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ABSTRACT
Humans are able to understand and perform complex tasks by

strategically structuring tasks into incremental steps or sub-goals.

For a robot attempting to learn to perform a sequential task with

critical subgoal states, these subgoal states can provide a natural

opportunity for interaction with a human expert. This paper ana-

lyzes the benefit of incorporating a notion of subgoals into Inverse

Reinforcement Learning (IRL) with a Human-In-The-Loop (HITL)

framework. The learning process is interactive, with a human ex-

pert first providing input in the form of full demonstrations along

with some subgoal states. These subgoal states defines a set of

sub-tasks for the learning agent to complete in order to achieve

the final goal. The learning agent queries for partial demonstra-

tions corresponding to each sub-task as needed when the learning

agent struggles with individual sub-task. The proposed Human

Interactive IRL (HI-IRL) framework is evaluated on several discrete

path-planning tasks. We demonstrate that subgoal-based interac-

tive structuring of the learning task results in significantly more

efficient learning, requiring only a fraction of the demonstration

data needed for learning the underlying reward function with a

baseline IRL model.
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1 INTRODUCTION
Teaching robots to perform a sequential, complex task is a long-

standing research problem in robot learning. For instance, consider

the task of parking a car into a narrow slot as shown in figure 1. The

autonomous vehicle may be taught to sequentially move towards

the target across roads while avoiding obstacles such as other cars

and white lines in the environment. One key problem that arises is

that while it can be easy for the car to travel on roads, the car might

struggle locating a specific turning point so that it can fit within the

narrow parking slot, or struggle avoiding hitting other cars when

it turns around. These issues arise because there are certain critical

states, namely, subgoal states, that the agent must visit in order

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
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Figure 1: Many tasks in the real-world, such as parking a car,
involve subgoal states: the car must be first positioned in a
certain set of states before being able to continue and com-
plete the goal. Some states are critical to cross, which means
if the car misses these states, it won’t be able to reach the
destination. Other states along the road may be less critical,
which means the car can choose another route and crossing
these states is not necessary.

to complete the entire task. In this example, the car must turn left

somewhere before it reaches the empty parking space.

Leveraging human input is one way to provide information that

could be helpful for learning agents, like robots, to reach important

subgoal states. Specifically, a human expert can provide demon-

strations of possible trajectories to go through these critical states

for the robot to follow. This type of learning, termed broadly as

apprenticeship learning [1, 10], is a popular approach for leveraging

human input.

Unfortunately, expert demonstrations might not address all of

the learning challenges for the following reasons: (1) Data Spar-
sity - While an expert can provide demonstrations of the entire

task, these demonstrations are usually collected without consid-

ering the learning process (i.e. the structure of the task and diffi-

culties of individual parts). Due to lack of enough demonstrations

on some critical states, figuring out the way to go through them

can still be difficult, which can prevent overall success. Therefore,

complex sequential decision-making tasks usually require a signifi-

cant amount of demonstrations to learn a reward function [15]. (2)

Burden of Human Interaction - Especially in the case of human

experts, constant human robot interaction is very costly and should

be minimized. Unfortunately, methods like online imitation learn-

ing approaches often assume that the expert is always providing

demonstrations during the entire learning process [12]. While this

may be reasonable for some problems, it maybe too impractical for

many other applications. (3) Data Redundancy - A full demon-

stration might not be needed for a learning agent equipped with

a partial model. Given a small number of expert demonstrations,

the learning agent may already know how to perform parts of the
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Figure 2: Diagram of Our Approach: A human-expert can leverage subgoal states in order to efficiently interact with the learn-
ing process. Human will first provide a full demonstration covering the entire task (from A to D, these states are landmarks
states in the task and there are other intermediate states not shown here), and define sub-goals (B and C) and sub-tasks (from
A to B, B to C and C to D). Then the agent will try human-defined sub-tasks. Human will only provide sub-task demonstration
where the agent fails. In this example, the human expert first demonstrates the entire task, and let the agent learn to perform
the task. However, the agent can only finish the subtask from A to B (smile face) but fails on the subtask from B to C (crying
face), and stops at C. Then the human expert will demonstrate the sub-task (B to C) that the agent fails, and let the agent learn
again. This process will repeat until the agent learns to perform the entire task.

task successfully while struggling only in certain situations. In this

case, it is more efficient to know where the agent fails and provide

specific demonstrations for the part where the agent fails.

