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ABSTRACT
This work is aims to overcome the challenges in deploying influ-

ence maximization to support community driven interventions.

Influence maximization is a crucial technique used in preventative

health interventions, such as HIV prevention amongst homeless

youth. Drop-in centers for homeless youth train a subset of youth as

peer leaders who will disseminate information about HIV through

their social networks. The challenge is to find a small set of peer

leaders who will have the greatest possible influence. While many

algorithms have been proposed for influence maximization, none

can be feasibly deployed by a service provider: existing algorithms

require costly surveys of the entire social network of the youth to

provide input data, and high performance computing resources to

run the algorithm itself. Both are crucial bottlenecks to widespread

use of influence maximization in real world interventions.

To address the above challenges, this paper introduces the CHANGE

agent for influence maximization. CHANGE handles the end-to-

end process of influence maximization, from data collection to peer

leader selection. Crucially, CHANGE only surveys a fraction of the

youth to gather network data and minimizes computational cost

while providing comparable performance to previously proposed

algorithms. We carried out a pilot study of CHANGE in collabo-

ration with a drop-in center serving homeless youth in a major

U.S. city. CHANGE surveyed only 18% of the youth to construct its

social network. However, the peer leaders it selected reached just as

many youth as previously field-tested algorithms which surveyed

the entire network. This is the first real-world study of a network

sampling algorithm for influence maximization. Simulation results

on real-world networks also support our claims.
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1 INTRODUCTION
This paper presents and field-tests a novel, practical agent for influ-

ence maximization, the challenge of selecting a small set of seed

nodes in a social network who will diffuse information to many

others. Such techniques have important applications ranging from

preventative health [1, 23] to international development [2]. It is
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inherently a multiagent problem because nodes (agents) make deci-

sions in response to those around them [17, 29].

We are particularly motivated by the challenge of preventing

HIV spread among homeless youth [19, 20, 28] (although our con-

tributions would also assist other public health interventions). Here,

influence maximization is used to select homeless youth who will

serve as peer leaders and spread messages about HIV prevention

through their social network. Pilot studies in this domain have

shown that algorithmic approaches have great promise, substan-

tially outperforming status-quo heuristics [27]. However, current

algorithms have a high barrier to entry: they require a great deal

of time to gather the complete social network, expertise to select

appropriate parameters, and computational power to run the algo-

rithms. None of these are likely available to the resource-strained

service providers ultimately responsible for deployment.

Gathering network data is particularly onerous because it re-

quires individually surveying over a hundred youth. Network collec-

tion is more time intensive than simple survey methods, requiring

days of time for a dedicated team of social work researchers. It is

infeasible for service providers with many other responsibilities.

The other barriers are also serious impediments to wide-scale

adoption of influence maximization. Service providers will not have

access to the high-performance computing resources required by

previous algorithms, where high computational cost is often in-

curred to find solutions robust to unknown parameters. For instance,

DOSIM, a state of the art algorithm for robust influence maximiza-

tion [25], requires hours on a high-performance computing system.

A deployed system would need to run in minutes on a laptop.

This paper presents CHANGE (CompreHensive Adaptive Net-

work samplinG for social influencE), a novel, end-to-end agent for

influence maximization which addresses the above barriers via a

set of algorithmic contributions. CHANGE is easy to deploy, but

this simplicity is crucially enabled by a series of insights into the

social structure of homeless youth (which may be useful for other

vulnerable populations). We conducted a pilot test of CHANGE’s

performance in a real deployment by a drop-in center serving home-

less youth in a major U.S. city. CHANGEwas used to plan a series of

interventions designed to spread HIV awareness among the youth.

CHANGE obtained comparable influence spread to state of the art
algorithms while surveying only 18% of nodes for network data, a
finding which is backed by additional simulation results.

Overall, CHANGE offers a practical, field-tested vehicle for de-

ployed influence maximization which drastically lowers the barrier

to entry. To our knowledge, this is the first real-world pilot study of
a network sampling algorithm for influence maximization and only
the second ever field test of any influence maximization algorithm.

Overview of algorithmic contributions: We now summarize

how CHANGE handles the challenges above. We discuss related

work in Section 2; however, none addresses these challenges.
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First, to address the data gathering challenge, we present an easily
deployable sampling protocol which randomly selects a small set

of youth to interview. For each of these youth, a randomly chosen

neighbor is also interviewed. We show that this procedure gathers

enough of the network to enable influence maximization even

though it surveys only a small number of nodes directly.

Second, to address computational power challenge (which in

turn stems from unknown parameters), we present a heuristic for

selecting influence maximization solutions which are robust to un-

certainty in the probability p that influence will spread. We show

that this heuristic finds solutions which obtain approximately 90%

of the maximum possible influence spread under any value forp. Im-

portantly, this heuristic runs in minutes on a laptop, while DOSIM

(the previously proposed algorithm for this problem) requires hours

to days of time on a high performance cluster.

