. However, they

do not provide any theoretical performance analysis for this new

algorithm, called B-KUBE. In this paper, we show that B-KUBE is

indeed order optimal, achieving the lower bound presented in [4].

Other extensions of the MAB setup to CS have been considered

in the literature. Abraham et al. studied the workers’ selection crite-

ria for different cost of workers [1]. Donmez et al. and Zheng et al.

proposed schemes for learning the ability of the labelers for equal

and unequal incentives, respectively [9, 26]. Unlike our model, their

system is not task limited by the workers and budget limited by the

task master. BTASC is a workers’ selection scheme proposed for

spatial CS, however, it does not have any theoretical guarantees[19].

It is sub-optimal compared to BKUBE as it does not account for dif-

ferent costs paid to the workers. Also,the computation complexity

of the scheme is O(BK2), whereas, the computation complexity for

B-KUBE is O(BK log(K)).
Also, there has been a large amount of work on bandits with

knapsack [2, 5, 6, 8, 11]. Badanidiyuru et al., Biswas et al., Ding

et al., Ho et al. focus on unbounded multidimensional knapsack

problem in MAB, whereas, our work studies the bounded knapsack

problem (BKP) [5, 6, 8, 11]. In other words, the setup of these works

do not consider a limit on the number of tasks that can be performed

by each worker. In [5] and [11], workers arrive sequentially, and the

workers’ selection policy has to be of the form “take-it” or “leave-

it”. Therefore, unlike LCS, no worker is accessible later for task

assignment once left. Agrawal and Devanur assume the constraints

of the knapsack problem form a simplex [2]. Therefore, the focus

is on a perfectly convex knapsack problem. Unlike our work, this

problem setup does not capture the limit on the number of tasks that

can be performed by each worker which is an integer programming

problem. Additionally, upper confidence bounds proposed in [2, 8]

are different than the one used in B-KUBE. Extension of the policy

proposed in [6] to BKP setting is of the form of Bounded ϵ-F policy
which is suboptimal with respect to BKUBE, and its performance

bounds cannot be improved [23].

4 WORKERS’ SELECTION
We performworkers’ selection using B-KUBE, which is described in

Algorithm 1, where n denotes the iteration for worker’s selection,

Bn is the remaining budget before the nth iteration, mk is the

remaining number of tasks a worker can perform, and i(n) is the

worker selected in the nth iteration.

In each iteration, the taskmaster checks the feasibility of worker’s

selection, i.e., whether there exists a k ∈ [K] such that ck ≤ Bn
andmk > 0. The first K iterations of B-KUBE constitute the ini-

tialization phase, where all the workers are selected once. For the

remaining iterations, B-KUBE selects a worker j with probability

m∗
j,n/

∑
k m

∗
k,n , wherem

∗
j,n is the number of selections of worker j

proposed by the density-ordered greedy algorithm (DGA) for BKP

at the nth iteration.

DGA for BKP is described in Algorithm 2. It gives the number

of selections of the workers for the remaining budget Bn . The
algorithm computes the upper confidence bound value contribution

ŵk , using the estimated value contribution v̂k , as

ŵk = v̂k +

√
2 log(n)

Mk −mk
,

and utilizes the entire Bn to select the workers as many times as

possible, taking into account their individual limitmk at the nth

iteration. The workers are selected in decreasing order of their

estimated efficiencies êk = ŵk/ck .
To analyze the performance of B-KUBE, we assume that the

budget

∑
k ck < B ≤

∑
k ckMk , the value contribution vk has

support in [0, 1], and the cost ck ≥ 1 ∀k ∈ [K]. All results can easily

be generalized using an appropriate scaling factor.
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We start by recalling some results from the literature of BKP

that are useful in our setting. The BKP formulation in (3) can be

relaxed to the linear problem LP-BKP

max

{xk }

∑
k

xkvk s.t.∑
k

xkck ≤ B,

∀k ∈ [K] : 0 ≤ xk ≤ Mk .

(4)

The following lemma provides the optimal workers’ selection strat-

egy for LP-BKP.