We make the observation that human experts can provide high-

level feedback in addition to providing demonstrations for the task

of Inverse Reinforcement Learning (IRL). For example, in order to

teach a complex task consisting of multiple decision-making steps,

a common strategy of humans is to dissect the task into several

smaller and easier sub-tasks [9] and then convey the strategy for

each of the sub-tasks (see figure 2 for an example). It is reasonable

that by incorporating this kind of divide-and-conquer high-level

strategy coming from human’s perception of the task, IRL can be

more efficient by focusing on sub-tasks specified by human. In

addition, by dividing a complex task into several sub-tasks using

human’s perception, it will be easier for humans to evaluate the

performance of the current agent. Since the agent may already be

able to perform well on some of the sub-tasks, a human expert only

needs to provide feedback on sub-tasks that the agent struggles

with.

We propose a Human-Interactive Inverse Reinforcement Learn-

ing (HI-IRL) approach that makes better use of human involvement

by using structured interaction. Although it requires more infor-

mation from the human expert in the form of subgoal states, we

demonstrate that this additional information significantly reduces

the required number of demonstrations needed to learn a task.

Specifically, the human expert will provide critical subgoals (strate-

gic information) the agent should achieve in order to reach the

overall goal. Thus, the overall task is more "structured" and consists

of a set of sub-tasks. We show that by using our sample efficient

HI-IRL method, we can achieve expert-level performance with sig-

nificantly fewer human demonstrations than several baseline IRL

models. Additionally, we notice that the failure experience obtained

by the agent may also be helpful to learn the reward function since

the failure experience tells the agent of what not to do. We lever-

age learning from failure experience to improve reward function

inference.

2 RELATEDWORK
Inverse Reinforcement Learning (IRL). IRL is a learning from

demonstration framework that infers the reward function given a

set of expert demonstrations [1, 10]. One of the key assumptions of

IRL is that the observed behavior is optimal (maximizes the sum of

rewards). Maximum entropy inverse reinforcement learning [16]

employs the principle of maximum entropy to learn a reward func-

tion that maximizes the posterior probability of expert trajectories.

Though [16] relaxes the optimality constraints, it cannot handle

significantly suboptimal demonstrations. [16] also does not con-

sider the redundancy of demonstrations. In our case, since we have

both agent’s failure experience as defined later and expert’s demon-

stration, we can leverage the failure experience to improve the

current reward. By using human feedback in the loop, our method

can reduce the amount of human involvement and thus reduce the

amount of redundant demonstration data.

Human-in-the-Loop IRL.There are many previous works in

human-in-the-loop IRL beyond simply providing demonstrations.

In [3], human and robot collaborate with each other to maximize

the human’s reward, and it assumes that the underlying reward

function for every state is visible for the human, which may not be

practical for many RL problems. The reason is that human usually

knows what action to take under a specific state, but it is hard to

infer the value function of states as it triggers another IRL problem.

In [11], agents constantly seek advice from a human for clustered

states, and so the learned reward gradually improves. However,

creating the state clusters and give general advice for particular

clusters is itself a demanding task for the human, since the states

within a cluster may not have the same optimal policy and the

human has to tradeoff to make a decision. The work of [2] studied
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the safety of AI, and by giving human feedback when the agent is

performing sub-optimally, the method can reduce the amount of

human involvement to learn a safe policy. However, the problem

they studied is different from ours since we focus on improving IRL

performance on complex sequential decision-making tasks instead

of AI safety. As a human-in-the-loop imitation learning algorithm,

[12] has proven to be effective in reducing the covariate shift prob-

lem in imitation learning. However, [12] does not explicitly learn a

reward function and requires constant online interaction.

Hierarchical IRL. Hierarchical reinforcement learning [6] was

proved to be effective in learning to perform challenging tasks with

sparse feedback by learning to optimize different levels of temporal

reward functions. Hierarchical IRL [4] was recently proposed to

learn the reward function for complex tasks with delayed feedback.

The work of [4] shows that by segmenting complex tasks into a

sequence of sub-tasks with shorter horizons, it is possible to obtain

optimal policy more efficiently. However, since [4] does not get

expert feedback during learning, and does not explicitly provide

partial demonstrations, it may still contain redundant demonstra-

tions.