Third, we integrate these components with an adaptive greedy
algorithm for planning interventions and prove the first theoretical

guarantee for influence maximization under execution errors. The

challenge is that some youth selected as peer leaders may not attend

the intervention [25, 27]. Our algorithm selects its action with such

uncertainties in mind, observes which youth do attend, and then

plans the next round using this observation.We prove that it obtains

a constant-factor approximation to the optimal adaptive policy.
Overviewoffield deployment contributions: We conducted

two pilot studies of CHANGE, each addressing distinct questions.

First, we conducted a feasibility study with two objectives. (i) We

confirm that CHANGE’s mechanism for sampling the network to

gather edge data is implementable with a homeless youth popula-

tion. This is nontrivial because homeless youth are often difficult to

locate, making finding particular youth to query for network ties dif-

ficult. (ii) We validate that the data gathered is sufficiently accurate

to enable influence maximization. Self-reported ties are subject to

bias and forgetting [3], making it important to investigate whether

they are accurate enough to find influential nodes. This point is of

broader interest, since previous influence maximization work has

largely used self-reported ties [25, 27], but no previous field study
has validated their accuracy for influence maximization. To address

these questions we collected network data from 72 youth at a drop-

in center via a range of methods: CHANGE’s sampling mechanism,

self-reports from the entire network, field observations by research

staff, and interviews with staff members. Our results show that

CHANGE’s sampling mechanism is feasible, and that self-reported

data is sufficient for high-quality influence maximization.

Second, we conduct an intervention study of the entire CHANGE

agent with an additional set of 64 homeless youth. This includes

network data collection, peer leader selection, and HIV awareness

trainings for the selected peer leaders. We then conducted a follow-

up survey to assess how many youth received information about

HIV. While CHANGE only collected data from 18% of youth in the

network, the peer leaders that it selects successfully reached 80%

of the youth. This is comparable to previously tested algorithms

HEALER and DOSIM which gather the entire network. This result
provides evidence that CHANGE can obtain influence spread com-

parable to the highly sophisticated algorithms proposed by previous

work, while eliminating crucial barriers to real world deployment.

Third, we give an analysis of the real network data to explain

why CHANGE can succeed while gathering such a small portion

of the network. Our explanation draws on friendship paradox, a
phenomenon observed in social networks where a typical node’s

neighbors have more ties than the node itself. We demonstrate this

phenomenon occurs across both of the networks that we gathered

and show how CHANGE exploits it to produce sampled networks

which are substantially more informative for influence maximiza-

tion than a comparable number of uniformly random samples.

2 RELATEDWORK
Influence maximization was introduced by Kempe et al. [13], and

has been extensively studied since then [4, 5, 8, 9, 12, 15, 18, 21].

Most work has focused on algorithms which are scalable to ex-

tremely large networks, primarily in the context of online viral

marketing. Recently, HIV prevention (and preventative health more

broadly) has emerged as a new application area for influence maxi-

mization which brings its own set of research challenges. Yadav et

al. [26] proposed HEALER, a POMDP-based algorithm for selecting

influential peer leaders. Subsequently, Wilder et al. [25] introduced

the DOSIM algorithmwhich uses robust optimization to account for

uncertainty about the true probability of influence propagation. Our

approach to parameter robustness is similar to techniques in robust

MDP planning [14], though the domains are entirely different.

Yadav et al. [27] conducted a real-world pilot study of HEALER

and DOSIM, and found that both algorithms significantly outper-

formed the status-quo heuristic used by agencies (selecting high-

degree nodes). However, neither algorithm addresses any of the

challenges described above. Both assume that the entire social net-

work is provided as input, which is unrealistic in practice due to the

enormous effort required. Further, only DOSIM handles uncertainty

about the probability of influence spread, and its method for doing

so is extremely computationally intensive (see Section 4.3). Separate

work by Wilder et al. [24] considered network data collection. They

proposed the ARISEN algorithm which samples a portion of youth

in the network to collect data from. While ARISEN can be theoreti-

cally analyzed for certain network structures, it is not practically

suitable to deployment because it relies on querying a sequence

of specific youth who may be difficult to locate (see Section 4.2).

Moreover, ARISEN does not consider either parameter uncertainty

or execution errors (the possibility that some peer leaders will not

attend), both of which we incorporate into CHANGE.

3 PROBLEM DESCRIPTION
Motivating domain: Our work is designed to overcome the chal-

lenges in deploying influence maximization techniques to support

community-driven interventions. We are specifically motivated

by the challenge of raising awareness about HIV among homeless

youth. Typically, an HIV awareness intervention will be provided by

a drop in center or other organization which serves homeless youth.

Each intervention is a day-long class followed by weekly hour-long

meetings. Hence (as is typical in many intervention domains), the

service provider will almost never have enough resources to de-

liver the intervention to all of the youth that frequent the center;

instead, the intervention is usually delivered to 15-20% of the popu-

lation
1
. Further, limitations on space and personnel mean that the

1
Note that while CHANGE directly surveys∼18% of youth, they name others as friends,

resulting in a larger sampled graph.
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intervention can typically be delivered to only 4-6 youth at a given

time, so the training is broken up over a series of small sessions.

