
Testing Phase Space Properties of Synchronous Dynamical
Systems with Nested Canalyzing Local Functions

Daniel J. Rosenkrantz
University at Albany – SUNY

Albany, NY
drosenkrantz@gmail.com

Madhav V. Marathe∗

Biocomplexity Institute of Virginia Tech
Blacksburg, VA

mmarathe@vt.edu

S. S. Ravi†

Biocomplexity Institute of Virginia Tech
Blacksburg, VA

ssravi0@gmail.com

Richard E. Stearns
University at Albany – SUNY

Albany, NY
thestearns2@gmail.com

ABSTRACT

Discrete graphical dynamical systems serve as effective formal
models for simulations of agent-based models, propagation of
contagions in social networks and study of biological phenom-
ena. A class of Boolean functions, called nested canalyzing
functions (NCFs), has been used as a good model of cer-
tain biological phenomena. Motivated by these biological
applications, we study a variety of analysis problems for
synchronous graphical dynamical systems (SyDSs) over the
Boolean domain, where each local function is an NCF. We
present intractability results for some properties as well as
efficient algorithms for others. In several cases, our results
clearly delineate intractable and efficiently solvable versions
of problems.

KEYWORDS

Discrete dynamical systems, Boolean functions, Nested cana-
lyzing functions, Phase space properties, Complexity, Algo-
rithms.

ACM Reference Format:
Daniel J. Rosenkrantz, Madhav V. Marathe, S. S. Ravi, and Richard
E. Stearns. 2018. Testing Phase Space Properties of Synchronous

Dynamical Systems with Nested Canalyzing Local Functions. In
Proc. of the 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2018), M. Dastani, G. Suk-

thankar, E. Andre, S. Koenig (eds.), Stockholm, Sweden, July

2018, IFAAMAS, 10 pages.

1 INTRODUCTION

1.1 Motivation

Discrete graphical dynamical systems, which are generaliza-
tions of cellular automata (CA) [16, 45], serve as an effective
formal model for multi-agent systems (see, e.g., [41, 46]).

∗Also with the Computer Science Department at Virginia Tech.
†Also with the University at Albany – SUNY.

Proc. of the 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2018), M. Dastani, G. Sukthankar,
E. Andre, S. Koenig (eds.),

, July 2018, Stockholm, Sweden. © 2018 International Foundation
for Autonomous Agents and Multiagent Systems (www.ifaamas.org).
All rights reserved.

They have also been used in many other contexts, including
simulations of agent-based models, propagation of contagions
in social networks, study of biological phenomena, and game
theoretic settings (see, e.g., [9, 10, 21, 23, 32, 34, 43]). Here,
we focus on synchronous discrete dynamical systems (SyDSs).
Informally, a SyDS consists of an undirected graph whose
vertices represent entities (agents) and edges represent local
interactions among entities. Each vertex 𝑣 has a Boolean
state value and a local transition function 𝑓𝑣 whose inputs
are the current state of 𝑣 and those of its neighbors; the
output of 𝑓𝑣 is the next state of 𝑣. The vector consisting
of the state values of all the nodes at each time instant is
referred to as the configuration of the system at that in-
stant. In each time step, all nodes of a SyDS compute and
update their states synchronously. Starting from a (given)
initial configuration, the time evolution of a SyDS consists of
a sequence of successive configurations. The SyDS formalism
with different classes of local transition functions has been
used in applications such as disease propagation in urban
areas, diffusion of innovations, etc. (see, e.g. [6, 10, 43]).

In this paper, we study a class of graphical dynamical
systems motivated by applications in systems biology. Many
researchers have analyzed such models (see e.g., [14, 31, 39]);
others have investigated their stability (see e.g., [17, 20, 26,
37]). Since the work by Waddington [44], the term canaliza-
tion has been used to describe the stability of a biological
system with changes in external conditions. In 1969, Kauff-
man [17] introduced a Boolean network model to explain the
stability of gene regulatory networks. Kauffman found that
the use of one class of Boolean functions (which he called can-
alyzing Boolean functions) in the model captured many
observed properties of gene regulatory networks, including
stability. The subclass of nested canalyzing functions
(NCFs) was introduced later by Kauffman et al. [19] to facil-
itate a rigorous analysis of the Boolean network model for
gene regulatory networks. A precise definition of NCFs (and
a more general version of NCFs) is given in Section 2.1. Many
researchers have studied mathematical properties of NCFs
and have alluded to the importance of NCFs in modeling
biological phenomena (e.g., [19, 20, 26–30]).

We consider several analysis problems for graphical dy-
namical systems whose node functions are NCFs. We use the

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1585

Problem Result(s)

Reachability PSPACE-complete even when the maximum node degree and the treewidth of the under-
lying graph are bounded (Section 3).

Predecessor Existence NP-complete even when the maximum node degree is 3. The corresponding counting
problem is #P-complete (Section 4). (The problem and the counting version are efficiently
solvable when the maximum node degree is 2 [25].)

Fixed Point Existence NP-complete even when the maximum node degree is 3. The corresponding counting
problem is #P-complete (Section 5). (The problem and its counting version are efficiently
solvable when the maximum node degree is 2 [35].)

Garden of Eden
Existence

Efficiently solvable; when the answer is “yes”, such a configuration can also be found
efficiently (Section 6).

Table 1: Summary of Results Presented in the Paper

term NCF-SyDS to denote a SyDS where each local transi-
tion function is an NCF. Such analysis problems are studied
by considering the phase space of the SyDS, which is a di-
rected graph with one vertex for each possible configuration
and a directed edge (𝑥, 𝑦) from a vertex 𝑥 to vertex 𝑦 if the
SyDS can transition from the configuration corresponding
to 𝑥 to the one corresponding to 𝑦 in one time step. When
an NCF-SyDS has a one step transition from a configuration
𝒞′ to a configuration 𝒞, we say that 𝒞 is the successor of
𝒞′ and that 𝒞′ is a predecessor of 𝒞. Since NCF-SyDSs
are deterministic, each configuration has a unique successor;
however, a configuration may have zero or more predecessors.
Each self loop in the phase space of a SyDS represents a
fixed point of the actual system, that is, a configuration in
which the system will stay forever. Also, any vertex in the
phase space with no incoming edges represents a Garden of
Eden (GE) configuration. Such a configuration cannot be
reached during the evolution of a SyDS; it can only occur as
an initial configuration.

1.2 Contributions and Their Significance

Our contributions (shown in Table 1) are explained below.

(1) The reachability problem asks whether a given NCF-
SyDS starting from a given configuration 𝒞 will reach another
given configuration 𝒞′. This problem formalizes the question
whether a system modeled by an NCF-SyDS may reach an
undesirable configuration in the future. (For example, in the
disease propagation context, 𝒞′ may represent a situation in
which a large number of agents are infected.) In Section 3,
we show that the reachability problem for NCF-SyDSs is
PSPACE-complete even when the maximum node degree
and the treewidth [11] of the underlying graph are constants.

(2) Given a configuration 𝒞, the goal of the predecessor
existence problem is to determine whether 𝒞 has a predeces-
sor configuration. An algorithm for this problem is useful in
determining how a system reached the configuration 𝒞; if 𝒞
is an undesirable one (e.g., one in which many agents are
infected), measures to prevent the system from reaching 𝒞
can be undertaken. In Section 4, we show that the predeces-
sor existence problem for NCF-SyDSs is NP-complete even
when the maximum node degree of the underlying graph is

three. The reduction used in the proof also enables us to
conclude that the problem of counting the number of pre-
decessors of an NCF-SyDS is #P-complete. This result is
tight since it is known that when the maximum node degree
is two, the predecessor existence problem as well as the cor-
responding counting version can be solved efficiently for any
SyDS, regardless of the local transition functions [7, 25].

