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ABSTRACT
Flocking is a coordinated collective behavior that results from local
sensing between individual agents that have a tendency to orient
towards each other. Flocking is common among animal groups and
might also be useful in robotic swarms. In the interest of learning
how to control flocking behavior, recent work in the multiagent
systems literature has explored the use of influencing agents for
guiding flocking agents to face a target direction. The existing
work in this domain has focused on simulation settings of small
areas with toroidal shapes. In such settings, agent density is high,
so interactions are common, and flock formation occurs easily. In
our work, we study new environments with lower agent density,
wherein interactions are more rare. We study the efficacy of place-
ment strategies and influencing agent behaviors drawn from the
literature, and find that the behaviors that have been shown to
work well in high-density conditions tend to be much less effective
in lower density environments. The source of this ineffectiveness
is that the influencing agents explored in prior work tended to
face directions optimized for maximal influence, but which actu-
ally separate the influencing agents from the flock. We find that
in low-density conditions maintaining a connection to the flock
is more important than rushing to orient towards the desired di-
rection. We use these insights to propose new influencing agent
behaviors, which we dub “follow-then-influence"; agents act like
normal members of the flock to achieve positions that allow for
control and then exert their influence. This strategy overcomes the
difficulties posed by low density environments.
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1 INTRODUCTION
Flocking behavior can be found in a variety of species across na-
ture, from flocks of birds to herds of quadrupeds, schools of fish,
and swarms of insects. Researchers have argued that flocking as
a collective behavior emerges from simple, local rules [22]. It is
therefore natural to imagine placing externally-controlled artificial
agents into flocks to influence them. Yet it remains an open ques-
tion whether such techniques are actually effective. Previous work
[3–9] has explored the use of influencing agents to guide flocking
agents to face a target direction in small and toroidal1 settings, but
in such settings, agent density is high, so interactions are common,
and flock formation is rapid.

In the present work, we focus on lower-density settings where
interactions are rarer and flock formation is more difficult. We study
how influencing agent priorities must change in these settings to be
successful and propose new influencing agent strategies to adapt to
the challenges posed by these settings. Low-density settings are im-
portant to study because they capture dynamics in situations where
flocking may not occur naturally, but where we might want to in-
stigate flocking behavior; imagine a herd of buffalo that is currently
grazing, or a spooked flock of birds where individual agents fail to
coordinate. Our work may also have implications for coordination
in low-density swarms of robotic multi-agent systems, where con-
trol may be imperfect, such as RoboBees [1]. More broadly, flocking
has implications for consensus in animal groups [2, 23, 27] and in
human social networks [13]. Flocking algorithms have also been
used to simulate multivariate timeseries and human movement
[18, 20]. In all these cases, agent density may vary greatly, so it is
important to understand influencing agent dynamics in both low
density and high density settings.

To study flocking in lower density environments, we introduce
two new test settings. In one setting, we keep the simulation space
toroidal but increase the size of the space by several factors, greatly
decreasing agent density. Flock formation is still provably guaran-
teed [12] in this setting, but is much less rapid, so we study whether
influencing agents can speed up flock formation. In the second
setting, similar to existing “sheep herding” tasks [15], we use a
non-toroidal simulation space and start the flocking agents inside
a circle in the center. Since this space is non-toroidal, flock forma-
tion is not guaranteed, so we study whether influencing agents

1In a toroidal environment, agents that exit the simulation space from one side imme-
diately re-appear on the other side.
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can instigate flocking behavior by keeping the flocking agents in a
pre-defined area, or by moving them all in a certain direction.

We find that results from the existing literature are not robust in
these environments with low agent density, since agent interactions
are more rare. In particular, with less frequent local interactions
between agents, maintaining a connection to the flock becomes a
key factor in the efficacy of influencing agent behaviors. Simple be-
haviors such as “face the goal direction" are often superior to more
complex behaviors that try to optimize for speed of convergence.
We experiment with a number of new strategies and find that a
multi-stage approach of “follow-then-influence" is most effective
in low-density environments. In this approach, influencing agents
start out by participating as normal members of the group, embed-
ding themselves inside small, naturally-forming flocks. After some
time, the influencing agents start pushing their neighbors to face a
given goal direction.