Learning from Failure. Traditional IRL assumes the demon-

strations by experts are optimal in the sense that it optimizes the

sum of reward [8, 10, 16]. Recently, learning from failure experience

has been proven to be beneficial with properly defined objective

functions [7, 13]. Inspired by [13], we leverage failure experience

experienced by agents during learning to improve reward function

inference.

3 BACKGROUND
Maximum Entropy IRL. IRL typically formalizes the underlying

decision-making problem as a Markov Decision Process (MDP). An

MDP can be defined as M = {S,A,T , r }, where S denotes the

state space, A denotes the action space, T denotes the state transi-

tion matrix, and r is the reward function. Given an MDP, an optimal

policy π∗
is defined as one that maximizes the expected cumulative

reward. A discount factor γ is usually considered to discount future

rewards.

In IRL, the goal is to infer the reward function given expert

demonstrations D = {d0,d1, · · · ,dN }, where each demonstration

consists of state action pairs di = {si0,ai0, si1,ai1, · · · , sik ,aik }.
The reward function is usually defined to be linear in the state

features: r = θTϕ(s) = θT fs , where θ is the parameter of the

reward function, ϕ is a feature extractor, and fs is the extracted

state feature for state s . In maximum entropy IRL, the learner tries

to match the feature expectation to that of expert demonstrations,

while maximizing the entropy of the expert demonstrations. The

optimization problem is defined as,

θ∗ = argmax

θ
−
∑
di

P(di |θ ) log (P(di |θ )), (1)

subject to the constraint of feature matching and being a probability

distribution, ∑
di

P(di |θ )fdi =
˜f D , (2)∑

di

P(di |θ ) = 1 and P(di |θ ) ≥ 0,∀i . (3)

The expert’s feature expectation can be written as

˜f D =
1

N

∑
di ∈D

k∑
t=0

fit . (4)

Following current reward function θ , the policy π can be inferred

via value iteration for low dimensional finite state problems. Then

following π , and given initial state visitation frequency Ds,0 =

P(S0 = s) calculated from D, the state visitation frequency at time

step t can be calculated as,

Dsi ,t =

|S |∑
k=0

|A |∑
j=0

Dsk ,t−1π (sk ,ak, j )T (sk ,ak, j , si ). (5)

Here π (sk ,ak, j ) is the probability of taking action ak, j when the

agent is at state sk , and T(sk ,ak, j , si ) is the probability of transiting
to state si when the agent is at state sk and taking action ak, j . The
summed state visitation frequency for each state is then Dsi =∑
t Dsi ,t . The feature expectation following current policy π can

be expressed as

f π =
∑
di

P(di |θ )fdi =
∑
si ∈S

Dsi fsi . (6)

The above optimization problem in 1 can be transformed to the

following optimization problem [16],

θ∗ = argmax

θ
P(D|θ )

∝ argmax

θ
exp {

∑
si ∈D

θTϕ(si )}

= argmax

θ
exp {

∑
si ∈D

θT fsi }.

(7)

Optimizing Eq. 7 can be done via gradient descent on negative

log-likelihood with the gradient defined by

∇θ = f π − ˜f D . (8)

Maximum Entropy Deep IRL. Standard maximum entropy

IRL method uses a linear function to map state feature to reward

value: r = θT f . As neural networks have demonstrated excellent

performance in visual recognition [5] and feature learning, it is

reasonable that neural network-based rewardmapping functionwill

be more powerful in complex state space case, and can handle raw

visual states which may be challenging for linear reward function.

The reward function is defined as r = д(θ , f ), where r is the reward
value for state feature f , and θ is the neural network parameters.

In the linear reward function case, the gradient of the loss function

with respect to the parameters is defined as,

∇θL = ∇rL · ∇θ r

= ∇rL · f .
(9)

From equation 8, we know that ∇θL = f π − ˜f D , which can be

expressed as,

f π − ˜f D = f (Dπ
f − D̃D

f ), (10)

where f is the feature of a particular state,Dπ
f is the agent visitation

frequency of this state, and D̃D
f is the expert visitation frequency

of this state. When deep neural network is used to represent the

reward function, the gradient of the loss function with respect to

the parameters can be expressed as,
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∇θL = ∇rL · ∇θ r

= ∇rL · ∇θд

= (Dπ
f − D̃D

f ) · ∇θд.