(3) Recall that a fixed point of a SyDS is configuration
𝒞 which is its own successor; thus, if a SyDS reaches 𝒞, it
stays in that configuration forever. Again, in the context
of epidemics, fixed points in which only a small number of
agents are infected are useful, since the number of infections
does not grow once the system reaches such a configuration.
In Section 5, we consider the fixed point existence problem
for NCF-SyDSs. We show that this problem is NP-complete
even when the maximum node degree of the underlying
graph is three. The reduction also enables us to conclude the
hardness of the counting version of the problem. This result
is also tight; when the maximum node degree is two, the fixed
point existence problem as well as the corresponding counting
version can be solved efficiently for any SyDS, regardless of
the local transition functions [35].

(4) In Section 6, we consider the Garden of Eden (GE)
existence problem for NCF-SyDS. In contrast to the other
analysis problems, we show that the GE existence problem
can be solved efficiently, even when the local functions are
generalized NCFs. (This class of NCFs is defined in Sec-
tion 2.1.) Our result (Theorem 6.1), which characterizes the
existence of GE configurations in SyDSs with generalized
NCFs, leads to a simple algorithm for the GE existence ques-
tion. However, the proof of the result requires an intricate
analysis.

Due to length restrictions, only proof sketches are given
in the paper. A complete version that includes all proofs is
available as [36].

1.3 Related Work

Computational aspects of testing phase space properties of
discrete dynamical systems and multi-agent systems have
been addressed by many researchers. For example, Barrett et
al. [4, 5, 8] studied reachability problems as well as existence

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1586

questions for fixed points and GE configurations under the
sequential update model; here, a permutation of the vertices
is also given, and state updates are carried out in the or-
der specified by the permutation. Bounds on the lengths
of transients and cycles in restricted versions of dynamical
systems under the sequential update model are established in
[32]. A good discussion of complexity results for multi-agent
systems appears in the well known text by Wooldridge [46].
Tosic [41, 42] presented results for fixed point enumeration
problems for systems with special forms of local transition
functions. Kosub and Homan [24] presented dichotomy results
that delineate computationally intractable and efficiently solv-
able versions of counting fixed points, based on the class of
allowable local transition functions. The predecessor exis-
tence problem for deterministic and stochastic SyDSs was
considered in [6, 7]. These references present hardness results
for various restricted graph structures (e.g., grid graphs) and
for various restricted families of local transition functions
(e.g., 𝑘-threshold functions for any 𝑘 ≥ 2). Problems similar
to predecessor existence have also been considered for cellular
automata [12, 15].

We [35] introduced the notion of graph predicates to specify
very general forms of phase space properties. There, it was
shown that for many graph predicates (e.g., those which
model problems such as fixed point and GE existence), the
analysis problem can be solved in polynomial time when
the underlying graph is treewidth-bounded and the local
transition functions are 𝑟-symmetric1 for some fixed integer
𝑟. As we explain in Section 2.4, NCFs are, in general, not
𝑟-symmetric for any fixed 𝑟. Moreover, our efficient algorithm
for GE existence (Section 6) does not require any restriction
on the underlying graph. Thus, our result for GE existence
is not implied by the results of [35].

The class of Boolean networks introduced in [19] to model
many biological phenomena is also a variant of the SyDS
model. Results for many analysis problems under the Boolean
network model appear in [1, 2, 18, 39, 40]. In [33], the reacha-
bility problem for SyDSs was shown to be PSPACE-hard for
the Boolean network model where each local function is from
{AND, OR}. Since AND and OR are both NCFs, this shows
the computational intractability of reachability for dynamical
systems under the Boolean network model where the local
functions are NCFs. It should be noted that in the Boolean
network model, the underlying graph of a dynamical system
is directed while our work uses undirected graphs. Moreover,
our result holds for a very restricted class of graphs, namely
those whose maximum node degree and treewidth are both
constants. It is not clear whether the result in [33] can be
readily modified to hold for this restricted class.

1The definition of 𝑟-symmetric functions is given in Section 2.4.

2 DEFINITIONS AND PROBLEM
FORMULATIONS

2.1 Nested Canalyzing Functions

As mentioned earlier, the class of nested canalyzing func-
tions (NCFs), was introduced in [19] to model the behavior
of certain biological systems. We follow the presentation in
[26] in defining such a Boolean function. (For a Boolean value

𝑏, the complement is denoted by 𝑏.)

Definition 1. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} denote a set of 𝑛
Boolean variables. Let 𝜋 be a permutation of {1, 2, . . . , 𝑛}. A
Boolean function 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) over 𝑋 is nested canalyz-
ing in the variable order 𝑥𝜋(1), 𝑥𝜋(2), . . . , 𝑥𝜋(𝑛) with canalyz-
ing values 𝑎1, 𝑎2, . . . , 𝑎𝑛 and canalyzed values 𝑏1, 𝑏2, . . . , 𝑏𝑛
if 𝑓 can be expressed in the following form:

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏1 if 𝑥𝜋(1) = 𝑎1

𝑏2 if 𝑥𝜋(1) ̸= 𝑎1 and 𝑥𝜋(2) = 𝑎2
...

...

𝑏𝑛 if 𝑥𝜋(1) ̸= 𝑎1 and . . .

𝑥𝜋(𝑛−1) ̸= 𝑎𝑛−1 and

𝑥𝜋(𝑛) = 𝑎𝑛

𝑏𝑛 if 𝑥𝜋(1) ̸= 𝑎1 and . . .

𝑥𝜋(𝑛) ̸= 𝑎𝑛

For convenience, we will use a computational notation
introduced in [38] to represent NCFs. For 1 ≤ 𝑖 ≤ 𝑛, line 𝑖 of
our representation has the following form:

𝑥𝜋(𝑖) : 𝑎𝑖 −→ 𝑏𝑖
We say that 𝑥𝜋(𝑖) is the canalyzing variable that is tested
in line 𝑖, with 𝑎𝑖 and 𝑏𝑖 denoting respectively the canalyzing
and canalyzed values in line 𝑖 as before, 1 ≤ 𝑖 ≤ 𝑛. The above
line is interpreted as follows: if the value of 𝑥𝜋(𝑖) = 𝑎𝑖, then
the value of the function is 𝑏𝑖; otherwise, we consider the
next line in the description. We refer to each such line as a
rule. When none of the conditions “𝑥𝜋(𝑖) = 𝑎𝑖” is satisfied,
we have line 𝑛 + 1 with the “Default” rule for which the
canalyzed value is 𝑏𝑛:

Default: 𝑏𝑛
We will refer to the above specification of an NCF as the
simplified representation and assume (without loss of
generality) that each NCF is specified in this manner. The
simplified representation provides the following convenient
computational view of an NCF. Lines defining an NCF are
considered sequentially in a top-down manner. The compu-
tation stops at the first line where the specified condition is
satisfied, and the value of the function is the canalyzed value
on that line. We now present an example of an NCF using
the two representations mentioned above.
Example 1: Consider the Boolean function 𝑓(𝑥1, 𝑥2, 𝑥3) =
𝑥1 ∨ (𝑥2 ∧ 𝑥3). This function is nested canalyzing using the
identity permutation 𝜋 on {1, 2, 3} with canalyzing values
1, 1, 1 and canalyzed values 1, 0, 1. We first show how this

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1587

function can be expressed using the syntax of Definition 1.