These youth are trained as peer leaders who communicate with

other youth about HIV prevention. This amplifies the reach of the

intervention through the social network of the homeless youth. The

question is which youth will make the most effective peer leaders,

able to reach the greatest number of their peers. This is an influence
maximization problem, which we now formalize.

Influence: The youth have a social network represented as a

graphG = (V ,E). Each youth is initially inactive, meaning that they

have not received information about HIV prevention. Once nodes

are activated by the intervention, they have a chance to influence

their peers. We model this process through a variant on the classical

independent cascade model (ICM) which has been used by previous

work on HIV prevention and better reflects realistic time dynamics

[25–27]. The process unfolds over discrete time steps t = 1...T ,
where T is a time horizon. There is a propagation probability p.
When a node becomes active, it attempts to activate each of its

neighbors. Each attempt succeeds independently with probability

p. Activation attempts are made at each time step until either the

neighbor is influenced or the time horizon is reached.

Note that the assumption that p is uniform across edges is with-

out much loss. As noted by He and Kempe [10], a uniform p is

equivalent to each edge drawing an individual propagation prob-

ability i.i.d. from a distribution with mean p. This is because the
following processes are analytically equivalent: (1) propagate influ-

ence with probability p and (2) draw a propagation probability q
from a distribution with E[q] = p and then propagate influence with
probability q. Hence, our model subsumes any stochastic model

where the probabilities are drawn from a common prior.

Interventions: At each time step t = 1...T , the algorithm se-

lects a seed set At containing up to K nodes. However, each seed

node may or may not actually attend the intervention. This problem

is particularly acute with homeless youth since a number of factors

could prevent a given youth from attending (e.g., being arrested,

running out of money for a bus ticket, etc.). Hence, we assume

that each node v has a hidden state xv ∈ {present ,absent}. Each
node’s state is drawn independently from some prior distribution

D. For simplicity, we will take D to set each node to be present

with probability q. However, all of our analysis applies to arbitrary

distributions. For each v ∈ At , if xv = present , then v is activated.

Nothing occurs if xv = absent . Note that an absent node can still

become activated by others, since they may still be in contact with

others in the social network. After the set At is chosen, the inter-
vention occurs and the hidden state of each v ∈ At is observed. We

denote the set of all observations received at time t as Ot .

The algorithm may use this information to plan the next inter-

vention. In other words, the problem is adaptive. To model adap-

tivity, we introduce the notion of a policy. A policy maps from

past actions and observations to the action that should be taken

next. Let A = {S ⊆ V : |S | ≤ K} be the set of all possible actions.

A history is the current sequence of actions chosen and obser-

vations received, denoted by ψt = ((A1,O1), (A2,O2), ...(At ,Ot )).

Let Ψ be the set of all possible histories. A policy is a mapping

π : Ψ → A. Let A(ψt ) = (A1...At ) be the sequence of actions

taken and O(ψ ) = (O1...Ot ) be the corresponding observations

(whether each peer leader was present or absent). Recall that youth

Figure 1: Illustration of the CHANGE agent.

are trained in groups of 4-6; the policy selects a group of youth to

invite given who was trained previously. We denote the objective

as f (A(ψ )|O(ψ )). f is the expected number of nodes influenced by

the seed nodes in A(ψ ) conditioned on the observations in O(ψ ).
We overload notation and let f (π ) = Eψ∼π [f (A(ψ )|O(ψ ))] be the
expected reward from running policy π , where the expectation

ranges over the hidden state x (which determines π ’s actions) as
well as the influence process. We seek a policy maximizing f (π ).

Uncertainty about network structure and parameters: We

consider extensions to the core adaptive influence maximization

problem which account for the lack of information endemic in field

deployments. First, we consider the case where the structure of the

network (the edges E) are unknown. To address this challenge, we

give our agent a budget ofM queries to run before conducting the

intervention. Each query may target either a uniformly random

node, or the neighbor of a node already queried. When a node is

queried, it reveals all of its edges. The goal is to use theM queries

to uncover a set of edges which suffice to identify influential nodes.

We then consider an unknown propagation probability. Here,

we take a robust optimization approach and look for a policy which

performs well across a range of possible values for p. More detail

on this part of the problem can be found in Section 4.3.

4 CHANGE: A NEW AGENT FOR INFLUENCE
MAXIMIZATION IN THE FIELD

We now introduce the CHANGE agent for end-to-end influence

maximization. Figure 1 illustrates the three components of the agent.

We start with the last component, peer leader selection, since the

other components exist to provide the data that the peer leader

selection algorithm requires. Peer leader selection is performed by

an adaptive greedy algorithm (Algorithm 1), which handles the

chance that some peer leaders may not attend the intervention and

plans solutions using the observations obtained so far. Algorithm 1

requires as input a (sample of) social network and a propagation

probability p. Algorithms 2 and 3 provide these inputs.