Lemma 4.1. [16]. If the workers are sorted in decreasing order of
their efficiencies ek = vk/ck , where e1 ≥ e2 ≥ . . . ≥ eK , then the
optimal workers’ selection strategy for LP-BKP is

x∗k =


Mk ∀k = 1, 2, . . . , s − 1

B−
∑s−1
k=1 ckMk
cs k = s

0 ∀k = s + 1, . . . ,K ,
(5)

where the splitting worker s is such that
∑s−1
k=1 ckMk ≤ B and∑s

k=1 ckMk > B. The maximum aggregated value contribution is

v∗LP−BKP =
s∑

k=1

x∗kvk .

Letting v∗BKP be the maximum aggregated value contributions

that can be obtained from BKP and v
′

be the aggregated value

contribution corresponding to the selection strategy ⌊x∗⌋ = (x∗
1
,x∗

2
,

. . . , ⌊x∗s ⌋, 0, 0 . . .), by Lemma 4.1 we have

v
′

≤ v∗BKP ≤ v∗LP−BKP ≤ v
′

+vs . (6)

The key idea for obtaining a regret bound for B-KUBE is now to

determine the number of times a worker k is selected more than

the number of selections of worker k as proposed by ⌊x∗⌋. This
will provide a bound on the regret of B-KUBE assuming ⌊x∗⌋ is
the optimal workers’ selection strategy. This bound can then be

combined with (6) to obtain the regret bound for B-KUBE.

It is worth pointing out the main challenges for the theoretical

evaluation of B-KUBE compared to that of KUBE. In the KUBE

setup, the computation of the regret bound simply corresponds

to determining the expected number of times the most efficient

worker is not selected. In the B-KUBE setup, the optimal selection

of workers is not limited to a single most efficient worker, and a

simplification like the one for KUBE is not possible. We overcome

this difficulty by assuming that a feasible solution of BKP is the

optimal selection strategy, and bounding the sub-optimal workers’

selection based on this assumption. The other challenge is that the

selection of the splitting worker s in ⌊x∗⌋ is not always optimal.

We solve this challenge by giving a bound on the expected number

of times a worker k is selected more than the number of selections

of worker k as proposed by ⌊x∗⌋, as follows

Theorem 4.2. For a given budget B, let B-KUBE perform N it-
erations. Assume that ⌊x∗⌋ is the optimal selection strategy for the

Algorithm 1 Bounded KUBE algorithm

Initialization: n = 1;Bn = B;mk = Mk ∀k
while selecting a worker is feasible do

if n ≤ K then
Initialization Phase: assign i(n) = n

else
{m∗

k,n } =greedyAlgoForBKP(v̂k ,mk ,n,Bn )

Choose i(n) with P(i(n) = j) =
m∗
j,n∑

k m∗
k,n

end if
Assign the task to i(n)
Update the value contribution v̂i(n) of i(n)
Bn+1 = Bn − ci(n)
mi(n) =mi(n) − 1

n = n + 1
end while

workers. Then, the expected number of times a worker k is selected
more than the number of selections proposed by ⌊x∗⌋ is

E
[
Nk (N )|N

]
≤

(
8

min {Q2

min
,d2s }

+

(
Cmax
Cmin

)
2

)
logN

+
π 2

3

+ 1,

(7)

where

Qmin = min

k<I ∗∪{s }

��ek − es
��

= min

k<I ∗∪{s }

��vk/ck −vs/cs
��, (8)

I∗ is the set of the top s − 1 workers, arranged in decreasing order of
their efficiencies ek , s is the splitting worker, ds = |vs−1/cs−1−vs/cs |,
Cmax = maxk ∈[K ] ck and Cmin = mink ∈[K ] ck .

Proof. The proof of this theorem can be found in [20] □

Algorithm 2 Density Ordered Greedy Algorithm for BKP

Function name: greedyAlgoForBKP

Input: v̂k ,mk ,n,Bn
Output:{m∗

k,n }

Initialization: ŵk = v̂k +
√

2 log(n)
Mk−mk

,m∗
k,n = 0 ∀k

ê = {e1, . . . , ek } is the list of (ŵk , ck ,m
∗
k,n ,mk ) sorted in decreas-

ing order with respect to ŵk/ck
c = 0 %the total cost currently used

for j = 1 to K do
if c + ê(c j ) ≤ Bn then

assign task to jth worker in ê

ê(m∗
j,n ) = min

(
ê(mj ), ⌊

B(n)−c
ê(c j )