𝑓(𝑥1, 𝑥2, 𝑥3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑥1 = 1

0 if 𝑥1 ̸= 1 and 𝑥2 = 1

1 if 𝑥1 ̸= 1 and 𝑥2 ̸= 1 and 𝑥3 = 1

0 if 𝑥1 ̸= 1 and 𝑥2 ̸= 1 and 𝑥3 ̸= 1

A simplified representation of the same function is as follows.
𝑥1 : 1 −→ 1
𝑥2 : 1 −→ 0
𝑥3 : 1 −→ 1
Default: 0

Additional conventions regarding NCFs: The cana-
lyzed value for the rule labeled “Default” is always the com-
plement of the canalyzed value on the line that immediately
precedes that rule. So, for simplicity, we will omit the “De-
fault” rule in specifying an NCF. To save space in presenting
examples and proofs, we list successive rules along a line
separated by commas. Thus, a linear representation of the
NCF shown in Example 1 (with the “Default” rule omitted)
is as follows: 𝑥1 : 1 −→ 0, 𝑥2 : 1 −→ 0, 𝑥3 : 1 −→ 1.
Generalized NCFs: One of the problems considered in
this paper involves determining whether a given NCF-SyDS
has a GE configuration. To extend the applicability of this
algorithm, we allow local functions to be in the form of
generalized NCFs, where rules are specified only for a subset
of the variables. A precise definition of generalized NCFs is
given below.

Definition 2. A generalized NCF is a function repre-
sented as either a constant or an NCF representation of a
subset (not necessarily proper) of the function’s variables.

Thus, every NCF is a generalized NCF; however, the con-
verse is not true. We note that 1-decision lists studied in
the context of computational learning [22] are the same as
generalized NCFs.
Example 2: The constant function which takes on the value
0 for every combination of inputs can be represented as a
generalized NCF using the following single rule:

Default: 0
As another example, a generalized NCF specification for a
function 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) is as follows.

𝑥1 : 0 −→ 1
𝑥3 : 1 −→ 1
Default: 0

In this case, the function does not depend on the values of
variables 𝑥2 and 𝑥4.

If a generalized NCF specifies a constant function (i.e.,
a function which has the value 0 for all inputs or 1 for all
inputs), we will indicate that using just the “Default” rule.
Otherwise (i.e., there is at least one rule involving a variable),
we can assume without loss of generality that the canalyzed
value specified in the “Default” rule is the complement of that
specified on the line that immediately precedes the “Default”
rule; in such cases, we omit the “Default” rule for simplicity.

2.2 Synchronous Boolean Dynamical
Systems

Let B denote the Boolean domain {0,1}. A Synchronous
Dynamical System (SyDS) 𝒮 over B is specified as a pair
𝒮 = (𝐺,ℱ), where (i) 𝐺(𝑉,𝐸), an undirected graph with
|𝑉 | = 𝑛, represents the underlying graph of the SyDS, with
node set 𝑉 and edge set 𝐸, and (ii) ℱ = {𝑓1, 𝑓2, . . . , 𝑓𝑛} is
a set of functions in the system, with 𝑓𝑖 denoting the local
transition function associated with node 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑛.

Each node of 𝐺 has a state value from B. Each function
𝑓𝑖 specifies the local interaction between node 𝑣𝑖 and its
neighbors in 𝐺. The inputs to function 𝑓𝑖 are the state of
𝑣𝑖 and those of the neighbors of 𝑣𝑖 in 𝐺; function 𝑓𝑖 maps
each combination of inputs to a value in B. This value be-
comes the next state of node 𝑣𝑖. It is assumed that each local
function is specified as an NCF or generalized NCF using
the notation discussed in Section 2.1. In a SyDS, all nodes
compute and update their next state synchronously. Other
update disciplines (e.g., sequential updates) for discrete dy-
namical systems have also been considered in the literature
(e.g., [5, 32]). At any time 𝑡, the configuration 𝒞 of a SyDS
is the 𝑛-vector (𝑠𝑡1, 𝑠

𝑡
2, . . . , 𝑠

𝑡
𝑛), where 𝑠

𝑡
𝑖 ∈ B is the state of

node 𝑣𝑖 at time 𝑡 (1 ≤ 𝑖 ≤ 𝑛).
Example 3: Consider the graph shown in Figure 1. In defin-
ing local transition functions for the corresponding SyDS
as NCFs, we use the name of a node to be the variable
representing its state.
(1) The function 𝑓1 at 𝑣1 is the OR function (i.e., 𝑣1∨𝑣2∨𝑣3)
with the following NCF description: 𝑣1 : 1 −→ 1,
𝑣2 : 1 −→ 1, 𝑣3 : 1 −→ 1.
(2) The function 𝑓2 at 𝑣2 is the AND function (i.e., 𝑣1 ∧ 𝑣2 ∧
𝑣3 ∧ 𝑣4) with the following NCF description: 𝑣1 : 0 −→ 0,
𝑣2 : 0 −→ 0, 𝑣3 : 0 −→ 0, 𝑣4 : 0 −→ 0.
(3) The function 𝑓3 at 𝑣3 is 𝑣1 ∨ 𝑣2 ∨ 𝑣3 ∨ 𝑣4 whose NCF
description is: 𝑣1 : 1 −→ 1, 𝑣2 : 0 −→ 1, 𝑣3 : 1 −→ 1,
𝑣4 : 0 −→ 1.
(4) The function 𝑓4 at 𝑣4 is the AND function (i.e., 𝑣2∧𝑣3∧𝑣4)
with the following description: 𝑣2 : 0 −→ 0, 𝑣3 : 0 −→ 0,
𝑣4 : 0 −→ 0.
(5) The function 𝑓5 at 𝑣5 is 𝑣4∧𝑣5 whose NCF representation
is: 𝑣4 : 1 −→ 0, 𝑣5 : 1 −→ 0.

We specify a configuration by listing the states of the
nodes in the order 𝑣1 through 𝑣5. Assume that the initial
configuration of the system is (0, 1, 0, 1, 1). During the
first time step, 𝑣3 remains in state 0 while the states of the
other nodes change in the following manner: 𝑣1 changes to 1
(since its neighbor 𝑣2 is in state 1), 𝑣2 changes to 0 (since its
neighbor 𝑣3 is in state 0), 𝑣4 changes to 0 (since its neighbor
𝑣3 is in state 0) and 𝑣5 changes to 0 (since both 𝑣4 and 𝑣5 are
in state 1). Thus, the configuration at time 1 is (1, 0, 0, 0, 0).
The configuration at time 2 can be seen to be (1, 0, 1, 0, 1).
Subsequently, while the state values of nodes 𝑣1 through 𝑣4
remain unchanged, the state value of 𝑣5 gets complemented
at each time step. Thus, the system cycles between the two
configurations (1, 0, 1, 0, 1) and (1, 0, 1, 0, 0). 2

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1588

𝑣5

𝑣1

𝑣3

𝑣2

𝑣4

Initial Config.: (0, 1, 0, 1, 1)
Config. at time 1: (1, 0, 0, 0, 0)

Config. at time 2: (1, 0, 1, 0, 1)

Config. at time 3: (1, 0, 1, 0, 0)
Config. at time 4: (1, 0, 1, 0, 1)

Note: The system cycles between the two configurations at
times 3 and 4.

Figure 1: An Example of a SyDS.

2.3 Problem Formulations

We consider a number of analysis problems for SyDSs whose
local functions are specified as NCFs (or generalized NCFs).
Precise definitions of these problems are given below.