The main contributions of this work are:
• An investigation of two new low-density flocking settings,
where flock formation is more difficult.

• The introduction of new influencing agent behaviors to adapt
to the difficulties presented by these new settings.

• Analysis of the major differences in influencing agent priori-
ties in low-density vs. high-density settings.

The rest of this paper is organized as follows: §2 describes the
flocking model we use and the new test settings. §3 describes the
role of influencing agents and formalizes agent behaviors. §4 de-
scribes our experimental setup and the experiments we run to
evaluate agent behaviors in the new test settings, and §5 presents
the results. Finally, we conclude and discuss future work in §7.

2 PROBLEM DESCRIPTION
2.1 Flocking Model
Like other studies in the literature, we use a simplified version of
Reynold’s Boid algorithm [17] to model the flock. In this simplified
model, also proposed independently by Vicsek and collaborators
[25], agents change their alignment at every step to be similar to
the average alignment of other agents in their neighborhood. At
each time step, each agent i moves with constant speed s = 0.7
and has orientation θi (t) with position pi (t) = (xi (t),yi (t)). At
timestep t , agent i updates its position based on its alignment:
xi (t) = xi (t − 1) + s cos(θi (t)) and yi (t) = yi (t − 1) + s sin(θi (t)).
At the same time, the agents change their orientation based on
the alignments of neighboring agents. Let the neighbors Ni (t) be
the set of agents at time t that are within neighborhood radius r
of agent i , not including agent i itself. At timestep t , each agent
updates its orientation to turn towards the average of its neighbors’
orientations:

θi (t + 1) = θi (t) +
1
2

1
|Ni (t)|

Σj ∈Ni (t )
(
θ j (t) − θi (t)

)
The factor of 1

2 in the second term reflects a “momentum" factor.

2.2 New Settings
Previous work has studied influencing agents in a small toroidal
150 × 150 grid, with neighborhood radius r = 20 [7, 8]. In this work,
we study low-density dynamics by introducing two new settings

that are more adverse to flock formation; we call these new settings
the large setting and the herd setting. In these settings, we set the
neighborhood radius to r = 10.

In the large setting, non-influencing agents are randomly placed
in a toroidal 1,000 × 1,000 grid with random initial orientations. The
larger grid size results in lower agent density; as a result, agents
start out much farther away from other agents’ neighborhoods,
and interactions are much rarer. However, since the simulation
space remains toroidal, convergence to a single direction is still
provably guaranteed, so we are primarily interested in studying the
length of time to convergence in this case [12]. In the herd setting,
non-influencing agents are placed randomly in a circle of radius
500 whose origin lies at the center of a 5,000 × 5,000 non-toroidal
grid. When agents reach the edge of the grid, they move off-world;
in this way, agents can get “lost" from the rest of the flock. As a
result, convergence to a single flock is not guaranteed. Therefore,
we are interested in studying how well influencing agents can keep
the non-influencing agents from getting lost.

3 INFLUENCING AGENTS
We can change flock dynamics by introducing influencing agents
that we control. We refer to non-influencing agents as Reynolds-
Vicsek agents. We do not give the influencing agents any special
control over the Reynolds-Vicsek agents; we simply let them inter-
act with influencing agents using the same local sensing rules as
with any other agent. We also limit the influencing agents to have
the same speed as Reynolds-Vicsek agents, both to help the influenc-
ing agents “blend in" in real applications and to be consistent with
the related prior work. We let the influencing agents have a sensing
radius of twice the normal neighborhood radius. This allows the
influencing agents to see their neighbors’ neighbors, allowing for
more complex algorithms. In some cases, the influencing agents
can communicate with each other, but they do not need a global
view.

3.1 Placement
Each influencing agent algorithm we use is decomposed into two
parts: a placement strategy and an agent behavior. Except for slight
modifications to make some of these strategies work in a circular
environment, the placement strategies we use are drawn from the
literature [3, 9]. The placement strategies we use in this work are
shown in Figure 1. We note that the question of how to maneuver
influencing agents to reach the positions given by these placement
strategies is important, but out of scope for this paper. For a dis-
cussion of this question, we refer the reader to Genter and Stone
[3, 8].