4.1 Adaptive greedy planning
Given as input the graph G and propagation probability p, finding
the optimal policy is a difficult planning problem. There are 2

n
pos-

sible hidden states and

(n
K
)
possible actions. While it is possible to

formulate the problem as a POMDP, these exponentially large state
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Algorithm 1 Adaptive greedy

1: for t = 1...T do
2: At = ∅

3: for k = 1...K do //greedily select seeds for action t
4: v = argmaxv ∈V ∆(At ∪ {v}|ψt−1) − ∆(At |ψt−1)
5: At = At ∪ {v}

6: execute At and observe Ot
7: ψt = ψt−1 + (At ,Ot ) //add action/observation to history

and action spaces place even small instances beyond the reach of

off-the-self solvers. Hence, we exploit the structure of the problem

to formulate a scalable greedy algorithm which obtains (provably)

near-optimal solutions.

Pseudocode for adaptive greedy, our online planning algorithm,

can be found in Algorithm 1. Algorithm 1 selects the action at

each step which maximizes the expected gain in influence spread,

conditioned on the observations received so far. Then, it waits

until this action has been executed, observes which peer leaders at-

tended the intervention, and greedily plans the next step. Formally,

let ∆(At |ψt−1) = f (A(ψt−1) ∪ At |O(ψt−1)) − f (A(ψt−1)|O(ψt−1))
denote the expected marginal gain to selecting At at time t . The
greedy policy is to select At = argmax |A | ≤K ∆(A|ψt−1) (the outer
loop of Algorithm 1). However, computing the maximizing action is

itself computationally intractable (as there are

(n
K
)
possible choices).

Hence, Algorithm 1 uses an additional greedy inner loop which

greedily selects the elements of At one at a time (lines 3-5). Note

that ∆ can be computed by averaging over random simulations over

both the hidden state (which nodes are present/absent) as well as

how influence spreads via the ICM.

We prove the following theorem, which shows that greedy plan-

ning is sufficient to obtain a guaranteed approximation ratio:

Theorem 4.1. Let πG be Algorithm 1’s greedy policy and π∗ be

an optimal policy. It holds that f (πG ) ≥
(
e−1
2e−1

)
f (π∗).

A proof may be found in the supplemental material. We use the

adaptive submodularity framework of Golovin and Krause, which

generalizes the classical notion of a submodular set function to

adaptive policies. Their framework does not directly apply to our

problem since our algorithm selects a sequence of actions, not a set.
The order in which actions are selected matters since peer leaders

who are selected earlier will have more time to influence others.

We show that our problem can be reformulated as maximizing an

adaptive submodular set function subject to a more complex set

of constraints (a partition matroid). This is the first approximation
guarantee for adaptive influence maximization under execution errors,
which is a well-known challenge in domains such as ours [25, 27].

4.2 Network collection
The adaptive greedy algorithm assumes that the graph G is fully

specified. However, in order for an intervention to deployed in prac-

tice, the social network needs to be laboriously gathered by inter-

viewing the entire population of homeless youth (potentially hun-

dreds of youth in total). This is not practical for a service provider

to carry out on their own. We present an approach (Algorithm 2)

which randomly samples a small number of youth to survey. Our

Algorithm 2 Network sampling

1: input: vertex set V , budgetM
2: E = ∅ //set of edges observed

3: S = ∅ //set of nodes surveyed

4: for i = 1...M
2
do

5: Sample v uniformly at random from V \ S
6: S = S ∪ {v}
7: E = E ∪ {(v,u) : u ∈ N (v)}
8: Sample u uniformly at random from N (v) \ S
9: E = E ∪ {(u,w) : w ∈ N (u)}
10: S = S ∪ {u}

11: return E

procedure is easy for a service provider to implement in the field

without much computational assistance. This simplicity is enabled

by underlying insights about the structure of homeless youth so-

cial networks, which may assist with intervention design in other

vulnerable populations.

We assume that the service provider has the ability to survey

up to M youth. Each youth, when surveyed, reveals all of their

edges. Algorithm 2 chooses
M
2
nodes uniformly at random from

the population to survey (line 5). For each surveyed node, it choses

a uniformly random neighbor to survey as well (line 8). Lastly, it

returns the graph consisting of the reported edges. The intuition

for why this procedure succeeds is that it leverages the friendship
paradox: a phenomena where a random node’s neighbor has more

friends, on average, than the node itself. Essentially, high-degree

nodes are overrepresented when we sample a random neighbor

instead of a uniformly random node. Thus, Algorithm 2 is dispro-

portionately likely to find central nodes in the network who will

reveal many edges and may be good potential seeds. We elaborate

using empirical data from our pilot studies in Section 6.4.