(11)

IRL from Failure. While maximum entropy IRL tries to match

the expected feature counts of the agent’s trajectory with the fea-

ture counts of expert demonstration, it is reasonable to keep the

expected feature counts following current learned reward different

from that of failure experience. The learning from failure algorithm

proposed in [13] demonstrates the possibility of incorporating fail-

ure experience to improve IRL. Given both successful demonstra-

tions D and failure experience F , we define linear reward function

parameter θd and θf for reward function learned from D and F

respectively. The goal is to maximize the probability of successful

demonstrations, and match the feature expectation of successful

demonstrations, while maximizing the feature expectation differ-

ence with failure experiences. In [13], the optimization problem is

defined as following,

max

π ,w,z
H (D) +wz −

λ

2

∥w ∥2,

subject to:
˜f D = f π ,

f π − ˜f F = z,∑
a

π (s,a) = 1 ∀s ∈ S,

π (s,a) ≥ 0 ∀a ∈ A,

(12)

where H (D) is the causal entropy of the successful demonstrations

D, and is defined as,

H (D) = −
∑
t

∑
s1:t ∈S,a1:t ∈A

P(a1:t , s1:t ) log (P(at |st )), (13)

where P(at |st ) = π (st ,at ) is the policy, and

P(a1:t , s1:t ) = P(s1:t−1,a1:t−1)T (st−1,at−1, st )π (st ,at ) (14)

is the probability of trajectory from time 1 to time t . In Eq. 12, w
is the Lagrange multiplier of z, which is a variable representing

the difference between the feature expectation of failure experi-

ences and the feature expectation following current policy π . The
Lagrangian of Eq. 12 gives the following loss function,

L(π ,w, z,θd ,θf ) =H (D) +wz −
λ

2

∥w ∥2

+ θd (f
π − ˜f D )

+ θf (f
π − ˜f F − z).

(15)

Following the optimization in [13], the optimization step update

for θd and θf is,

θd = θd − α(f π − ˜f D ),

θf =
(f π − ˜f F)

λ
,

(16)

where α is the learning rate for θd and λ is a learning rate for θf
which is annealed throughout the learning. More details of the

learning from failure approach can be found in [13].

Algorithm 1 Deep IRL from Failure (IRLFF)

Require: Failure experience F , expert demonstration D

Require: State TransitionMatrixT ,α ,αλ , λ,θ
t
d , λmin , all feature

input f , where θ td is a deep neural network

Return: Updated reward function θd ,θf
Start:

˜f D =FeatureCount(D) (Eq. 4 with D = D)
˜f F =FeatureCount(F ) (Eq. 4 with D = F )
PD
0
=initialStateDistribution(D)

P F
0
=initialStateDistribution(F )

θf = 0
θd = θ

t
d

Repeat:
r = д(θd , f ) + θf · дf c1(θd , f )
π =SoftValueIteration(r )

f π
F

= FeatureExpectation(P F
0
,π ,T )

f π
D

= FeatureExpectation(PD
0
,π ,T )

θd = θd − α(Dπ
f − D̃D

f ) · ∇θdд

θf calculated according to Eq. 19

if λ > λmin :

λ = αλλ
until convergence

4 HUMAN-INTERACTIVE INVERSE
REINFORCEMENT LEARNING (HI-IRL)

We propose Human-Interactive Inverse Reinforcement Learning

(HI-IRL) to make more efficient use of human participation beyond

simply providing demonstrations. Different from approaches such

as [16], we require more human-agent interactions during the learn-

ing process by allowing the agent try out sub-tasks defined by a

human and letting the human provide further demonstrations on

sub-tasks if the agent struggles (we provide formal definition of

“struggle" later in this section). Different from approaches such as

[12], humans do not need to constantly provide entire demonstra-

tions; instead demonstrations are obtained only where the agent

struggles. There indeed can be other forms of human interaction

when the agent struggles. For example, human can provide the

entire demonstration when the agent struggles, similar to the ap-

proach in [12]. However, as we demonstrated in the experiments

part, this method of interaction is not as effective as our method.