We use three placement strategies for the large setting: random,
grid, and k-means. The random placement strategy, as its name
suggests, places influencing agents randomly throughout the grid.
The grid placement strategy computes a square lattice on the grid
and places influencing agents on the lattice points. This strategy
ensures regular placement of influencing agents throughout the
grid. The k-means placement strategy uses a k-means clustering
algorithm on the positions of Reynolds-Vicsek agents in the simula-
tion space. This strategy finds a cluster for each influencing agent
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Figure 1: The different placement strategies we explore in
this paper. Red agents are influencing agents, and white
agents are Reynolds-Vicsek agents. Note that k-means is the
only placement strategywhere the placement of influencing
agents depends on placement of Reynolds-Vicsek agents.

by setting k equal to the number of influencing agents, and then
places an influencing agent at the center of each cluster.

We develop similar placement strategies for the herd setting,
with some slight modifications. To adapt the strategies to a circular
arrangement of agents, we define each strategy in terms of some
radius r about an origin O , except for the k-means strategy, which
remains the same. We modify the random placement strategy to
randomly distribute agents within the circle of radius r about the
origin O , instead of the entire simulation space. We adapt the grid
placement strategy to a circular setting using a sunflower spiral
[19]. In polar coordinates relative to O , the position of the n-th in-
fluencing agent in a sunflower spiral is given by (c

√
n, 2πϕ2 n), where

ϕ is the golden ratio, and c is a normalizing constant such that the
last influencing agent has distance r from O . We also introduce
a circular placement strategy, inspired from the border strategies
used in prior work [9]. This strategy places agents on the circum-
ference of the circle of radius r around the origin O . We refer to
the circular strategies as circle-random, circle-grid, and circle-border,
respectively.

3.2 Behaviors
Once we have placed the influencing agents, we still need to design
how they will work together to influence the flock. We call this
aspect of the design “agent behaviors." In the present work we focus
on decentralized “ad-hoc" algorithms for the influencing agents,
since this class of algorithms has been the focus of the existing
multiagent systems literature on this topic [3, 6, 7]. A summary of
the behaviors we investigate is shown in Table 1.

Table 1: Summary of the behaviors we investigate

Setting Goal Type Name Description

Large

Face Always face goal direction
Offset Momentum Offset last average velocity
One-Step Lookahead Simulate one step, choose best
Coordinated Pair off and coordinate
Multistep Follow-then-influence

Herd

Traveling

Face (As above)
Offset Momentum (As above)
One-Step Lookahead (As above)
Coordinated (As above)

Stationary
Circle Trace circle around agents
Polygon Trace polygon around agents
Multicircle Follow-then-influence

3.3 Large Setting
For the large setting, we study four behaviors drawn from prior
work [7–9], and one new multistep behavior.

In previous work, Genter and Stone have introduced baselines
face and offset momentum behaviors, as well as more sophisticated
one-step lookahead and coordinated behaviors. Each of these behav-
iors aims to turn Reynolds-Vicsek agents to a pre-set goal angle θ∗
Influencing agents using the face behavior always face the angle θ∗.
With the offset momentum behavior, influencing agents calculate
the average velocity vector of the agents in their neighborhood,
and align to a velocity vector that, when added to the average ve-
locity vector, sums to the vector pointing in direction θ∗. We note
that such a vector always exists; if the average velocity vector is
(x ,y), and θ∗ is represented by vector (x ′,y′), then the agents align
to vector (x ′ − x ,y′ − y). A one-step lookahead influencing agent
cycles through different angles and simulates one step of each of its
neighbors if it were to move in that angle. It adopts the angle that
results in the smallest average difference in angle from θ∗ among
all its neighbors. Finally, with the coordinated behavior, each agent
pairs with another and runs a one-step lookahead to minimize the
average difference in angle from θ∗ among both their neighbors.
For a more detailed explanation of these behaviors, especially the
coordinated behavior, we direct the reader to Genter and Stone [7].