We contrast here our sampling procedure with the previously

proposed algorithm for influence maximization with an unknown

network, ARISEN [24]. ARISEN simulates a random walk by start-

ing at a random node, moving to a random neighbor of the first

node, then to a random neighbor of the second and so on. Its mo-

tivation is very different. It exploits community structure, where

nodes form densely connected subgraphs which are only loosely

connected to the rest of the network. ARISEN uses each walk to es-

timate the size of the community that it lies in and attempts to seed

large communities. By contrast, Algorithm 2 leverages a distinct

structural property (the friendship paradox). This shift is motivated

by practicality. In the feasibility study, only 53% of contacts listed

by youth could be located at the center. Hence, it is relatively easy

to find at least one contact, as prescribed by Algorithm 2, but much

harder to reach a chain of 5-10 youth as in ARISEN.

4.3 Parameter robustness
A further complication is that the adaptive greedy algorithm as-

sumes that the propagation probability p is known, in order to

calculate the marginal gain ∆. However, p is never known pre-

cisely in practice; each intervention takes months to deploy so we

are unlikely to observe the many repeated cascades needed to for

learning-based approaches. Previous work has attempted to resolve
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Algorithm 3 Robust parameter selection

1: input: parameter values p1...pL
2: for i = 1...L do
3: for j = 1...L do
4: д(pi ,pj ) = value obtained by Algorithm 1 using pi eval-

uated under pj

5: return argmaxi=1...L minj=1...L
д(pi ,pj )
д(pj ,pj )

this dilemma via robust influence maximization [4, 10, 16, 25] which
finds a seed set which performs well in the worst case over an

uncertainty set of possible parameters. However, the only previous

work which addresses robust influence maximization in an adaptive

domain is the DOSIM algorithm. DOSIM requires hours or even

days of runtime on a high-performance computing cluster because

it needs to brute force over a grid of possible parameter settings.

Such computational expense is far beyond the capabilities of the av-

erage service provider, motivating the development of lightweight

but effective heuristics for robust influence maximization.

Algorithm 3 gives the heuristic used by CHANGE. It searches

for a good nominal value of the parameter p, which (when given

to Algorithm 1) will result in high performance no matter what

the true value of p actually is. We first discretize the interval [0, 1]

into L points p1...pL . Let д(pi ,pj ) denote the expected influence

obtained when we run adaptive greedy planning based on prop-

agation probability pi , but the true parameter is pj . We then find

p∗ = argmaxi=1...L min j = 1...L
д(pi ,pj )
д(pj ,pj )

. Here,

д(pi ,pj )
д(pj ,pj )

, is the ratio

of the value based on planning with parameter pi to the value that

could have been obtained if we new the true parameter pj . p
∗
is the

parameter which maximizes the worst-case value of this ratio. No-

tably, this requires only L2 runs of adaptive greedy; we take L = 10

in practice. By contrast, DOSIM requires O
( n
ϵ
)
3

runs of a greedy

algorithm to achieve approximation error ϵ . This quickly reaches

thousands (or tens of thousands) of runs even for moderately sized

networks and requires high-performance computing resources.

We investigate the performance of this heuristic on two real

homeless youth social networks, Network A and Network B [25,

26]. Both were gathered from youth at a different drop-in center

and contain approximately 150 nodes. Table 1 shows

д(pi ,pj )
д(pj ,pj )

, the

percentage of optimality, for several combinations of pi and pj . For
instance, the entry for Network A in the row corresponding to 0.2

and the column corresponding to 0.01 indicates that when adaptive

greedy plans on p = 0.2, but the true parameter is actually p = 0.01,

it obtains 88.7% of the optimal value possible. In both networks,

Algorithm 3 selects p∗ = 0.2 as the optimal choice: it has value at

least 88.7% of the optimum under all parameter combinations in

Network A and value at least 92.9% of the optimum on Network B.

While this still improves on a naive choice which ignores robustness,

we observe that all of the values in the table are relatively high.

This indicates that influence maximization in this domain may not

be highly sensitive to the exact choice of parameter.

To explain this phenomenon, Figure 2 shows the seed set chosen

for Network A under different values of p. We observe a clear trend:

with low p, the seeds are clustered more tightly together in the core

of the network, and as p grows an increasing fraction of the seeds

Table 1: Percentage of optimum obtained by planning based
on parameter on row, when true parameter is given by col-
umn.

Network A Network B

p 0.01 0.2 0.5 0.8 0.01 0.2 0.5 0.8

0.01 100 81.0 83.4 88.1 100 86.8 88.3 89.7

0.2 88.7 100 97.0 96.8 93.2 100 95.6 92.9

0.5 85.5 95.7 100 98.8 88.6 96.9 100 97.1

0.8 84.9 93.1 97.8 100 89.1 92.0 99.3 100

Figure 2: Seeds chosen under different values of p.

move to the periphery of the network. Intuitively, when p is high,

a few seed nodes suffice to influence the core of the network. Thus,

the greedy algorithm extracts higher marginal return by using seed

nodes to cover outlying regions which are less likely to have been

reached from the core. p = 0.2 represents a "goldilocks" solution

where the core of the network is heavily covered without being

oversaturated, and hence performs well across many values of p.
However, other parameter choices can still do well because the

majority of the possible value is located in the core of the network,

which all seed sets devote several seeds to.