Another method of interaction can be, human just let the agent try

the same task again and again, until the agent happens to finish

the task. When the agent happens to finish the task, the trajectory

that the agent experienced can be used as human demonstration.

Though this may work if the state space is very small, for large

state space case, it may take forever for the agent to find the way

to the goal. Even if the agent reaches the goal, the trajectory that

the agent traveled may not be an optimal trajectory.

We show that our method achieves better interaction efficiency

by evaluating our method on several simulation experiments. We

first describe our method, and then give a demonstration of the

optimality of our subgoal selection strategy.
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Figure 3: Subgoals specified in 12x12, 16x16, 32x32 grid world environment, and car parking environment. In the grid world
environment, states are defined as the grid position the agent is current at (specified by red box), goals are represented by green
box, and subgoals are indicated by red stars. In the car parking environment, states are defined as the car global coordinate
as well as the orientation of the car, which can be represented by an arrow. The subgoals in the car parking environment is
specified by a set of red arrows.

4.1 HI-IRL
Step 1: Human expert provides several full demonstrations
and define subgoals. Given a task consisting of multiple decision

making steps, the human expert will first provide N full demonstra-

tions D = {d0, · · · ,dN } completing the entire task. The number

of demonstrations in D can be relatively small, for example, 1 or 2

demonstrations to learn an initial reward function. The human ex-

pert will then dissect the entire task into several parts by indicating

critical subgoal states where the agent must go through in order to

achieve the overall task. For example, in an indoor navigation task,

the agent tries to find a way from one room to anther, the state

when the agent is at the exit between the two rooms is a critical

subgoal state. While trajectories with different starting position in

the first room and different goal position in the second room varies,

they all need to go through the critical state corresponding to the

exit.

We denote these critical subgoal states as Ssub . One typical

characteristics of these subgoal states is that the probability of any

expert trajectories to include them will be close to 1,

P(si ∈ dj ) ≈ 1,∀si ∈ Ssub and ∀dj ∈ D . (17)

The reason why it may not be 1 is to allow cases where there

are multiple states functioning very similar as subgoal states. For

instance, there are multiple exits from one room to another in

the indoor navigation example. In this case, the probability of any

expert trajectories to include any one of these states will be 1.

Given these subgoal states Ssub , any trajectory ξ = {s0, · · · , sk }
can be dissected into several sub-tasks Tsub = {d1,d2, · · · ,dm },

wherem is the number of sub-tasks within this trajectory ξ , and

concatenating these sub-tasks together will get the original trajec-

tory ξ . The starting state and end state of each of these sub-tasks

except d1 and dm belong toSsub . The end state and starting state of

d1 and dm , respectively, belong to Ssub . A more formal definition

of trajectory dissection is to consider all possible trajectories from

a chosen start state to goal state as a set Ξ = {ξ1, · · · , ξx }, and
subgoal states are defined by,

Ssub =

x⋂
i=1

ξi . (18)

Step 2: Agents try out on the defined sub-tasks. Starting
from a randomly selected starting state sr , the agent will be re-

quired to reach each of the subgoals sequentially towards the ul-

timate state sдoal . This means that given the optimal path from

the agent’s current state sr to the goal state sдoal : ξsr→sдoal =

{sr , · · · , ssub1, · · · , ssub2, · · · , ssubk , · · · , sдoal }, where ssub1, ssub2,
· · · , ssubk are subgoal states along this path, the agent is expected

to reach them from ssub1 to ssubk sequentially. If the agent suc-

cessfully gets to subgoal ssubi within stepmin,ssubi + stepthr , the
agent will be required to reach the next subgoal ssub(i+1) starting
from current state ssubi . Here, stepmin,ssubi is the minimum steps

required to reach ssubi from the start state sr , and stepthr is the

extra threshold steps to allow some exploration.

Step 3:Humanprovides further demonstrations if needed.
Depending on the performance of the agent on the sub-tasks, if the

agent successfully finished all sub-tasks, then the human expert

will not provide further demonstrations. The human expert will

only provide demonstrations on sub-tasks that the agent struggles.