The multistep behavior is a novel contribution and adopts what
we call a “follow-then-influence" behavior. In the initial stage, influ-
encing agents simply behave like normal Reynolds-Vicsek agents;
as a result, they easily join flocks and become distributed through-
out the grid. At the same time, each influencing agent estimates how
many Reynolds-Vicsek agents are path-connected to it; here, we de-
fine two agents as being path-connected if there is a path between
them, where edges are created by two agents being in each other’s
neighborhood. An accurate calculation of path-connectedness re-
quires a global view from every influencing agent, since paths may
extend arbitrarily far away from the influencing agent. In our algo-
rithm, we only consider Reynolds-Vicsek agents that are within the
sensing radius of the influencing agents. Given their local estimates,
the influencing agents compute a global sum of all their estimates;
once that sum passes over some thresholdT , the influencing agents
calculate the average angle θ among all the agents that are locally
connected to influencing agents, and from there adopt the face
behavior with goal direction θ .
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We also explore some variations of the multistep behavior by
noticing that once the sum of connected agents passes the thresh-
old T , any of the other behaviors studied can be used to turn the
Reynolds-Vicsek agents towards the final goal direction θ . In other
words, themultistep behavior can be paired with any other behavior.
We study these pairings to see how effective they are.

3.4 Herd Setting
For the herd setting, we divide the behaviors into two categories:
traveling behaviors and stationary behaviors. As a reminder, in
the herd setting, the simulation space is non-toroidal, and all the
Reynolds-Vicsek agents start in a circle in the center. In this set-
ting, flock formation is not guaranteed, so we are interested in
using influencing agents to instigate flocking behavior. There are
two different choices we can make; we can either try to force the
Reynolds-Vicsek agents to stay in the center (stationary behaviors),
or we can let the influencing agents direct the Reynolds-Vicsek
agents away from their initial starting position (traveling behav-
iors). Since all the agents have a constant speed, the former is much
more difficult than the latter, so we must evaluate them separately.

For the traveling behaviors, we can use all the behaviors used in
the large setting, except for the multistep behavior. Since the world
is non-toroidal, it is not guaranteed that the number of connected
agents will ever pass the threshold T ; in this case, the influencing
agents would simply wander forever.

We study three stationary behaviors: circle, polygon, and multi-
circle. The circle and polygon behaviors have each influencing agent
trace a circle or polygon around the origin. For placement strategies
where influencing agents have different distances to the origin, the
influencing agents simply trace circles and polygons of different
radii.

The multicircle behavior is analogous to the multistep behavior
from large. The influencing agents start out by circling around the
origin and wait for Reynolds-Vicsek agents to enter their neigh-
borhood. Once they detect Reynolds-Vicsek agents in their neigh-
borhood, they adopt a “following" behavior where they act like
Reynolds-Vicsek agents to integrate into a small flock. They con-
tinue this following stage until reaching a final radius rF , at which
point they again adopt a circling behavior. In addition to building
influence by following before influencing, this behavior also makes
maintaining influence easier; since the final radius is larger than
the original radius, the final path turns less sharply than if the
influencing agents had stayed at their original radius. To the best of
our knowledge, this is the first presentation of such a multi-stage
behavior to induce circling behavior under the Reynolds-Vicsek
model in the literature.

4 EXPERIMENTAL SETUP
We extended the MASON simulator to run the experiments [14].
We used the default parameters for the Flocking simulation that is
included with the MASON simulator, except without any random-
ness, cohesion, avoidance, or dead agents. We sampled all metrics
every 100 time steps and ran all experiments for 100 trials.

4.1 No Influencing Agents
Previous literature compared new influencing agent behaviors with
baseline influencing agent behaviors, but did not compare to set-
tings with no influencing agents. In order to observe the marginal
contribution of influencing agents in future experiments, we start
our investigation of the large and herd settings by studying flock
formation in those environments without any influencing agents.
We use two metrics to understand flock formation: average number
of flocks formed and average proportion of lone agents at each time
step.

In the large setting, we test on a 1,000 × 1,000 grid and vary the
number N of Reynolds-Vicsek agents from 50 to 300 in increments
of 50. We run these simulations for 6,000 time steps. In the herd
setting, we use a 5,000 × 5,000 grid, position the herd in the center
of the grid with radius 500, and vary N from 50 to 300 in increments
of 50. We run these simulations for 6,000 time steps.

4.2 Influencing Agents
To evaluate the contributions of influencing agents in the large
setting, we measure time to convergence. We define convergence
as having half the Reynolds-Vicsek agents face the same direction,
since full convergence takes much longer.