4.4 Simulation experiments
We now examine the performance of the CHANGE agent in a series

of experiments using real-world data collected from homeless youth

populations at different drop-in centers. We use networks collected

from our own and previous pilot studies. The first network is the one

we collected from the youth enrolled for CHANGE’s intervention

study. The other two networks were gathered by Yadav et al., also

from real homeless youth, for their pilot studies of the HEALER and

DOSIM algorithm. The main question is whether CHANGE is able

to find influential seed nodes while only surveying a small fraction

of the network. We ran CHANGE in simulation on each of the

real-world networks, queryingM = 12 nodes to obtain a sampled

graph. This is 15-20% of the number of nodes in each network.

Then, CHANGE selected K = 4 seed nodes in each of T = 3 rounds

(reflecting the setup used in the intervention study). We conducted

30 independent trials for each network.

Figure 3 compares the number of non-peer leaders reached by

CHANGE compared to the number reached by adaptive greedy

(Algorithm 1) when it was given the entire network in advance.

We also tried comparing to the DOSIM agent [25] and obtained
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Figure 3: Simulated influence of CHANGE compared to
adaptive greedy run on the full network. The x axis denotes
which pilot study the network is taken from.

Table 2: Number of youth recruited, trained, and retained for
follow-up in each study. CHANGE refers to the study con-
ducted in this work to test the CHANGE agent. The other
columns are taken from Yadav et al. [27], who conducted pi-
lot tests of HEALER and DOSIM.

CHANGE HEALER DOSIM

Youth recruited 64 62 56

Queried for links 18.75% 100% 100%

PL trained 15.6% 17.7% 17.85%

Retained 54.7% 73% 73%

near-identical results. We see that CHANGE obtains 70-88% of the

influence spread which is achievable if we knew the entire network

in advance (comparable to previous work on network sampling

[24]). However, CHANGE surveyed only 15-20% of the nodes in the

network. This simulation, conducted on networks gathered from

real homeless youth populations, provides evidence that CHANGE

can find influential peer leaders using only a small amount of data.

5 PILOT STUDY PROCEDURE
The major contribution of this work is carrying out a pilot study

which tests the CHANGE agent in a field deployment at a real

drop in center serving homeless youth in a major U.S. city. Here,

we outline the procedure followed for the pilot study. There were

two studies, the feasibility study and the intervention study. In the

feasibility study, we just tested the first component of CHANGE

(network data collection) to validate that it works in practice to

gather high-quality data. In the intervention study, we carried out

actual interventions with homeless youth at the center. This step

used all three steps of the CHANGE agent: we gathered the network,

found a robust set of parameters, and then carried out interventions.

For each of the studies, we enrolled (respectively) 72 and 64

youth. Each youth was paid $20 to enroll in the study (all monetary

incentives were the same as prior studies [27]). We ran CHANGE’s

data collection mechanism, randomly sampling a subset of youth to

query for ties. Each youth who enrolled was also asked to complete

a baseline survey. As part of this survey, we also gathered the full
network consisting of ties from all of the youth. We emphasize
that this data was collected just for analysis. We did not use the full
network to plan interventions, and we would not expect an agency

to conduct this step in a regular deployment. In the feasibility study,

we also gathered edges via field observations and interviews with

agency staff in order to validate our data collection via comparison

to alternate mechanisms (see Section 6.1).

In the intervention study, social workers delivered the Have
You Heard intervention, previously published in the public health

literature [20]. The social workers conducted a day-long class with

the selected youth, covering HIV awareness and prevention, and

training the youth as peer leaders to communicate with others at the

agency. Peer leaders were paid $60. Three sets of peer leaders were

selected by CHANGE, with approximately 4 peer leaders in each set.

This matches the number used in previous influence maximization

pilot studies [27]. Table 2 reports specific values on the number

of youth enrolled, queried for edges, and trained as peer leaders

for our pilot test as well as pilot tests of previous algorithms. One

month after the start of the study, we conducted a follow up survey

with all of the youth who initially enrolled. Some youth were lost

to follow up (see Table 2). We asked the youth whether they had

received information about HIV prevention from a peer who was

part of the study. Youth were paid $20 to respond to the follow up

survey. We emphasize that all aspects of the intervention study (the

training materials for peer leaders, survey instruments, etc.) are

identical to Yadav et al. [27], so our results are directly comparable.

6 PILOT STUDY RESULTS
6.1 Feasibility study
We address two questions in the feasibility study. First, can Al-

gorithm 2 (CHANGE’s network sampling) be implemented with

homeless youth? Second, is the resulting self-reported data accurate

enough for influence maximization?

The challenge in the first question is that homeless youth can

be difficult to locate. However, we were able to locate at least one

neighbor for at least 80% of youth queried who were not isolates

(i.e., named at least one neighbor). We conclude that Algorithm 2 is

feasible for homeless youth populations. When no neighbor could

be located, we drew a new random youth.