I. Reachability Problem:

Instance: An NCF-SyDS 𝒮 with underlying graph 𝐺(𝑉,𝐸);
two configurations ℐ and ℬ of 𝒮.
Question: Does 𝒮 starting from ℐ reach ℬ?
II. Fixed Point Existence:

Instance: An NCF-SyDS 𝒮 with underlying graph 𝐺(𝑉,𝐸).
Question: Does 𝒮 have a fixed point, that is, a configuration
𝒞 such that the successor of 𝒞 is 𝒞 itself?

III. Predecessor Existence:
Instance: A NCF-SyDS 𝒮 with underlying graph 𝐺(𝑉,𝐸); a
configuration 𝒞 of 𝒮.
Question: Does 𝒞 have a predecessor, that is, a configuration

𝒞′ such that the successor of 𝒞′ is 𝒞?
IV. Garden-of-Eden Existence:
Instance: A SyDS 𝒮 with underlying graph 𝐺(𝑉,𝐸) and
generalized NCF local functions.
Question: Does 𝒮 have a GE configuration, that is, a config-
uration 𝒞 which has no predecessor?

2.4 NCFs and Symmetric Functions

As mentioned in Section 1.3, several references have addressed
the analysis problems formulated above for 𝑟-symmetric
Boolean functions (e.g., [3, 4, 6, 7, 25, 35]). A Boolean func-
tion 𝑓 with ℓ inputs is symmetric if the value of the function
depends only on the number of inputs which have the value
1 and not on the order in which the values are specified.
Examples of symmetric functions include AND, OR, NAND,
NOR, XOR, etc. A Boolean function 𝑓 with ℓ inputs is 𝑟-
symmetric if the inputs can be partitioned into 𝑟 subsets
such that the value of the function depends only on the
number of 1-valued inputs in each subset. For example, it
is observed in [25] that the class of bi-threshold functions
is 2-symmetric. The results for analysis problems presented
in the above references assume that each local function is
𝑟-symmetric for some fixed 𝑟. We present an example to
show that NCFs are, in general, different from 𝑟-symmetric
functions for fixed values of 𝑟.
Example 4: Consider the Boolean function 𝑓(𝑥1, 𝑥2, 𝑥3) =
𝑥1 ∨ (𝑥2 ∧ 𝑥3). An NCF representation for this function was
given in Example 1. The function is not symmetric since

𝑓(1, 0, 0) = 1 while 𝑓(0, 1, 0) = 0. We can also argue that
function 𝑓 is not 2-symmetric by considering each possible
partition of {𝑥1, 𝑥2, 𝑥3} into two subsets. Suppose the par-
tition is {𝑥1, 𝑥2} and {𝑥3}. Note that 𝑓(1, 0, 0) = 1 while
𝑓(0, 1, 0) = 0; in both assignments, the number of 1-valued
inputs in the subset {𝑥1, 𝑥2} is 1. In a similar way, we can
rule out the other partitions of {𝑥1, 𝑥2, 𝑥3} into two subsets.

The above example can be generalized to show that there
are NCFs with 𝑛 variables which are not 𝑛 − 1-symmetric.
Thus, the results presented in this paper for NCF-SyDSs
are not implied by the known results [35] for SyDSs with
𝑟-symmetric functions for fixed 𝑟.

3 COMPLEXITY OF REACHABILITY

Here, we establish the computational intractability of the
reachability problem for NCF-SyDSs. To prove this result,
we use a reduction from the Linear Bounded Automaton
(LBA) Acceptance problem (i.e., given a deterministic
LBA 𝑀 and a string 𝑥, does 𝑀 accept 𝑥?) which is known
to be PSPACE-complete [13].

Theorem 3.1. There exist constants 𝑑0 and 𝑝0 such that
the Reachability problem for NCF-SyDSs is PSPACE-
complete, even when the maximum node degree of the under-
lying graph is 𝑑0 and the treewidth of the graph is ≤ 𝑝0.

Proof: It is easy to see that the problem is in PSPACE. We
show the PSPACE-hardness of reachability via a reduction
from the LBA acceptance problem. Suppose the LBA con-
tains 𝑛 cells. Then, the underlying graph of the constructed
SyDS consists of 𝑛 clusters of nodes, with the 𝑖th cluster
representing the 𝑖th cell of the LBA tape. This node cluster
encodes the tape symbol on the 𝑖th cell, as well as whether
the tape head is residing on that cell, and if so, the state
of the LBA. Thus, the SyDS configuration corresponds to
an instantaneous description of the LBA. The transition
function of the LBA is captured by appropriate NCF local
transition functions so that successive configurations of the
SyDS correspond to successive instantaneous descriptions
of the LBA. In each step of the SyDS, the state of a given
node of the SyDS changes if and only if the corresponding
element in the LBA’s instantaneous description changes. In
the simulation of the LBA by the constructed SyDS, the LBA
accepts its input string in 𝑡 steps if and only if the SyDS
reaches a specified configuration in 𝑡 steps. Details of this
construction are given below.

Let 𝑀 = (𝑄,Σ,Σ′, 𝑞0, 𝑞𝑓 , 𝐹) denote the given determinis-
tic LBA where 𝑄 is the (finite) set of states, Σ is the tape
alphabet, Σ′ ⊂ Σ is the input alphabet, 𝑞0 ∈ 𝑄 is the initial
state, 𝑞𝑓 ∈ 𝑄 is the accepting state and 𝐹 : (𝑄 × Σ) −→
(𝑄×Σ× {𝐿,𝑅, 𝑆}) is the transition function. Given the cur-
rent state and the current symbol scanned by the (read-write)
head, 𝐹 specifies the next state, the symbol to be written
on the cell scanned by the head and the direction of head
movement (left or right by one tape cell or stay on the same
cell). Let 𝑥 = 𝑎1𝑎2 . . . 𝑎𝑛 be the input string given to 𝑀 with
𝑎1 = $ and 𝑎𝑛 = © being the endmarkers.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1589

An instantaneous description (ID) of 𝑀 consists of the
current state, the contents of the tape cells and the position
of the head. 𝑀 starts at 𝑞0 with its head on the tape cell
containing 𝑎1 = $. We represent the ID at time zero by the
vector ℐ𝑀 = ⟨(𝑞0, 𝑎1), 𝑎2, . . . , 𝑎𝑛⟩. We may assume without
loss of generality that if 𝑀 accepts 𝑥, then it replaces all the
symbols on the tape cells between the endmarkers with the
symbol ̸ 𝑏, moves the head to the cell containing $, and cycles
in state 𝑞𝑓 . Thus, the unique accepting ID can be represented
by the vector ℬ𝑀 = ⟨(𝑞𝑓 , $), ̸ 𝑏, . . . , ̸ 𝑏,©⟩.

Given 𝑀 and input string 𝑥, we create a SyDS 𝒮𝑀𝑥 and
two configurations ℐ𝑆 and ℬ𝑆 such that 𝒮𝑀𝑥 starting from
configuration ℐ𝑆 reaches configuration ℬ𝑆 if and only if 𝑀
accepts 𝑥.

Let 𝑛 = |𝑥|, 𝑝 = |Σ|, and 𝑞 = |𝑄|. SyDS 𝒮𝑀𝑥 contains
𝑛𝑝+𝑛𝑝𝑞 nodes, which can be viewed as being arranged into 𝑛
clusters, each with 𝑝+ 𝑝𝑞 nodes. Within cluster 𝑖, 1 ≤ 𝑖 ≤ 𝑛,
there are 𝑝 nodes, denoted as {𝑎𝑖,𝑘 | 𝑘 ∈ Σ}, which we refer
to as passive nodes. Also within cluster 𝑖 there are 𝑝𝑞 nodes,
denoted as {𝑠𝑖,𝑗,𝑘 | 𝑗 ∈ 𝑄, 𝑘 ∈ Σ}, which we refer to as active
nodes. Intuitively, node 𝑎𝑖,𝑘 having value 1 corresponds to
tape cell 𝑖 containing symbol 𝑘, and node 𝑠𝑖,𝑗,𝑘 having value
1 corresponds to the tape head residing on tape cell 𝑖 in state
𝑗, with tape cell 𝑖 containing symbol 𝑘.