⌋

)
c = c + ê(m∗

j,n ) · ê(c j )

else
ê(m∗

j,n ) = 0

end if
end for

Session 34: Engineering Multiagent Systems 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1348 



From Theorem 4.2, it follows that assuming ⌊x∗⌋ is the optimal

selection strategy , using B-KUBE the selection of sub-optimal work-

ers grows only logarithmically with N and we can conclude that

B-KUBE favors the selection of workers as proposed by ⌊x∗⌋. Addi-
tionally, Qmin and ds measure the minimum separation between

the optimal and sub-optimal selections, hence, they are the leading

constants of log(N ) in Theorem 4.2. Intuitively, it is more difficult

to identify the optimal selection strategy ⌊x∗⌋ if the abilities of the
workers at the boundary of the optimal and sub-optimal selections

are close. Theorem 4.2 recovers the result of the stochastic bandits,

which are neither budget limited nor arm limited, with an additional

constant factor of one in the leading term log(N ) [4]. The minimum

separation between the optimal and sub-optimal selections reduces

to the same measure as proposed in [4].

Finally, the following theorem provides the regret bound for

B-KUBE

Theorem 4.3. The regret for B-KUBE is O(log(B)).

Proof. The proof of this theorem can be found in [20] □

Auer et al. showed that a lower bound on the regret is Ω(logN )

,where N is the total number of iterations [4]. In a budget-limited

scenario, the number of iterations N is Θ(B), since N ∈ [B/Cmax ,

B/Cmin ]. It follows that the lower bound on the regret in a budget-

limited scenario is Ω(logB) and B-KUBE is order optimal for arm-

limited, budget-limited MAB.

5 VALUE CONTRIBUTIONS OF WORKERS
At each step n, workers’ selection policy discussed in the previous

section is dependent on the realization of i(n)th worker’s value

contribution for the update of its empirical estimate v̂i(n). Therefore,
we now focus on the determination of the ability of the workers in

terms of value contributions, and propose a strategy for estimating

the value contribution in real time.

Let the inference function fk (l , ˆl) denote the contribution of the

kth worker to the label l when ˆl is the label predicted by the kth

worker. Then, for all l ∈ [L], the accumulated contribution to the

label l afterM evaluations of task i is

si,l =
M∑
n=1

K∑
k=1

fk (l , ˆl
(n)
i )yk,n , (9)

where yk,n is an indicator function which is unity if the nth eval-

uation of the task is performed by the kth worker, and
ˆl
(n)
i is the

predicted label of task i at nth evaluation. The decision rule is

ˆli = argmax

l ∈[L]
si,l . (10)

The inference function fk (., .) is assumed to be non-negative, and

bounded for all k ∈ [K]. Any generalized inference rule for labeling
task is captured by (9) and (10). Special cases include majority

voting, weighted majority voting and Maximum A Posteriori (MAP)

decision rule.

Two key properties play an important role in the design of the

inference function. First, the function should account for the char-

acteristics of an individual worker. For example, if a worker is

expected to confuse between the two labels, then the contribution

of the inference function to them should be similar when one of

these labels is predicted. This knowledge can be acquired from the

prior knowledge about the workers’ ability, if available. Second, the

inference function can be designed by the task master based on the

knowledge of the labeling tasks. If two labels are similar to each

other, then the contributions to them should be similar, for all the

workers, when one of these labels is predicted. Other properties that

the task master can consider while designing the inference function

are the difficulty level of the tasks and the prior distribution on

the labels. Clearly, while all of the above properties can be used

to design an appropriate inference function, it is not mandatory

to use any these properties. For example, a popular inference rule

that does not account for these properties is majority voting (MV),

while weighted majority voting takes into account the efficiency of

the workers.

The following theorem provides the value contribution of each

worker and the relation between the accumulated value contribu-

tion and the classification error for each task.

Theorem 5.1. Given a task i , for the inference rule in (9) and (10),
the value contribution vk for the kth worker is

vk (l
∗
i ) = min

l,l ∗i
El ∗i

[
fk (l

∗
i ,Y ) − fk (l ,Y )

]
. (11)

Additionally, the classification error ϵi = P(ˆli , l∗i ) and the accu-
mulated value contribution after M evaluations of a task are related
as

N∑
n=1

K∑
k=1

vk (l
∗
i ).yk,n ≥

√
MQ2

log

L − 1

ϵi
, (12)

where Q = maxk ∈[K ]maxl ∗∈[L]max
ˆl ∈[L] fk (l

∗, ˆl).