We now turn to the second question, which is of broader interest.

Previous work on influence maximization in the field uses primarily

self-reported network data [25–27]. Note that gathering ties from

social media has proven unreliable for homeless youth populations

both due to limited access to social media websites and mismatch

between social media ties and true relationships. More broadly, self-

reported network data is the best available to researchers in many

field settings [3]. However, self reported ties are subject to their

own limitations (forgetfulness, reticence, etc. [3]). To our knowledge,
no previous work has validated whether self-reported ties suffice for
influence maximization. Our results show that self-reported data has

important limitations (many edges discovered by other means were

not self-reported), consistent with a large literature on network

data collection methods [3]. However, self-reported data sufficed

to find near-optimal seed sets despite these limitations.

We gathered data via several methods: traditional self-reporting,

field observations by the research staff, and interviews with staff

members at the agency. This yielded three distinct sets of edges.

Figure 4 shows the three networks, along with the composite graph

obtained by combining edges from all three data sources. We see
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Table 3: Number of edges gathered by each method and the
percentage overlap with edges gathered via self-report.

Self-report Observed Staff All

Number edges 51 23 46 112

Overlap with self-reports 100% 8.7% 13% 40%

that self-reports give a fairly accurate global picture of the network.

However, the other two data sources fill in many specific edges

omitted in the self-reported data. Table 3 gives the number of edges

gathered by each method, and the percentage of those edges which

were contained in the self-reported data. We see that a high level

of disagreement between the data collection methods on the status

of individual edges: only 8.7% of ties from field observations and

13% of ties reported by staff members were reported by the youth

themselves. In total, field observations and staff reports uncovered

69 edges, compared to 51 reported by the youth (with little overlap

between the two). This is consistent with prior knowledge: a review

of research on network data collection shows that anywhere from

10-80% of edges may be forgotten in self-reported data [3]. Another

study comparing self-reported ties to observed interactions found

that the two data sources were moderately correlated (median

r = 0.51), but far from identical [7].

While many ties may be absent in self-reported data, our ultimate

objective is to find influential nodes (not reconstruct the network

for its own sake). Hence, we now assess the robustness of influence

maximization to missing edges. Given the propensity for forgetting

in self-reported data, we conclude that all edges which are self-
reported do exist [3], but many existing edges are not self-reported.

Nevertheless, it is unlikely that all of the edges observed by field

researchers or staff truly exist since reports by outside observers

are typically less reliable than self-reports [7]. Thus, we conduct a

simulation experiment in which a randomly selected portion of the

non self-reported edges are added to the graph.

Figure 4 shows the performance of the greedy algorithm as the

number of edges added increases. Each point on the x axis rep-

resents a fraction of edges which were observed by either field

researchers or staff, but not reported by the youth themselves, to

add to the graph. E.g., the point 0.25 indicates that a random set

comprising 25% of edges which were not self reported are added

to the self reported edges to obtain the final graph. Each point

averages over 30 draws for this random set. The y axis shows the

fraction of optimality obtained by running the adaptive greedy

algorithm on just the self reported network. We approximate the

optimum by running adaptive greedy on the full network, repre-

senting the best possible under full information. The values are

consistently high, with very low standard deviation. Even when

all of the unreported edges are added, so adaptive greedy does not

know about the majority of edges in the graph, it still obtains at

least 87% of the optimal value. In reality, not all of the unreported

edges are real links, so we would expect even better performance

in practice. We conclude that even though self-reported data may

miss some edges, it still suffices to identify the influential nodes.

Figure 4: Left: Networks gathered using different methods.
(a) All methods combined. (b) Self reported ties. (c) Field ob-
servations. (d) Staff observations. Right: Fraction of optimal
value obtained using self-reported data as additional edges
are added. Error bars show one standard deviation.

Figure 5: Percentage of youth who were not peer leaders
reached by each algorithm in its respective real-world pilot
test.

6.2 Intervention study
We now turn to our second pilot study, which tested the entirety of

the CHANGE agent. In this study, we recruited a separate popula-

tion of 64 homeless youth from a drop-in center. Table 2 gives the

total number of youth recruited for different activities, as well as the

corresponding figures for previous pilot tests of the HEALER and

DOSIM algorithms by Yadav et al. [27]. We gathered the full social

network from all 64 youth, and in parallel ran Algorithm 2 with a

budget of M = 12 youth to collect a sampled network (querying

18.75% of youth in total for links). Only the sampled network was
used to plan interventions; the full network was gathered only for
analysis. We then ran the CHANGE policy for three steps, train-

ing 10 total peer leaders (15.6% of the network). This percentage

is comparable to previous studies (HEALER and DOSIM trained

approximately 17% of the network each). However, HEALER and

DOSIM used the entire network to plan their intervention, com-

pared to the 18.75% of sampled youth used by CHANGE. At one

month, we conducted a follow-up survey to assess whether youth

received information about HIV prevention from the peer leaders.