We say that a configuration of 𝒮𝑀𝑥 is valid if it satisfies
the following three conditions: (1) For each cluster 𝑖, exactly
one of the passive nodes in the cluster has value 1. (2) Exactly
one active node of 𝒮𝑀𝑥 has value 1. (3) If a given node 𝑠𝑖,𝑗,𝑘
has value 1, then the node 𝑎𝑖,𝑘 also has value 1.

We define a bijection 𝜓 from IDs of 𝑀 onto the set of valid
configurations of 𝒮𝑀𝑥 , as follows. Node 𝑎𝑖,𝑘 has value 1 iff
tape cell 𝑖 contains tape symbol 𝑘, and node 𝑠𝑖,𝑗,𝑘 has value
1 iff the tape head resides on tape cell 𝑖 in state 𝑗, with tape
cell 𝑖 containing symbol 𝑘.

SyDS 𝒮𝑀𝑥 will be constructed so that if ID 𝐶1 of the LBA
is followed by ID 𝐶2, then configuration 𝜓(𝐶1) of 𝒮𝑀𝑥 is
followed by configuration 𝜓(𝐶2).

The nodes in each cluster are interconnected as a clique,
and are connected to all the nodes in adjacent clusters. Thus,
the maximum node degree 𝑑0 is 3𝑝(𝑞+1)−1, and the treewidth
𝑝0 is at most 2𝑝(𝑞 + 1)− 1.

We now give the local transition functions of 𝒮𝑀𝑥 , explain-
ing how they operate when evaluated on a valid configuration.
First, we give the NCF representation for a passive node, say
node 𝑎𝑖,𝑘. The first 𝑝𝑞 lines of the NCF representation test
all the active nodes in cluster 𝑖. If any of these nodes has
value 1, then the transition function of LBA 𝑀 determines
the new contents of tape cell 𝑖. More specifically, the line in
the NCF representation that tests variable 𝑠𝑖,𝑗,𝑘′ is

𝑠𝑖,𝑗,𝑘′ : 1 −→ 𝑏
where 𝑏 is 1 iff 𝐹 (𝑗, 𝑘′) = (𝑗′, 𝑘, 𝑑) for some 𝑗′ and 𝑑.

Since in a valid configuration of 𝒮𝑀𝑥 , at most one of the
canalyzing variables in the above lines will equal 1, the above
lines can be written in any order.

If the above 𝑝𝑞 canalyzing variables are all 0, then the
tape head is not on cell 𝑖, so the contents of tape cell 𝑖 will
be unchanged by the next LBA transition. So, the next three

lines of the NCF representation keep the value of node 𝑎𝑖,𝑘
unchanged. Let 𝑘1 and 𝑘2 be two tape symbols different from
tape symbol 𝑘. Note that in any valid configuration, at least
one of the nodes 𝑎𝑖,𝑘1 and 𝑎𝑖,𝑘2 has value 0. The next three
lines of the NCF representation are: 𝑎𝑖,𝑘 : 1 −→ 1,
𝑎𝑖,𝑘1 : 0 −→ 0, 𝑎𝑖,𝑘2 : 0 −→ 0.

Note that for any valid configuration, at least one of the
above 𝑝𝑞 + 3 lines will satisfy its test condition, so the re-
maining lines of the NCF representation can be arbitrary.

We now give the NCF representation for an active node,
say node 𝑠𝑖,𝑗,𝑘. The first 𝑝𝑞 lines of the NCF representation
test all the active nodes in cluster 𝑖. If any of these nodes has
value 1, then the transition function of LBA 𝑀 determines
the new value of node 𝑠𝑖,𝑗,𝑘. More specifically, the line in the
NCF representation that tests variable 𝑠𝑖,𝑗′,𝑘′ is

𝑠𝑖,𝑗′,𝑘′ : 1 −→ 𝑏
where 𝑏 is 1 iff 𝐹 (𝑗′, 𝑘′) = (𝑗, 𝑘, 𝑆).

If the above 𝑝𝑞 canalyzing variables are all 0, then the
tape head is not on cell 𝑖, so the contents of tape cell 𝑖 will
be unchanged by the next LBA transition. The next 𝑝 − 1
lines of the NCF representation check whether the current
contents of tape cell 𝑖 is not tape symbol 𝑘, in which case
the contents of tape cell 𝑖 after one transition is not 𝑘. Thus,
for each 𝑘′ ̸= 𝑘, we have the line: 𝑎𝑖,𝑘′ : 1 −→ 0.

If all the above tests fail, and this point in the NCF evalu-
ation is reached, then 𝑘 is the tape symbol on cell 𝑖, and the
tape head is not on cell 𝑖. So, we next test whether the tape
head will move onto cell 𝑖 in state 𝑗.

If 𝑖 > 1, we have an NCF line for each possibility of the
tape head moving to the right onto cell 𝑖, in state 𝑗. Thus,
for each (𝑗′, 𝑘′) such that 𝐹 (𝑗′, 𝑘′) = (𝑗, 𝑘′′, 𝑅) for some 𝑘′′,
we have the line: 𝑠𝑖−1,𝑗′,𝑘′ : 1 −→ 1.

If 𝑖 < 𝑛, we have an NCF line for each possibility of the
tape head moving to the left onto cell 𝑖, in state 𝑗. Thus, for
each (𝑗′, 𝑘′) such that 𝐹 (𝑗′, 𝑘′) = (𝑗, 𝑘′′, 𝐿) for some 𝑘′′, we
have the line: 𝑠𝑖+1,𝑗′,𝑘′ : 1 −→ 1.

If all the above tests fail, and this point in the NCF eval-
uation is reached, then node 𝑠𝑖,𝑗,𝑘 should be set to 0. The
next two lines of the NCF representation accomplish this.
Let 𝑖′ be the index of an adjacent cluster, and let 𝑘1 and 𝑘2
be any two tape symbols. The next two lines of the NCF
representation are: 𝑎𝑖′,𝑘1

: 0 −→ 0, 𝑎𝑖′,𝑘2
: 0 −→ 0.

Note that for any valid configuration, at least one of the
above lines will satisfy its test condition, so the remaining
lines of the NCF representation can be arbitrary.

We now consider the reachability problem for 𝒮𝑀𝑥 . The
initial configuration ℐ𝑆 of 𝒮𝑀𝑥 is constructed from the initial
ID ℐ𝑀 , so we construct ℐ𝑆 to be 𝜓(ℐ𝑀). Similarly, the final
configuration ℬ𝑆 of 𝒮𝑀𝑥 is constructed from the final ID ℬ𝑀 ,
so we construct ℬ𝑆 to be 𝜓(ℬ𝑀). Thus, 𝒮𝑀𝑥 reaches the
required configuration ℬ𝑆 iff 𝑀 accepts 𝑥.

4 PREDECESSOR EXISTENCE

Theorem 4.1. The predecessor existence problem for NCF-
SyDSs is NP-complete even when the maximum node degree
of the underlying graph is 3.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1590

Proof sketch: It is easy to see that the predecessor existence
problem is in NP. We show NP-hardness via a parsimonious
reduction from 3SAT.