For example, if the agent is not able to complete sub-task ending

in subgoal ssubi , then human will provide further demonstrations

on this sub-task. Since these further demonstrations may not be

complete demonstrations starting from the very beginning state

to the ultimate goal state, we call these demonstrations partial
demonstrations. The initial demonstrations mentioned in step 1 are

called full demonstrations.
Here we give the definition of “agent struggles". Suppose the

agent is given a sub-task to go from state si to state sj . Theminimum

number of steps to travel from si to sj is stepmin,si→sj , and to allow

some level of exploration, the agent will be given extra stepthr steps
to reach sj . The value stepthr depends on the difficulty of specific

task, if the task is fairly difficult, we set it to a high value (20),

otherwise, we set it to a low value (5). Note that this value can

be regarded as a hyper-parameter that needs to be tuned. If the

agent is not able to reach sj within stepthr + stepmin,si→sj , then

we define the agent “struggles". Once the agent struggles, human

will provide further demonstrations on this particular task (from si
to sj ).

Step 4: Learning reward function fromboth failure experi-
ences and expert demonstrations. When the agent fails to finish

some subtasks, the failed experience by the agent can be considered

Session 37: Learning and Adaptation 4 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1384 



Algorithm 2 Human-Interactive Inverse Reinforcement Learning

(HI-IRL)

Require: Set of initial demonstrations d0, T , State Transition

Matrix T , θ0, all state raw feature f , and human H .

Return: Reward function θT+1

Define: D: positive demonstrations; F : failure experience; E:

agent experience; Ssub : set of sub-goal states

Start:
Ssub = specify_subgoals(H )

D = d0;
θ1 = MaxEntIRL(D, θ0)
for t ∈ 1, 2, ...,T

E = Rollout(θ t , Ssub )
for e in E

F ,D = UpdateDemo(e , θ t , D)

θ t+1d ,θ t+1f = IRLFF(F ,D, T , θ td , f ) (Alg. 1)

θ t+1 = (θ t+1d ,θ t+1f )

as failure experiences, denoted as F . Though these demonstrations

are not given by human, but instead by the learning agent itself.

Expert’s further demonstrations are denoted as D, which already

includes the initial full demonstrations. Since the original learning

from failure method only includes linear reward function case, we

propose to use deep neural networks to extract features from raw

states, and then use linear reward function to get reward value from

these extracted features.

Our deep neural network reward function takes in input in the

form of raw states, which usually are images, and process this input

with three convolutional layers with each one followed by batch

normalization layers and ReLU activation function. Then two fully

connected layers are followed to output the final reward value.

The last layer output scalar value will be used as the reward value

corresponding to θd in equation 16. The second last layer output

vector will be used to calculate θf in equation 16. If we denote

the network parameters as θd = {conv,bn,ReLU , FC1, FC2}, the

network input as f , and the network function as rd = д(θd , f ),
then we have

FC1,out = д(conv,bn,ReLU , FC1, f ) � дf c1(θd , f )

θf =
FCπ

1,out − F̃C
F
1,out

λ

(19)

Here θd will be the neural network and θf will be a vector of

the same size as FC1,out , FC
π
1,out is the feature expectation fol-

lowing the current policy π , and F̃C
F
1,out is the feature expecta-

tion of failure experience F . The final reward function will be

r = д(θd , f ) + θf · дf c1(θd , f ). The detailed learning from both

failure experience and expert demonstration algorithm is described

in algorithm 2.

4.2 Optimality of Subgoal Selection
In HI-IRL, the human will specify critical subgoal states Ssub
which have a very high probability to be included in any expert

demonstrations, and other non-critical states will have relatively

lower probability to be included in any expert demonstrations.

Define Snc � S \ Ssub as all states except human defined sub-

goal states. Given two trajectories ξ1 = {s1,0, s1,1, · · · , s1,k } and
ξ2 = {s2,0, s2,1, · · · , s2,k }, where s1,i = s2,i ,∀i ∈ {0, · · · ,k − 1},

and s
1,k ∈ Ssub and s

2,k ∈ Snc , intuitively, ξ1 will be favored over

ξ2,

P(ξ1) > P(ξ2)