We test the random, grid, and k-means placement strategies,
along with the full suite of behaviors in the large setting. We place
300 Reynolds-Vicsek agents on the grid and vary the number of
influencing agents from 10 to 100 in intervals of 10.

To evaluate the contributions of influencing agents in the herd
setting, we measure a slightly different metric. Since we have two
qualitatively different categories of behaviors (traveling behaviors
vs. stationary behaviors), the number of agents facing the same
direction is irrelevant. The stationary behaviors rotate the agents
around the origin (in fact, if the Reynolds-Vicsek agents are all
facing the same goal direction, the stationary behavior has failed).
Instead, we measure the number of Reynolds-Vicsek agents that are
connected to influencing agents at 15,000 time steps; at this point
in time, all the agents have travelled out of the grid, and no new
interactions occur. As a result, this quantity measures sustained
influence over the Reynolds-Vicsek agents over time.

In the herd setting, we examine the three circular placement
strategies—circle-border, circle-random, and circle-grid—with two
placement radii, 500 and 750, along with the k-means placement
strategy. We split our examination of behaviors between the travel-
ing behaviors (the same behaviors as used in the large setting, minus
the multistep behavior) and three stationary behaviors—circle, poly-
gon, and multicircle. We use a polygon with ten sides (a decagon)
for the polygon behavior, and we vary the final radius for the mul-
ticircle behavior based on the initial placement radius. When the
placement radius is 500, we set the final radius to 900; when the
placement radius is 750, we set the final radius to 1,100. We place
300 Reynolds-Vicsek agents on the grid and again vary the number
of influencing agents from 10 to 100 in intervals of 10.
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5 RESULTS
5.1 No Influencing Agents
First, we briefly characterize the flocking behavior of a group of
Reynolds-Vicsek agents without influencing agents in the large and
herd settings. We measure the number of clusters of agents that
are path-connected and facing the same direction; each of these
clusters forms a small flock. We also measure the number of lone
agents (the number of agents with no neighbors). Figure 2 shows
graphs of these values over time for the two settings.

In the large setting, there are two qualitative stages of conver-
gence: initial flock formation and flock unification. In the first stage,
individual agents collide with each other and form small flocks, so
the number of flocks increases. In the second stage, these small
flocks that formed collide with one another and join together to
form larger flocks, so the number of flocks decreases. In Figure 2,
the first stage is represented by the initial increase in the average
number of flocks, and the second stage is represented by the fol-
lowing decrease in the average number of flocks. This behavior
is reflected in the continually decreasing number of lone agents;
since the number of lone agents continues to decrease over time,
we know that the decrease in the total number of flocks is due
to flock convergence. Note that when there are more total agents,
the absolute number of lone agents decreases faster and reaches
a similar value to the other cases by the end of the simulation. In
other words, the ratio of lone agents to total agents hits a lower
value when there are more agents, but the final absolute number of
total lone agents is still similar to the other cases.

The two stages of convergence also occur somewhat in the herd
setting, but the second stage is cut off by the non-toroidal nature of
the setup. As flocks leave the starting area, the chances of interact-
ing with other flocks vastly decreases, so most of the flocks formed
from the first stage never end up merging with other flocks. This
is reflected in the plateaus of both the total number of flocks and
the total number of lone agents. One small artifact in the metric
is worth mentioning; since the agents start off in a much smaller
area than in the large setting, many of the agents start out with a
non-zero number of neighbors. This causes the initial value of the
average number of flocks to be non-zero, and the average number
of lone agents to be less than the total number of agents.

5.2 Influencing Agents in the Large Setting
Next, we report on the efficacy of the behaviors in the large setting.
The average times for 50% convergence with different placement
strategies and the five behaviors are shown in Figure 3. We show
graphs for 300 Reynolds-Vicsek agents and 50 influencing agents
only, since the trends for the other numbers of influencing agents
were similar (the major difference being that when there are more
influencing agents, convergence happens faster, and when there
are fewer influencing agents, convergence happens slower). Note
that smaller is better in these graphs.