Suppose the given 3SAT formula 𝑓 has 𝑛 variables and
𝑚 clauses. The reduction constructs an NCF-SyDS 𝑆 and a
configuration 𝐶. The underlying graph 𝐺 of 𝑆 contains 𝑛+𝑚
nodes. For each variable, there is a node, which we denote
as 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛. For each clause, there is a node, which we
denote as 𝑦𝑗 , 1 ≤ 𝑗 ≤ 𝑚. There is an edge between each node
for a clause and the nodes for the variables occurring in that
clause.

We first describe the local transition function for the nodes
corresponding to the variables of the 3SAT formula 𝑓 . For
each node 𝑥𝑖, the first line of the NCF representation for the
local transition function at 𝑥𝑖 is: 𝑥𝑖 : 0 −→ 1.

Each subsequent line of the function at 𝑥𝑖 corresponds to a
clause in which the variable corresponding to 𝑥𝑖 appears. For
each such clause node 𝑦𝑗 , such that the variable corresponding
to 𝑥𝑖 appears in the clause corresponding to 𝑦𝑗 , the local
function for 𝑥𝑖 has the following line: 𝑦𝑗 : 0 −→ 1.

We now describe the local transition function for the nodes
corresponding to the clauses of the 3SAT formula 𝑓 . For each
𝑦𝑗 , the first line of the NCF for 𝑦𝑗 is: 𝑦𝑗 : 1 −→ 0.

This line is followed by a line for each literal occurring
in clause 𝑗. If a given literal is positive, say 𝑥𝑔, then the
corresponding line is: 𝑥𝑔 : 1 −→ 1; if a given literal is
negative, say �̄�ℎ, then the corresponding line is: 𝑥ℎ : 0 −→ 1.

The constructed configuration 𝐶 has the value 1 for every
node. It is easy to see that the construction can be carried out
in polynomial time. It can be verified that the configuration
𝐶 has a predecessor iff the given 3SAT instance is satisfiable.

It is well known that 3SAT is NP-complete even when
each variable occurs in at most three clauses [13]. Using a
reduction from this restricted version of 3SAT, it can be
verified that in the underlying graph of the SyDS resulting
from the above construction, the maximum node degree is
3. Thus, the predecessor problem remains NP-complete for
NCF-SyDSs even when the maximum node degree is 3.

Theorem 4.1 is tight with respect to maximum node degree
of the underlying graph. This is because when the maximum
node degree is 2, the predecessor existence problem can be
solved efficiently for all local transition functions [25].

It can be also seen that the above reduction is parsimonious;
that is, the number of predecessors of the configuration 𝐶
constructed in the above proof is equal to the number of
satisfying assignments of the 3SAT formula 𝑓 . Since the
counting problem for 3SAT is #P-complete, we have:

Corollary 1. The problem of counting the number of
predecessors of a given configuration of an NCF-SyDS is
#P-complete.

5 FIXED POINT EXISTENCE

Theorem 5.1. The fixed point existence problem for NCF-
SyDSs is NP-complete even when the maximum node degree
of the underlying graph is 3.

Proof sketch: It is easy to see that the fixed point existence
for SyDSs is in NP. We show NP-hardness via a parsimo-
nious reduction from 3SAT. Without loss of generality, we
assume that each variable of the given 3SAT instance occurs
(positively or negatively) in at least one clause.

Suppose the given 3SAT formula 𝑓 has 𝑛 variables and 𝑚
clauses. The reduction constructs a SyDS 𝑆 whose underlying
graph 𝐺 contains 𝑛 +𝑚 nodes. For each variable, there is
a node, which we denote as 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛. For each clause,
there is a node, which we denote as 𝑦𝑗 , 1 ≤ 𝑗 ≤ 𝑚. There
is an edge between each node for a clause and the nodes for
the variables occurring in that clause.

We first discuss the NCF representation of the functions
at the nodes corresponding to the variables of the given
3SAT instance. For each 𝑥𝑖, the first line of the NCF for
𝑥𝑖: 𝑥𝑖 : 0 −→ 0.

The subsequent lines of the NCF representation for the
function at 𝑥𝑖 are constructed as follows. For each clause
node 𝑦𝑗 such that 𝑥𝑖 appears in the clause corresponding to
𝑦𝑗 , we have the line: 𝑦𝑗 : 1 −→ 1.

We now present the NCF representation of the functions
at the nodes corresponding to the clauses of the given 3SAT
instance. For each clause node 𝑦𝑗 , the first line of the NCF
representation for 𝑦𝑗 is: 𝑦𝑗 : 0 −→ 1.

This is followed by a line for each literal occurring in clause
𝑗. If a given literal is positive, say 𝑥𝑔, then the corresponding
line is: 𝑥𝑔 : 1 −→ 1; if a given literal is negative, say �̄�ℎ,
then the corresponding line is: 𝑥ℎ : 0 −→ 1.

It can be seen that the construction can be carried out in
polynomial time. It can be shown that the resulting SyDS
has a fixed point iff the given 3SAT instance is satisfiable.

It is known that 3SAT is NP-complete even when each
variable occurs in at most three clauses [13]. Using a reduction
from this restricted version of 3SAT, it can be verified that
the maximum node degree of the underlying graph is 3. Thus,
the fixed point existence problem for NCF-SyDSs is NP-
complete when the maximum node degree is 3.

The above hardness result is also tight with respect to
maximum node degree since it follows from the results in [35]
that when the maximum node degree is 2, the fixed point
existence can be solved efficiently. Further, it can also be
seen that the above reduction is parsimonious. Thus:

Corollary 2. The problem of counting the number of
fixed points of an NCF-SyDS is #P-complete.

6 GARDEN OF EDEN EXISTENCE

We now consider the Garden-of-Eden (GE) existence problem.
To develop our algorithm for this problem, we need to first
define a new operation (called projection) on NCFs.

Definition 3. Given a Boolean function 𝑓 , a variable
𝑥, and a Boolean value 𝑎, the projection of 𝑓 on 𝑥 = 𝑎,
denoted by 𝑓𝑥=𝑎, is the function on the remaining variables
whose value on any assignment 𝛼 to these variables is the
value of 𝑓 when 𝛼 is extended to a complete assignment for
𝑓 by setting the variable 𝑥 to the value 𝑎.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1591

The projection operation is used in the proof of our result
for the GE existence problem for SyDSs whose local functions
are generalized NCFs. A statement of this result is as follows.

Theorem 6.1. A SyDS whose local transition functions
are all generalized NCFs has a GE configuration unless the
generalized NCF for each node involves exactly one canalyzing
variable, and each node occurs as a canalyzing variable in
exactly one of these generalized NCFs.

Moreover, when the local transition functions are specified
as generalized NCFs, if a GE configuration exists, then such
a configuration can be constructed in linear time.

Before presenting a proof sketch for Theorem 6.1, we note
that the first part of the theorem provides the following simple
two-step algorithm to check whether a GE configuration exists
in a SyDS where each node function is a generalized NCF.

1. If there is any local function whose number of variables is

̸= 1, output “Yes” and stop.

2. (Here, each local function has exactly only one variable.)
If a node occurs in two or more local functions, output “Yes”;
otherwise, output “No”.

A proof of Theorem 6.1 and the construction of a GE
configuration when one exists, require an intricate analysis
involving the edges of the graph and the local functions of
the nodes. A sketch of the proof is given below.

Proof sketch for Theorem 6.1: Let 𝒮 be a given SyDS
where each local transition function is specified as a gener-
alized NCF. Let 𝑛 denote the number of nodes of 𝒮, and
𝑋 denote the set of nodes. For convenience, we let 𝑥𝑖 ∈ 𝑋
denote both a node and its corresponding variable. Let 𝒞
denote the set of configurations of 𝒮. For any configuration
𝐵, we let 𝑆(𝐵) denote the successor configuration of 𝐵.