⇒ exp

k∑
i=1

r (s1,i ) > exp

k∑
i=1

r (s2,i ),

⇒ r (s
1,k ) > r (s

2,k ),

(20)

which means that critical subgoal states will have higher reward

than non-subgoal states around them. In the linear reward function

case, the reward function parameter θ is optimized when,

˜f D =

|S |∑
i=1

Dsi fsi , (21)

which means the final policy will favor states that appear more

times in expert demonstrations D in order to match the feature

expectation of D. Given two states s1 and s2, and define p(s1,D)

as the frequency of s1 appears in D, the same for s2, and suppose

p(s1,D) > p(s2,D), then we have,

Ds1 > Ds2

⇒ P(ξ1 |s1 ∈ ξ1) > P(ξ2 |s2 ∈ ξ2),
(22)

where ξ1 and ξ2 are two trajectories, where all other states are same,

except that ξ1 contains s1 while ξ2 contains s2. Given equation 20,

we know that r (s1) > r (s2), which means states that appear more

times in expert demonstrations will typically have higher rewards.

Therefore, in order to make sure those critical states have higher

rewards, we must increase the demonstrations around them. By

letting human specify these critical states, and providing extra

demonstrations if the agent struggles, we ensure that these states

receive more attention during demonstration collection, which

leads to better reward function learning.

5 EXPERIMENTS
We designed the experiment parts to demonstrate the key contribu-

tions of our proposed HI-IRL method. First, we demonstrate that

by leveraging human interaction in inverse reinforcement learning,

we obtain better data efficiency than traditional inverse reinforce-

ment learning approach that trains on offline collected data (the

standard maximum entropy IRL method). Second, we provide a
better human interaction strategy where the burden on human can

be reduced compared with existing methods such as [12]. Third,
we demonstrate that by carefully selecting the key subgoals, it

achieves better reward function learning than random selection

of subgoals. The experimental environments are designed to be

complex sequential decision making process with critical subgoal

states that the agent must go through in order to complete the

overall task.

Baselines. In order to show the key contributions of our HI-IRL

method, we compare our algorithm with (1) maximum entropy IRL

(here after denoted as MaxEntIRL); (2) human interactive IRL with-

out specifying subgoals (here after denoted as HI-IRLwos), which
is similar to approach like [12]; and (3) human interactive IRL with

Session 37: Learning and Adaptation 4 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1385 



(a) (b) (c) (d)

Figure 4: Number of demonstration steps VS number of steps used to complete the same test tasks curve. (a): 12x12 Grid-world;
(b) 16x16 Grid-world; (c) 32x32 Grid-world. (d) Car parking simulation environment.

randomly selected subgoals ( here after denoted as HI-IRLwr). In
human interactive IRL without specifying subgoals, the procedure

is similar to our method, except that the agent will be required to

complete entire task and human expert will provide full demon-

strations if the agent struggles. The purpose of comparing with

MaxEntIRL is to show the benefits of interacting with human during

the learning process (ourfirst contribution).While both HI-IRLwos
and HI-IRLwr have human interaction, HI-IRLwos tries to provide

the entire demonstration again which contains redundancy and

increases human burden; HI-IRLwr tries to provide demonstrations

for randomly selected sub-tasks, which fails to emphasize on crit-

ical subgoal states, and may lead to ill reward function learning.

The purpose of comparing with HI-IRLwos is to show the benefits

of subgoal selection as it reduces human burden to demonstrate

entire task (our second contribution). The purpose of comparing

with HI-IRLwr is to show the benefits of selecting critical subgoals

instead of random subgoals (our third contribution).

We performed several sets of experiments in grid-world and car

parking environments spanning different scales of state space. All

environments contain critical subgoal states that the agent must go
through to complete the entire task. In all experiments, we use deep

neural network to represent reward function. In the grid-world

environment, the network is composed of three layers of convolu-

tional neural network with each followed by a batch normalization

layer and ReLU activation layer, then two fully connected layers

are followed to output the final reward value. In the car parking

environment, the network is similar to the network in grid-world

environment, except there are 2 convolutional layers due to smaller

input image size.

Grid-world Environment. The grid-world environment in-

volves grid-world navigation where the agent is put in a place

at the beginning and the task is to find a way to a target position.

In this experiment, grid-world of different scales of state space

are used for evaluation. Specifically, a 12x12, a 16x16, and a 32x32

grid-world environment are used. Regions in the grid-world where

there are obstacles are not counted towards agent state.