The most immediately striking finding is that, in less dense set-
tings, the one-step lookahead and coordinated behaviors significantly
underperform the “baseline" face and offset momentum behaviors,
irrespective of placement strategy. This is an opposite result from
Genter and Stone’s findings on smaller simulation spaces [3, 7],
which found that the one-step lookahead and coordinated behaviors

outperform the face and offset momentum behaviors. This finding
is also rather counterintuitive; why should the “smarter" behaviors
underperform the simpler behaviors?

The answer is that, when agent interactions are rare, it is more
important for influencing agents to maintain influence than it is
for them to quickly change the direction of neighboring Reynolds-
Vicsek agents. The one-step lookahead and coordinated behaviors
underperform here because they tend to send influencing agents
away from neighboring agents. An example of this phenomenon is
shown in Figure 4. The influencing agent, shown in red, adopts an
orientation that turns neighboring Reynolds-Vicsek agents towards
the goal direction. Even though this action does turn Reynolds-
Vicsek agents towards the goal direction, the influencer cannot
successfully turn all the agents in a single step; as a result, the
influencing agent must maintain that orientation for future steps.
However, as long as the neighboring agents are not facing the goal
direction, the influencing agent’s chosen orientation takes it away
from the center of the flock of Reynolds-Vicsek agents, causing
the agent to lose influence. Once the influencing agent has lost
influence, the agent has difficulty catching up with the same flock,
since influencing agents travel at the same speed2 as Reynolds-
Vicsek agents. As a result, the influencing agent is not actively
influencing the direction of any Reynolds-Vicsek agents until it
encounters another group of Reynolds-Vicsek agents.

Note that this effect also happens on a smaller simulation space,
but it is not nearly as pronounced; when interactions are very fre-
quent, influencing agents that have lost influence can find another
group of Reynolds-Vicsek agents very quickly. As a result, the gains
from the smarter local algorithm still outweigh the negative effects
from losing influence.

The multistep behavior does not suffer from the same problem;
it can both maintain influence and effectively turn Reynolds-Vicsek
agents and so outperforms all the other behaviors by a couple
hundred steps. When themultistep behavior is paired with the other
behaviors, though, it magnifies their inability to maintain influence.
The bottom graph of Figure 3 shows variations on the multistep
behavior, wherein influencing agents adopt different behaviors
after the number of Reynolds-Vicsek agents under control passesT .
Note that the variations that pair the multistep behavior with the
offset momentum, one-step lookahead, and coordinated behaviors
perform almost an order of magnitude worse than themultistep-face
behavior. What is the root cause of this difference? The multistep
behavior starts out by creating many local flocks, some of which
have influencing agents in them. When interactions are rare, the
offset momentum, one-step lookahead, and coordinated behaviors
have difficulty changing the orientation of existing flocks quickly
before losing influence. As a result, the multistep behavior takes an
order of magnitude longer to reach convergence when paired with
the other behaviors.

Finally, we note that the effect of placement behaviors on con-
vergence time are almost non-existent. When the density is lower,

2There are some approaches which remove this speed constraint from influencing
agents [11]. However, this choice allows for unrealistic behaviors wherein influencing
agents travel to one Reynolds-Vicsek agent at a time and change the direction of the
individual Reynolds-Vicsek agent before moving on to the next one. This behavior
results in Reynolds-Vicsek agents that are all facing the same direction, but that are
often not path-connected.
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Figure 2: Average flock counts and lone agent counts over time for the large and herd settings with no influencing agents,
varying the number of Reynolds-Vicsek agents.

Figure 3: Average times to 50% convergence for 300 Reynolds-Vicsek agents with 50 influencing agents in the large setting
under different placement strategies and behaviors. Top: The five main behaviors for the large setting. Bottom: Variations on
the multistep behavior, in log scale. Smaller is better. Error bars show standard error of the mean.

there is a much smaller chance that any influencing agent will
start out with more than one Reynolds-Vicsek agent in its neigh-
borhood, even with the k-means placement behavior. As a result,
even the best clustering approach is almost the same as starting
out randomly or in a grid.