Proof. The proof of this theorem can be found in [20] □

In LCS, the value contributions of the workers are unknown and

need to be estimated online. The workers’ responses are modeled

by a stochastic model where a worker k can be assigned a task

multiple times and the correct label is predicted each time with

probability pk independent of the past responses of the worker

about the task. Therefore, using (11), the estimation of the value

contribution in LCS is based on the knowledge of true label of task i
l∗i and the estimate of pk of the worker k . In practise, the true label

l∗i for a task i is unknown. To circumvent this issue in practical

crowdsourcing systems, the ground truth l∗i is estimated by
ˆli after

mth
evaluation (10). Following the estimate of l∗i , we estimatepk for

each worker based on its empirical mean. Letmth
evaluation of a

task i is assigned to a worker k . The worker k is said to have labeled

the task correctly if the predicted label at themth
evaluation

ˆl
(m)

i
is the same as

ˆli , which is an estimate of l∗i after m evaluations.

Since the probability of predicting the correct label is independent

of the true label, the empirical estimate of pk is then updated as the

ratio of correctly predicted labels to the total number of evaluations

performed by the worker i.e.

p̂k =
p̂k ·

∑m−1
n=1 yk,n + 1{ ˆl (m)

i =ˆli }
· yk,m∑m

n=1 yk,n
.

Using the estimate of pk , the value contribution vk is estimated

according to (11), where the expectation is computed using the
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empirical estimate of pk . Under the assumption that the value

contribution is independent of the true label i.e. for all l∗i ∈ [L]
vk (l

∗
i ) = vk , the current estimate of the value contribution can be

used for the workers’ selection in the next iteration.

Now, we briefly re-visit the reformulation of LCS problem in (2)

to BKP in (3). The reformulation of LCS problem to BKP is depen-

dent on the inference rule. The average classification error ϵ (1) is

the average of ϵi . Using Theorem 5.1, for a generalized inference

rule in (10), the upper bound on the classification error ϵi decays
exponentially with the increase in aggregated value contributions

from the workers for a task i . Thus, minimizing the ϵi can be refor-

mulated as maximizing the aggregated value contributions from the

workers for task i . Hence, BKP in (3) follows from LCS problem in

(2). The key benefit of the reformulation to BKP is that it provides an

insight on the optimal aggregation of two different attributes, cost

and value contribution, of the worker, and facilitate their compari-

son on a single scale defined as efficiency in Lemma 4.1. A similar

transformation of the problem for labeling tasks, with different

constraints, has been considered earlier for special cases such as

weighted majority voting and majority voting [1, 11]. However, we

formalize the notion of the value contribution for a generalized

form of inference rule which recovers the transformation derived

for weighted majority voting and majority voting in the literature

as a special case.

6 PERFORMANCE EVALUATION
We now compare the performance of B-KUBE in conjunction with

our value contribution estimation strategy, with three benchmark

MAB algorithms for workers’ selection using the same value contri-

bution estimation strategy in LCS setup. The benchmark algorithms

are Bounded ϵ-First (Bounded ϵ-F), Trailsourcing, and Budget-

Limited ϵ-First (ϵ-F). Bounded ϵ-F and ϵ-F are described in [23],

whereas, trailsourcing is a special case of Bounded ϵ-F. Bounded ϵ-F
consists of separate exploration and exploitation phases. It allocates

an ϵ fraction of the total budget for exploration to estimate the value

contributions of the workers. The exploitation phase in Bounded

ϵ-F is a single step assignment phase where the labeling tasks are

assigned to the workers based on their estimated value contribu-

tions. Trailsourcing is a simpler version of Bounded ϵ-F with only

one round of exploration phase i.e. each worker is selected exactly

once in the exploration phase. Budget-Limited ϵ-First has the same

exploration phase as Bounded ϵ-F but in the exploitation phase it

assigns all the tasks to a single worker with maximum estimated

efficiency.