54.7% of youth were retained in the follow-up survey, which is a

somewhat lower percentage than in previous studies. Nevertheless,

we obtain a population of 34 youth who provided follow-up data.

6.3 Influence spread results
We now present our core result: the number of youth who received

a message about HIV prevention. We examine the percentage of
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Table 4: Aggregate network statistics for the complete net-
work in each algorithm’s pilot study. "Diameter" is the di-
ameter of the largest connected component.

CHANGE HEALER DOSIM

Diameter 12 8 8

Density 0.043 0.079 0.059

Avg. path length 4.88 3.38 3.15

Avg. clustering coeff. 0.221 0.397 0.195

Modularity 0.654 0.568 0.568

youth in the follow-up group who were not peer leaders (and hence

eligible to become influenced) who reported receiving information.

Figure 5 shows this percentage for our pilot study of CHANGE

as well as the percentages reported by Yadav et al. [27] in their

pilot studies of the state of the art algorithms HEALER and DOSIM.

CHANGE reached 80% of non-peer leaders compared to approxi-

mately 70% for each of HEALER and DOSIM. Thus, CHANGE was
able to reach just as many youth while gathering data from only
18.75% of the network. The 10% difference between CHANGE and

HEALER/DOSIM could be attributable to random variation; we do

not claim that CHANGE is actually more effective than algorithms

which gather the entire network. Nevertheless, this result provides

empirical evidence that CHANGE can perform comparably to exist-

ing state of the art influence maximization agents while drastically

reducing the amount of data required.

We now take steps to ensure that our results are not an artifact

of a difference between the structures of the different networks

from each pilot test or of random variation. First, we recall our sim-

ulation results in Figure 3, which indicate that CHANGE performs

competitively with algorithms which are given the entire graph on

three different real-world networks. Second, Table 4 shows a range

of statistics for each network. CHANGE’s networks is fairly similar

to that of HEALER and DOSIM. However, it is somewhat sparser:

its density (the fraction of possible edges which are present) is

0.043 compared to 0.079 for HEALER and 0.059 for DOSIM. This

translates into somewhat longer average path lengths and larger

diameter. However, sparser structure should only work against
CHANGE since there are fewer edges along which influence can

propagate. Hence, it is unlikely that CHANGE’s strong performance

is attributable to anomalous network structure.

6.4 Explaining CHANGE’s success
In this section we attempt to explain why CHANGE can find seed

sets which have near-optimal influence spread by surveying only a

small fraction of youth. The intuitive explanation for this is a prop-

erty that many social networks are known to possess: the friendship

paradox [6, 11, 22]. Specifically, a randomly chosen neighbor of a

given node is likely to have higher degree than the node itself. Our

algorithm leverages the friendship paradox by surveying both a

random node and a randomly chosen friend of that node.

Figure 6 plots two quantities for the networks collected in the

feasibility and intervention studies. First, the degree distribution.

Second, the distribution of the degree of a randomly chosen neigh-

bor of a randomly chosen node. This is the degree distribution of

Figure 6: Degree distributions. Top row: feasibility study.
Bottom: intervention study. Left: standard degree distribu-
tion. Right: degree of a random neighbor.

the nodes that Algorithm 2 samples in its second step. We see that

the neighbor degree distribution is skewed towards higher degrees.

In the feasibility network, the mean degree is 3.11 while the mean

friend’s degree is 4.56. In the intervention network, the mean degree

is 2.98 while the mean friend’s degree is 4.04. This suggests that by

querying a random neighbor of each node, our algorithm is able to

preferentially locate nodes who are useful in two ways. First, high

degree nodes provide more information about the network. Second,

they are more likely to be influential peer leaders and may serve as

a useful set of candidates which adaptive greedy can refine.

7 DISCUSSION AND CONCLUSION
This paper presents the CHANGE agent for influence maximiza-

tion, a multiagent problem with many applications in preventative

health and other domains. CHANGE addresses major barriers to

the deployment of influence maximization by service providers

through a series of algorithmic contributions, backed by simulation

results on real-world networks. We then conducted a real-world pi-

lot study of CHANGEwith a drop-in center serving homeless youth,

the first such pilot study of sampling-based influence maximiza-

tion and only the second study testing any influence maximization

agent in the real world. CHANGE obtained comparable influence

spread to previously field tested algorithms, but surveyed only 18%

of youth to obtain network data. CHANGE has empirical promise

in delivering high-quality influence maximization solutions in a

manner which can be feasibly implemented by a service provider.

While the algorithms underlying CHANGE are easy to imple-

ment, they draw on a series of insights into the social behavior

of homeless youth. One lesson learned is that, to be successful in

the field, algorithms must be designed with their target population

and setting in mind. CHANGE both navigates challenges specific

to homeless youth (e.g., the difficulty of locating youth to query

for edges or serve as peer leaders) and leverages properties of their

social network (the friendship paradox). Our experience shows

that accounting for both challenges and opportunities in the target

population is crucial to produce a practically deployable algorithm.
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