5.3 Influencing Agents in the Herd Setting
Next, we evaluate results for our experiments in the herd setting. In
many cases, measuring the number of agents facing the same direc-
tion is not interesting here, since it is impossible to keep Reynolds-
Vicsek agents in one place if they are facing the same direction.
Instead, we exclusively measure the number of Reynolds-Vicsek
agents that are path-connected to influencing agents and facing

the same direction as the influencing agent. This is a measure of
“control" of the Reynolds-Vicsek agents. The average number of
agents in such local flocks after 15,000 time steps is given in Figure
5 for both the traveling and stationary behaviors. We find that the
traveling behaviors vastly outperform any of the stationary behav-
iors. However, there may be environments in reality for which the
traveling behaviors are not applicable (suppose it is strictly neces-
sary to keep a flock in one place, for instance). Thus, we analyze
the traveling behaviors separately from the stationary behaviors.

5.3.1 Traveling. Again, we find that the face behavior tends
to outperform the offset momentum, one-step lookahead, and coor-
dinated behaviors; we attribute this to the tendency of the offset
momentum, one-step lookahead, and coordinated behaviors to lose
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Figure 4: An example of an influencing agent losing influ-
ence under the one-step lookahead behavior. The influencing
agent is shown in red, and the Reynolds-Vicsek agents are
shown in white. In A, the influencing agent first encounters
the flock of Reynolds-Vicsek agents. In B-D, the influenc-
ing agent takes on directions that are oriented away from
the goal direction to try to rapidly influence the Reynolds-
Vicsek agents. This changes the orientation of the Reynolds-
Vicsek agents, but the influencing agent has started to travel
away from the flock by D.

influence over time. We note that the effect is not as pronounced
here as in the large experiments, since each influencing agent has
to control fewer agents.

In contrast to the large experiments, we find that here the place-
ment strategy has a major impact on the efficacy of the traveling
behaviors. Again, this has to do with density of influencing agents.
For example, notice that Border 750 (place the influencing agents
in a circle about the origin with radius 750) vastly underperforms
the other placement strategies. The larger radius results in a lower
density of influencing agents, so a greater number of Reynolds-
Vicsek agents slip through the “holes." Furthermore, by the time
the Reynolds-Vicsek agents reach the border, they have already
formed flocks, and it is more difficult for the influencing agents to
point them in the right direction. This effect is less pronounced
for Grid 750 and almost non-existant for Random 750, since these
strategies place influencing agents within the circle, and not simply
along its circumference. As a result, the Reynolds-Vicsek agents still
encounter influencing agents before reaching the circumference of
the circle.

Finally, we note that k-means outperforms all other placement
strategies by a few agents. Again, the main driving factor behind
this is agent density. When an influencing agent starts out in a
clustered area, it has at least one other Reynolds-Vicsek agent in its
neighborhood. As a result, its effective area of influence is slightly
larger than with the other placement strategies. This helps it pick
up more Reynolds-Vicsek agents.

5.3.2 Stationary. Among the stationary behaviors, the multi-
circle behavior achieves the best outcomes, but its performance
depends on its paired placement strategy. The multicircle behavior
slightly underperforms the circle behavior when paired with the
Border placement strategies; slightly overperforms when paired
with the k-means, Random, and Grid 500 placement strategies; and
performs the same as circle in the Grid 750 strategy. What drives
these trends? Once the multicircle behavior reaches the final stage,
it is tracing a larger circle than the circle behavior traces on its
own. As a result, it is easier to maintain influence and turn the
Reynolds-Vicsek agents over time in the final stage. Before that,
however, the influencing agents are in a following stage. When the

influencing agents start out inside the circle, they have more time
to infiltrate small flocks of Reynolds-Vicsek agents and induce a
circling behavior in the final stage.

Finally, we note that Border 750 is the worst placement strategy,
similar to when it is used in the traveling behaviors. Also, the
polygon behavior tends to underperform or match the performance
of circle, which tells us that adopting occasional sharper turns can
sometimes be detrimental.

6 RELATEDWORK
Our work builds upon a series of papers by Genter and Stone ex-
amining ways to use external agents to influence flocking [4–9].
This prior work studied a number of placement strategies and influ-
encing agent behaviors, including questions of how best to join or
leave a flock in real scenarios. Genter also presented results from
simulations with different implementations of Reynold’s flocking
model, as well as physical experiments with these algorithms in
a small RoboCup setting [3]. This prior work almost exclusively
studied small environments, where density of agents is high, and
quick flock formation was virtually guaranteed. We study two new
low-density environments and introduce behaviors to adapt to the
difficulties presented by these new environments.