Since all four methods require some initial human demonstra-

tion to learn a reward function, a certain number of human demon-

strations D are collected at the beginning. In both the gridworld

environment and car parking environment, we have finite number

of states and the optimal path from one state to another can be au-

tomatically solved by using the Dijkstra algorithm [14]. Therefore,

we generate the demonstration automatically instead of getting

them from real human. However, human expert will specify crit-

ical subgoal states Ssub to be used in our method. A set of test

starting state will be specified by human that is different from the

training data D. Then D is used to get the reward function fol-

lowing MaxEntIRL method. One demonstration randomly sampled

from D will be used for training initial reward function for our

method, HI-IRLwosmethod, and HI-IRLwrmethod. In HI-IRLwos,
the agent will be required to start from a randomly selected start-

ing state, and find a way to the final target state, and human will

provide further demonstration if the agent struggles. In HI-IRLwr,
randomly selected subgoals will be used to define sub-tasks, and

the agent will try to complete these sub-tasks, and human will pro-

vide further demonstrations if needed. All four methods are trained

with the same learning rate and number of iterations. Different

number of demonstrations are used to train reward function and

then evaluate on the same test task 5 times to get the mean value

of test performance.

Car-Parking Environment. Parking a car into a garage spot

involves driving the car to a place near the slot, adjust the orien-

tation of the car and drive the car into the parking box without

hitting obstacles. In this environment, it is critical that the car has

to stop at a certain state near the parking slot to ensure that after

adjusting the orientation, the car will not hit obstacles. The car

parking environment interface is shown in figure 1. The number of

agent possible states is about 5k – much larger than the state space

in the grid-world environment.

At the beginning, human demonstrations and human specified

subgoals are collected. Then follow the same procedure as in the

grid-world environment, we obtained training results for all four

methods. The subgoals selected for each environment is visualized

in figure 3.

5.1 Results and Analysis
Grid-world Simulation Results. The number of demonstration

steps versus number of steps used to complete the same test tasks

curve is shown in figure 4, which includes the results for all four

methods. The test task is to set the agent at some initial states on
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the top left region in the grid world, and then require the agent to

travel to the same destination as in training time. Since the goal of

our approach is to reduce the burden of human, for example, the

human will provide less demonstrations, the results indicate that

our method achieves better human interaction efficiency and the

agent learns to complete the same test task with less but more infor-

mative demonstration from human. The reason why the MaxEntIRL
method works worse than the other three methods is that there are

much more training data to learn from in this method. Therefore,

it may require more iterations to train, which is another burden of

this method. The HI-IRLwrmethod works in the 12-by-12 state size

case, but does not work in the 16-by-16 state size case. The reason

is that the subgoals are randomly selected, which means there is

a probability that they are selected to be near the critical subgoal

states, achieving similar performance as our method. Our method

uses slightly more steps to complete the test task in the 32-by-32

grid-world at initial training than HI-IRLwos method. However, as

indicated in the figure, we can use less steps of demonstrations but

achieve similar performance.

Car-Parking Simulation Results. The car-parking simulation

results include the number of demonstrations versus number of

steps to complete the same test tasks curve shown in figure 4. Our

method achieves near oracle performance with less demonstrations

from human than other baselines. Since this MDP contains much

richer states (in total 5k states) than previousMDPs, this experiment

demonstrates that our method has the abilility to generalize to large

state space case.

6 CONCLUSIONS AND REMARKS
The motivation for this study was in addressing challenges when

learning complex sequential decision-making with an IRL frame-

work. This paper presents a framework for leveraging structured

interaction from a human during training. In addition to providing

demonstrations of the task to be performed by a learned agent, the

method also leverages the human’s high level perception about

the task (in the form of subgoals) in order to improve learning.

More specifically, humans can transfer their divide-and-conquer

approach for problem solving to inverse reinforcement learning

by providing segmentation of the current task and a set of sub-

tasks. Agent can benefit from both its own failure experience and

human’s demonstrations by using learning from both failure ex-

periences and expert demonstrations method. Experiments on a

discrete grid-world path-planning task and large state space car

parking simulation demonstrated how subgoal supervision resulted

in more efficient learning.

For future work, we would like to apply HI-IRL for additional

tasks with increasing complexity. Incorporating HI-IRL with a real-

world robot experiment could further support its use in applica-

tions where input from a human is helpful but costly to acquire.

In addition, it is also interesting to explore automatic optimal task

dissection to further reduce human burden.
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