Like Bounded ϵ-F, the task assignment schemes studied in the

literature of traditional CS are based on learning the quality pa-

rameters of the workers in the first stage followed by a single step

assignment of the tasks to the workers [1, 11, 12, 14, 19]. These

schemes are sub-optimal with respect to Bounded ϵ-F as they do

not consider the unequal incentives for the workers. Additionally,

Tran-Thanh et al. also argue that the theoretical regret bounds of

Bounded ϵ-F cannot be improved for any estimation scheme for

quality parameters of the workers[23]. Thus,we limit ourselves to

the above mentioned three schemes for the performance compari-

son. We compare BKUBE directly with Bounded ϵ-F, and show that

BKUBE outperforms it both experimentally and theoretically.

LCS is a novel system proposed in this work, therefore, an appro-

priate real data set is not available for labeling tasks in this setup.

Thus,the algorithms are compared in an experimental setup. Addi-

tionally, the evaluations in a simulated setup are common for CS as

the other schemes proposed in the literature are mostly evaluated in

a simulated environment[1, 14, 15, 17]. We perform the comparison

in a setup where twenty workers express their interest to perform

binary labeling tasks i.e. K = 20 and L = 2. In this setup, the labels

are considered to be equally likely and the tasks are assumed to be

equally difficult. The experiments are performed for two different

set of workers. In set A, every worker predicts the true label with

probability pk > 1/2. The set B contains 15 workers from set A and

5 spammers, i.e, pk = 0.5. MV is used as the inference rule for label-

ing the tasks. Since MV does not account for any prior information

about the labels and the workers, it provides a neutral environment

to capture the performance of the algorithms for workers’ selection

in LCS. By Theorem 5.1, the value contribution vk of a worker k is

vk = 2pk −1. In this setup, pk is randomly chosen from the uniform

distribution over the interval [0.5, 1]. The value contribution vk
can be computed from pk . Given vk , ck is randomly chosen from

the uniform distribution over the interval [vk , 1 +vk ] as a worker
with higher value contribution will expect more incentives.

Assignment of the labeling tasks to the workers is a single step

process in all the three benchmark algorithms. Therefore, we evalu-

ate the performance of these algorithms for two different set of tasks

with number of tasks T = 50 and T = 100 in each set and the limit

Mk on the number of tasks a workers can perform is 0.6T for all the

workers. Unlike the benchmark algorithms, B-KUBE evaluates one

task at a time and moves to a different task whenever the algorithm

is confident that the estimated label of the current task is correct.

For the evaluations of B-KUBE, we use the criteria proposed in [1]

to move on to the next task. For a given budget, the two key perfor-

mance measures of the algorithms are: classification error and the

number of tasks being performed in LCS. The classification error

can be reduced by assigning a task to a large number of workers

and aggregating the contributions from the workers to predict the

final label of the task. However, this will reduce the number of tasks

that can be performed in a limited budget. Thus, there is a trade-off

between these two performance measures. The evaluations show

that B-KUBE outperforms all the three benchmarks for both the

performance measures simultaneously, see Figure 1 and 2.

As the budget B increases, the classification error decreases for

all the algorithms. This is expected, since a larger number of eval-

uations of the labeling tasks can be performed if more budget is

available. The key observation is that B-KUBE has the smallest

classification error whereas the three benchmark algorithms have a

higher classification error even after utilizing the available budget

to perform less number of tasks in comparison to B-KUBE. Addi-

tionally, the classification error of ϵ-F is close to that of Bounded
ϵ-F, however, the number of tasks performed by ϵ-F are less than
the number of tasks performed by Bounded ϵ-F. This is because
the tasks are only assigned to the most efficient worker estimated

during the exploration phase. As a consequence, this limits the

number of tasks T performed by ϵ-F ( Fig. 1 and 2). Another impor-

tant observation is that the gap between the classification error of

the three benchmark algorithms and B-KUBE reduces as the budget

increases. This is because the optimal solution of the BKP includes
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Figure 1: The first and second column of plots are corre-
sponding to the classification error ϵ and number of tasks
T performed by the workers respectively. a) T=50 and Set A
workers b) T=50 and Set B workers c) T=100 and Set A work-
ers

more and more less efficient workers as the budget increases and

the absolute gains from the correct identification of the optimal

workers decreases for a large budget. In other words, the losses due

to selection of a worker from the sub-optimal set, according to BKP,

reduces for large budget.