For a configuration 𝐶 of 𝒮 and a configuration 𝐷𝑍 on a set
of variables 𝑍 ⊆ 𝑋, we say that 𝐶 and 𝐷𝑍 are compatible
if for every node 𝑧 ∈ 𝑍, 𝐶(𝑧) = 𝐷𝑍(𝑧), and incompatible
if there exists a node 𝑧 ∈ 𝑍 such that 𝐶(𝑧) ̸= 𝐷𝑍(𝑧).

We now describe an algorithm to construct a GE configura-
tion. The algorithm proceeds in stages. Stage 1 might report
that no GE configuration exists, and then exit the algorithm.
Otherwise, a given stage either returns a GE configuration
and exits the algorithm, or the given stage is completed, and
the next stage begins.

After Stage 𝑖, where 𝑖 ≥ 0, the following objects will have
been constructed: (i) A set of 𝑖 nodes, which we refer to
as predecessor nodes, and denote as 𝑋𝑖. (ii) A set of 𝑖
nodes, which we refer to as successor nodes, and denote
as 𝑌 𝑖. (Sets 𝑋𝑖 and 𝑌 𝑖 are not necessarily disjoint.) (iii)
A configuration 𝐵𝑖 on node set 𝑋𝑖. We refer to 𝐵𝑖 as a
predecessor pattern. (iv) A configuration 𝐶𝑖 on node set
𝑌 𝑖. We refer to 𝐶𝑖 as a successor pattern.

Initially, 𝑋0 and 𝑌 0 are empty, and 𝐵0 and 𝐶0 contain
no components. For each node 𝑥𝑝, let 𝑓

𝑥𝑝,0 denote the given
NCF representation of the transition function for 𝑥𝑝. At
the end of a given stage, say stage 𝑖, 𝑓𝑥𝑝,0 will have been

transformed into a generalized NCF function, denoted as
𝑓𝑥𝑝,𝑖, representing the projection of 𝑓𝑥𝑝,0 onto the variables
in 𝑋 − 𝑋𝑖, obtained by setting each variable in 𝑋𝑖 to its
value in 𝐵𝑖.

Let ℬ𝑖 be the set of configurations of 𝒮 that are compatible
with predecessor pattern 𝐵𝑖. Note that ℬ𝑖 contains 2𝑛−𝑖 con-
figurations, and that 𝒞−ℬ𝑖 contains 2𝑛−2𝑛−𝑖 configurations.
We refer to the configurations in ℬ𝑖 as eligible configura-
tions, and those in 𝒞 − ℬ𝑖 as ineligible configurations.

The constructed objects can be seen to have the following
two properties: (i) For every ineligible configuration 𝐵 ∈
𝒞 − ℬ𝑖, its successor 𝑆(𝐵) is incompatible with 𝐶𝑖. (ii) If
𝑖 > 0, let 𝑦𝑗 be the last node added to 𝑌 𝑖. Then there is
at least one eligible configuration 𝐵 ∈ ℬ𝑖 whose successor

configuration 𝑆(𝐵) has (𝑆(𝐵))(𝑦𝑗) = 𝐶𝑖(𝑦𝑗), so that 𝑆(𝐵) is
incompatible with 𝐶𝑖.

A consequence of these two properties is that after the
completion of stage 𝑖, where 𝑖 > 0, there is at least one config-
uration that is an extension of 𝐶𝑖, and is a GE configuration.
From Property 1, if a configuration that is compatible with
𝐶𝑖 has a predecessor, this predecessor must be an eligible
configuration. However, there are only 2𝑛−𝑖 eligible config-
urations. From Property 2, the successor of at least one of
the eligible configurations is incompatible with 𝐶𝑖. Thus,
there are at most 2𝑛−𝑖 − 1 configurations whose successor is
compatible with 𝐶𝑖. Since there are 2𝑛−𝑖 configurations that
are compatible with 𝐶𝑖, at least one of these configurations
has no predecessor, and so is a GE configuration.

Each stage that completes without exiting adds one more
variable to the successor pattern. If a given stage 𝑖 exits with
a GE configuration, this GE configuration is an extension of
the current successor pattern 𝐶𝑖. Additional details and an
efficient implementation of the algorithm appear in [36].

7 FUTURE WORK

There are two useful future research directions. One direction
is to consider restrictions on the dynamical system that
can lead to efficient algorithms for the analysis problems
considered in this paper. Another direction is to develop
algorithms that work well in practice, even though their
running times may be exponential in the worst case. For
problems that are efficiently solvable, it would be of interest
to see if the algorithms can be extended to more general
versions along the lines of [35].

Acknowledgments: We thank the referees of AAMAS 2018
for providing valuable suggestions. This work has been par-
tially supported by DTRA CNIMS (Contract HDTRA1-11-D-
0016-0001), NSF DIBBS Grant ACI-1443054 and NSF BIG
DATA Grant IIS-1633028. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the U.S. Government.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1592

REFERENCES
[1] T. Akutsu, M. Hayashida, W. Ching, and M. K. Ng. 2007. Control

of Boolean Networks: Hardness results and algorithms for tree
structured networks. Journal of Theoretical Biology 244 (2007),
670–679.

[2] T. Akutsu, S. Kosub, A. Melkman, and T. Tamura. 2012. Finding
a Periodic Attractor of a Boolean Network. IEEE/ACM Trans.
Comput. Biol. Bioinformatics 9, 5 (Sep. 2012), 1410–1421.

[3] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. 2003. On Special Classes of Se-
quential Dynamical Systems. Annals of Combinatorics 7 (2003),
381–408. Issue 4.

[4] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. 2003. Reachability problems for
sequential dynamical systems with threshold functions. Theor.
Comput. Sci. 295 (2003), 41–64.

[5] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. 2006. Complexity of Reachability
problems for finite discrete dynamical systems. J. Comput. Syst.
Sci. 72, 8 (2006), 1317–1345.

[6] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. 2011. Modeling and Analyzing
Social Network Dynamics Using Stochastic Discrete Graphical Dy-
namical Systems. Theoretical Computer Science 412, 30 (2011),
3932–3946.

[7] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, R. E. Stearns, and Mayur Thakur. 2007. Predeces-
sor Existence Problems for Finite Discrete Dynamical Systems.
Theoretical Computer Science 386, 1–2 (2007), 3–37.

[8] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, R. E. Stearns, and P. T. Tosic. 2001. Gardens
of Eden and Fixed Points in Sequential Dynamical Systems. In
DM-CCG. HAL - INRIA, Paris, France, 95–110.

[9] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. 2000. Elements
of a theory of simulation II: Sequential Dynamical Systems. Appl.
Math. Comput. 107, 2-3 (2000), 121–136.

[10] C. L. Barrett and C. M. Reidys. 1999. Elements of a theory of
simulation I: Sequential CA Over Random Graphs. Appl. Math.
Comput. 98, 3 (1999), 241–259.

[11] H. L. Bodlaender. 1993. A Tourist Guide through Treewidth.
Acta Cybernetica 11, 1-2 (1993), 1–22.

[12] B. Durand. 1995. A Random NP-Complete Problem for Inversion
of 2D Cellular Automata. Theor. Comput. Sci. 148, 1 (1995),
19–32.

[13] M. R. Garey and D. S. Johnson. 1979. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman
and Co., San Francisco, CA.

[14] A. Ghaffarizadeh, G. J. Podgorski, and N. S. Flann. 2017. Ap-
plying attractor dynamics to infer gene regulatory interactions
involved in cellular differentiation. Biosystems 155 (2017), 29–41.