Jadbadbaie et al. [12] studied Reynolds-Vicsek agents from an
analytical perspective. Two strong results from this work were
that a group of Reynolds-Vicsek agents in a toroidal setting will
eventually converge regardless of initial conditions, and that in the
presence of a single agent with fixed orientation (analogous to a
single influencing agent), all the agents will converge to that fixed
agent’s orientation. This theory provides important context for
Genter and Stone’s work and the work that we present here: when
the setting is toroidal, convergence is guaranteed, so the interesting
question is how fast we can reach convergence.

Couzin et al. [2] studied the design of influencing agents for
flocking as well, albeit with a slightly different flocking model.
They proposed an influencing behavior wherein influencing agents
adopt orientations “in between" their desired goal orientation and
the orientations of their neighbors, in order to still influence their
neighbors while not adopting orientations so extreme that they
have no chance of being effective in the long term. This is similar
in spirit to the motivation behind the multistep algorithm. We
adapted Couzin’s algorithm to the new settings, but do not present
the results in this text for space reasons. The adaptation did not
perform as well as the new multistep behavior or the face behavior,
but it did outperform the one-step lookahead behavior.

Han et al. [11] published a series of papers showing how to align
a group of agents in the same direction. This work assumed a single
influencing agent with infinite speed, and used this property to
construct a behavior that has the influencing agent fly around and
correct the orientation of agents one at a time. The result is that
the Reynolds-Vicsek agents all eventually converge to the target
direction, but are not connected to each other. In our work, we limit
the speed of influencing agents to be the same as the Reynolds-
Vicsek agents to prevent the use of behaviors like this, in hopes that
our results will be more relevant to real applications; we suspect
that influencing agents that act similarly to real agents will be more
successful in real applications.
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Figure 5: Average number of agents under influencing agent control after 15,000 steps with 300 Reynolds-Vicsek agents and
50 influencing agents in the herd setting under various placement strategies and influencing agent behaviors. The traveling
behaviors attempt to control the direction of the Reynolds-Vicsek agents, while the stationary behaviors keep the influencing
agents near the goal area using circling techniques. Larger is better. Error bars represent standard error of the mean.

Su et al. [21] studied the question of flock formation and conver-
gence, but in the context of the Olfati-Saber flocking model [16].
This model assumes the existence of a single virtual leader that
non-influencing agents know about. The virtual leader plays the
role of an influencer, but has special control over the other agents
based on its status. In our work, we assume that influencing agents
do not have any special interaction rules with Reynolds-Vicsek
agents.

Researchers of collective animal behavior have begun using
replica conspecifics in order to influence animal groups across
a range of species, from fish to ducks to cockroaches [10, 24, 26].
Halloy et. al. used robotic influencing agents to control groups of
cockroaches; they exploited the cockroaches’ inability to differ-
entiate between real cockroaches and robotic influencing agents.
Vaugahn et. al. used robotic influencing agents to herd a flock of
ducks (on the ground) to a goal position in a small caged area; their
approach used robot agents to “push" the ducks from a distance,
like a dog herding sheep.

7 CONCLUSION
We have studied the problem of controlling flocks using influencing
agents under two new, more adversarial environments with lower
agent density, and have introduced novel control behaviors for these
settings. In addition to these new algorithms, we have found that
in low-density environments it is more important for influencing
agents to maintain influence than it is for them to rapidly turn

their neighbors towards the correct destination. As a result, earlier
results from smaller simulation environments often do not hold
in the environments we introduce. We found that a multi-stage
approach that first embeds influencing agents in small flocks before
attempting to steer these flocks to the goal direction can be effective
in addressing some of these shortcomings.

Although we did not present results from using the multi-stage
approach in the smaller simulation environments from previous
work, preliminary experiments suggest that, in the smaller envi-
ronments, it is not as effective as algorithms that optimize for rapid
convergence. Future work could try to find an algorithm that works
well in all settings.

It could also explore how to aggregate small flocks into one
larger flock. Many behaviors result inmultiple small flocks clustered
around influencing agents that have converged in the sense that
they are all facing the same direction, but remain disconnected
from each other. A successful algorithm would have to change the
direction of the flock without losing individual Reynolds-Vicsek
agents on the edges of the flock.
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