Figure 1(b) and 2(b) shows the performance of the algorithms in

presence of the spammers for the same setting as in Fig 1(a) and 2(a)

respectively. An important remark here is that the optimal solution

for BKP doesn’t include any spammer for the values of B considered

in the setup. B-KUBE performs better than the three benchmark

algorithms in the presence of spammers as well. However, there is

a significant increase in the classification error of the B-KUBE for

small budget i.e. B = 100. The key reason is the absence of a pure

exploration phase in B-KUBE which limits the opportunity to iden-

tify the spammers. For large budget B = 300, the classification error

of B-KUBE does not increase significantly as the algorithm is able

to utilize the budget efficiently for the identification of spammers.

On contrary, this is not true for the three benchmark algorithms.

In conclusion, B-KUBE has a smaller classification error and per-

forms a larger number of tasks in comparison to the three bench-

mark algorithms. Note that B-KUBE and Bounded ϵ-F are the DGA
based extension of KUBE and ϵ-First policies from a budget-limited

MAB setup to an arm-limited, budget-limited MAB setup . Finally,

Figure 2: The first and second column of plots are corre-
sponding to the classification error ϵ and number of tasks
T performed by the workers respectively. a) T=50 and Set A
workers b) T=50 and Set B workers c) T=100 and Set A work-
ers

the performance trends of B-KUBE and Bounded ϵ-F in the cur-

rent setup are similar to the ones of KUBE and ϵ-First policy in a

budget-limited MAB setup reported in [22].

7 CONCLUSION
We proposed a notion of Limited-information Crowdsourcing Sys-

tems. Unlike traditional CS, LCS monitors the labeling of every

single task by a worker in real time, and controls the further as-

signment of the tasks to the workers based on the estimated value

contribution. Due to this form of continuous monitoring, the task

master can choose not to assign a task to a worker, and return later

to the same worker after exploring other workers, thus, eliminating

the requirement of gold-set of tasks. The key challenges in this new

setup are determining an efficient workers’ selection policy and

estimating the value contributions of the workers in real time.

We used B-KUBE to resolve the first challenge and provided its

performance analysis, showing that it is an order optimal policy

for workers’ selection in a budget limited arm limited MAB setup.

This work closes the gap in the literature of current MAB setup,

showing that B-KUBE is order optimal. To resolve the second chal-

lenge, we first introduced the value contributions of the workers

for any inference rule and then provided the explicit relation be-

tween the accumulated value contribution from the workers and
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the classification error. We also proposed a strategy to estimate the

value contributions of the workers.

We compared the performance of B-KUBE in conjunction with

our value contribution estimation strategy, with three benchmark

MAB algorithms using the same value contribution estimation

strategy in LCS setup. Our experimental evaluations show that

B-KUBE outperforms all the three benchmark algorithms for both

the performance measures simultaneously. However, it is worth

noticing that B-KUBE has a higher computational complexity than

the benchmarks evaluated here.

The MAB setup considered in this paper is important as it has

extension to various applications like recommendation systems and

learning optimal causal intervention. In recommendation systems,

the selection of items is analogous to the workers’ selection and

value of the items need to estimated online from the user’s prospec-

tive like value contributions in LCS. Likewise, the current MAB

setup can be used to learn an optimal causal intervention in Di-

rected Acyclic Graphs. In this application, the intervention selection

is analogous to workers’ selection and the reward corresponding to

the intervention is analogous to workers’ value contribution. The

budget constraint is applicable to these applications in a similar

way as to the current LCS setup. Hence, there exists many appli-

cations where the current MAB setup can be used along with an

online estimation scheme, depending on the application, to design

an efficient multi-agent system. Likewise, the work can be applied

to various Multi-agent systems as the budget limited arm limited

MAB setup is a popular model for constraining the systems.

Additionally, the work introduces a notion of LCS which triggers

another research direction for crowdsourcing systems. The value

contributions of the workers can be formulated for more compli-

cated tasks, for example translation and testing, that require variety

of skills to complete. If a task requires z skills to be completed then

the value contribution of a worker can be modeled as a z dimen-

sional vector where each dimension of the vector corresponds to

a particular skill required for completing the task. Designing the

workers’ selection policy and online strategy to estimate the value

contributions of the workers for such tasks is challenging and is

left as future work.
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