[15] F. Green. 1987. NP-Complete Problems in Cellular Automata.
Complex Systems 1, 3 (1987), 453–474.

[16] H. Gutowitz. 1989. Cellular Automata: Theory and Experiment.
North Holland, Ameterdam, The Netherlands.

[17] S. Kauffman. 1969. Metabolic Stability and epigenesis in randomly
constructed genetic nets. J. Theoretical Biology 22, 3 (1969),
437–467.

[18] S. Kauffman. 1993. The Origins of Order: Self-Organization
and Selection in Evolution. Oxford University Press, New York,
NY.

[19] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. 2003.
Random Boolean network models and the yeast transcriptional
network. Proc. National Academy of Sciences (PNAS) 100, 25
(Dec. 2003), 14796–14799.

[20] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. 2004.
Genetic networks with canalyzing Boolean rules are always stable.
Proc. National Academy of Sciences (PNAS) 101, 49 (Dec. 2004),
17102–17107.

[21] M. Kearns. 2008. Graphical Games. In Algorithmic Graph Theory,
N. Nissan, T. Roughgarden, E. Tardos, and V. Vazirani (Eds.).
Cambridge University Press, New York, NY, Chapter 7, 159–178.

[22] M. J. Kearns and V. V. Vazirani. 1994. An Introduction to
Computational Learning Theory. MIT Press, Cambridge, MA.

[23] D. Kohler and N. Friedman. 2009. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, Cambridge, MA.

[24] S. Kosub and C. M. Homan. 2007. Dichotomy Results for Fixed
Point Counting in Boolean Dynamical Systems. In Proc. ICTCS.
World Scientific, Singaore, 163–174.

[25] C. J. Kuhlman, A. Kumar, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. 2013. Analysis Problems for Spe-
cial Classes of Bi-threshold Dynamical Systems. In Proc. Work-
shop on Multi-Agent Interaction Networks (MAIN 2013). ACM
Sheridan Press, New York, NY, 26–33. (Held in conjunction with
the 12th Intl. Conference on Autonomous Agents and Multiagent
Systems (AAMAS)).

[26] L. Layne. 2011. Biologically Relevant Classes of Boolean Func-
tions. Ph.D. Dissertation. Department of Mathematics, Clemson
University.

[27] L. Layne, E. Dimitrova, and M. Macauley. 2012. Nested Cana-
lyzing Depth and Network Stability. Bulletin of Mathematical
Biology 74, 2 (2012), 422–433.

[28] Y. Li and J. O. Adeyeye. 2012. Sensitivity and Block Sensitivity of
Nested Canalyzing Functions. arXiv:1209.1597v1 [cs.DM]. (Sept.
2012).

[29] Y. Li, J. O. Adeyeye, and R. C. Laubenbacher. 2011. Nested
Canalyzing Functions And Their Average Sensitivities. arXiv:
1111.7217v1 [cs.DM]. (Nov. 2011).

[30] Y. Li, J. O. Adeyeye, D. Murrugarra, B. Aguilar, and R. C.
Laubenbacher. 2013. Boolean nested canalizing functions: A com-
prehensive analysis. Theoretical Computer Science 481 (2013),
24–36.

[31] A. A. Melkman and T. Akutsu. 2013. An improved satisfiability
algorithm for nested canalyzing functions and its application to
determining a singleton attractor of a Boolean network. Journal
of Computational Biology 20, 12 (2013), 958–969.

[32] H. S. Mortveit and C. M. Reidys. 2007. An Introduction to
Sequential Dynamical Systems. Springer, Berlin, Germany.

[33] M. Ogihara and K. Uchizawa. 2015. Computational Complex-
ity Studies of Synchronous Boolean Finite Dynamical Systems.
In Theory and Applications of Models of Computation – 12th
Annual Conference, TAMC 2015, Singapore, May 18-20, 2015,
Proceedings. Springer, New York, NY, 87–98.

[34] C. H. Papadimitriou and T. Roughgarden. 2003. Equilibria in
Symmetric Games. Report, Stanford University. (2003).

[35] D. J. Rosenkrantz, M. V. Marathe, H. B. Hunt III, S. S. Ravi, and
R. E. Stearns. 2015. Analysis Problems for Graphical Dynamical
Systems: A Unified Approach Through Graph Predicates. In Pro-
ceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey,
May 4-8, 2015. ACM Sheridan Press, New York, NY, 1501–1509.

[36] D. J. Rosenkrantz, M. V. Marathe, S. S. Ravi, and R. E. Stearns.
2017. Testing Phase Space Properties of Synchronous Dynamical
Systems with Nested Canalyzing Local Functions. Technical
Report, Biocomplexity Institute of Virginia Tech. (2017).

[37] C. Seshadhri, A. M. Smith, Y. Vorobeychik, J. R. Mayo, and R. C.
Armstrong. 2016. Characterizing short-term stability for Boolean
networks over any distribution of transfer functions. Physical
Review E 94, 1 (2016), 012301.

[38] R. E. Stearns, D. J. Rosenkrantz, S. S. Ravi, and M. V. Marathe.
2017. An Elementary Proof of the Upper Bound on the Average
Sensitivity of Nested Canalyzing Functions. Technical Report,
Network Dynamics and Simulation Science Laboratory, Biocom-
plexity Institute of Virginia Tech, Blacksburg, VA. (2017).

[39] T. Tamura and T. Akutsu. 2007. An 𝑂(1.787𝑛)-Time Algorithm
for Detecting a Singleton Attractor in a Boolean Network Con-
sisting of AND/OR Nodes. In Fundamentals of Computation
Theory, 16th International Symposium, FCT 2007, Budapest,
Hungary, August 27-30, 2007, Proceedings. Springer, New York,
NY, 494–505.

[40] T. Tamura and T. Akutsu. 2008. An Improved Algorithm for
Detecting a Singleton Attractor in a Boolean Network Consisting
of AND/OR Nodes. In Algebraic Biology, Third International
Conference, AB 2008, Castle of Hagenberg, Austria, July 31-
August 2, 2008, Proceedings. Springer, New York, NY, 216–229.

[41] P. T. Tosic. 2010. On the complexity of enumerating possible
dynamics of sparsely connected Boolean network automata with
simple update rules. In Automata 2010 - 16th Intl. Workshop
on CA and DCS. HAL - INRIA, Paris, France, 125–144.

[42] P. T. Tosic. 2017. Phase Transitions in Possible Dynamics of
Cellular and Graph Automata Models of Sparsely Interconnected
Multi-Agent Systems. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2017,
São Paulo, Brazil, May 8-12, 2017. ACM Sheridan Press, New
York, NY, 474–483.

[43] T. W. Valente. 1996. Social network thresholds in the diffusion
of innovations. Social Networks 18 (1996), 69–89.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1593

[44] C. H. Waddington. 1942. Canalyzation of development and the
inheritance of acquired characters. Nature 150, 14 (1942), 563–
565.

[45] S. Wolfram. 1987. Theory and Applications of Cellular Automata.
World Scientific, Singapore.

[46] M. Wooldridge. 2002. An Introduction to Multi-Agent Systems.
John Wiley & Sons, West Sussex, UK.

Session 44: Agent Cooperation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1594

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions and Their Significance
	1.3 Related Work

	2 Definitions and Problem Formulations
	2.1 Nested Canalyzing Functions
	2.2 Synchronous Boolean Dynamical Systems
	2.3 Problem Formulations
	2.4 NCFs and Symmetric Functions

	3 Complexity of Reachability
	4 Predecessor Existence
	5 Fixed Point Existence
	6 Garden of Eden Existence
	7 Future Work
	References

