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ABSTRACT
In the era of big data, graph sampling is indispensable in many

settings. Existing sampling methods are mostly designed for static

graphs, and aim to preserve basic structural properties of the origi-
nal graph (such as degree distribution, clustering coefficient etc.)

in the sample. We argue that for any sampling method it is im-

possible to produce an universal representative sample which can

preserve all the properties of the original graph; rather sampling

should be application specific (such as preserving hubs - needed for

information diffusion). Here we consider community detection as an
application scenario. We propose ComPAS, a novel sampling strategy

that unlike previous methods, is not only designed for streaming
graphs (which is a more realistic representation of a real-world

scenario) but also preserves the community structure of the original
graph in the sample. Empirical results on both synthetic and dif-

ferent real-world graphs show that ComPAS is the best to preserve

the underlying community structure with average performance

reaching 73.2% of the most informed algorithm for static graphs.
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1 INTRODUCTION
One of the fundamental techniques to analyze very large-scale

graphs is through sampling [20], especially where the analysis

on the entire graph is intractable (and often impractical). A good

sampling method should usually target a specific application and

essentially preserve a set of (not all) properties of the original graph

geared toward the application. For instance, a sampling method

designed for information diffusion should preserve the hubs (high-

degree nodes) in the sample; whereas, a sampling scheme for out-

break detection (such as disease outbreak) should preserve the

nodes with high local clustering coefficient. Sampling has been

studied extensively in the context of static graphs [13, 20, 24, 29, 30];
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however, there has been very limitedwork on sampling from stream-
ing graphs [16] where nodes/edges arrive in discrete time intervals

and only a part of the entire graph is available for analysis at any

point of time [2, 4, 23, 32].

Existing graph sampling methods are mostly designed for pre-

serving simple structural properties (such as degree distribution,

clustering coefficient etc.) of the original graph in the sample - only

few works attempted to preserve complex properties like commu-

nity [24, 33] - which may be useful for designing a wide range

of applications. For instance, in marketing, surveys often seek to

construct samples from different communities to capture the di-

versity of the population (also known as cluster sampling) [18]. In
this paper, we propose a novel sampling algorithm that preserves

the original community structure1 of streaming graphs. Our work

sharply contrasts the recently proposed Green Algorithm (GA) [33]

which, is explicitly designed to generate a sample that preserves

the community structure for static graphs.
Our contributions: In this paper, we propose ComPAS, a novel

sampling algorithm on streaming graph (most realistic graph rep-

resentation [2, 4]) that is capable of preserving the community

structure of the original graph.

ComPAS is designed based on a novel hypothesis that graph sam-

pling and community detection can be interwoven together to pro-

duce a more representative sample. In particular, our contributions

in this paper are the following:

• To the best of our knowledge ComPAS is the first community-
preserving sampling method for streaming graphs. Along
with the sample nodes, ComPAS also outputs the community

structure of the sample that closely corresponds to the com-

munity structure of the original graph.

• In absence of any other community preserving sampling

algorithm for streaming graphs, we resort to comparing

ComPAS with GA [33] which was designed to preserve the

community structure while sampling from static graphs.

Note that GA, unlike ComPAS, has the information of the

full graph while sampling and building the community struc-

ture. Empirical evidences on synthetic and real-world graphs

demonstrate that the sample generated by ComPAS correctly

preserves the community structure with average perfor-

mance reaching as high as 73.2% of GA. Further, we also

compare ComPAS with well-known node/edge preserving

sampling methods available for streaming graphs to show

1
In this paper, we consider disjoint community structure.
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that these do not automatically preserve the community

structure thus necessitating the design of ComPAS .

• We do a detailed micro-analysis to comprehend the reasons

behind superior performance of ComPAS. We also show addi-

tional benefits of ComPAS through an application – selection

of (limited) training set for online learning. We obtain a per-

formance that is within 90.5% of themost informed algorithm

GA available for static graphs.

2 RELATEDWORK
Population sampling has been studied for long in social sciences

[9],[10], such as snowball sampling [14], respondent-driven sam-

pling [15], [11] etc. and most of the relevant works in this space deal

with estimating global properties of the population (see a survey

in [18]).

Sampling from static graphs: Availability of large-scale graph

data has generated renewed interest in the sampling problem [3,

13, 20, 29, 30]. Following in this series are works like [24] and [25].

A severe limitation of these approaches is that they assume that

the entire graph is present in advance (i.e., the snapshot is static)

for the algorithm to produce the desired output.

Sampling from streaming graphs: With increasing interest in

mining and analysis of large social graphs (which are mostly dy-

namic in nature), there is a recent shift in focus toward sampling

from streaming graphs. A streaming graph corresponds to a stream
of incoming edges (see Figure 1). [2] proposed a streaming edge sam-

pling (SE) algorithm for outlier detection. [4] proposed streaming

node sampling (SN), streaming BFS (Breadth First Search, SBFS)

and Partially Induced Edge Sampling (PIES) algorithms. SN and

SE maintain a reservoir of nodes and edges respectively and in-

sert or remove them based on a pre-defined hash function. While

SBFS essentially implements simple breadth-first search on a slid-

ing window of fixed number of edges in the stream, PIES leverages

a partial induction of nodes and combines edge-based node sam-

pling with the graph induction in a single pass. Other recent works

include [23, 32].

Themost informative baseline: The Green Algorithm (GA) [33]

is capable of generating community structure preserving samples

for static graph; however, the explicit community structure is not

produced as an output of the algorithm. This constitutes, for us,

the most informative baseline since it has to have the full original

network at its disposal to decide whether to include an edge or

node in the sample it constructs. Typically the set of nodes with

high clustering coefficients as well as high degree are sampled in.

However, for a streaming graph setting, this exercise becomes dif-

ficult as one needs to determine the importance of a node based

only on its limited arrival history. To this aim we incorporate a

simple technique which allows ComPAS to correctly identify the

high fidelity (high degree and clustering coefficient) nodes and,

thereby, improve the quality of the sample. Moreover, we intend

to create samples in such a way that the nodes thus sampled are

largely connected among themselves. This may be specially im-

portant for problems where edge characteristics are necessary like

link prediction [8], epidemic flow modeling [22], signed network

friend/foe classification [21].

3 PROBLEM DEFINITION
We consider a graph stream S represented by a set of edges e1,

e2, · · · with each edge ei arriving at ith (discrete) time step. A

graph G at time t is the aggregate of all the edges arriving till

time t . V represents the set of unique nodes present in G. The
community structure ofG is represented byC . We considerG to be

both unweighted and undirected.

Definition 1. Given a streaming graphG of sizeV , our objective
is to obtain a sample graph Gs of size n such that C , the underlying
community structure ofG is highly preserved inGs (i.e.,C ∼ Cs where
Cs is the community structure of Gs ) given the constrain that any
algorithm at any discrete time step can only utilize the information
of last arrivedH (<< V , n) nodes (which is maintained in a buffer).

Algorithm 1: ComPAS: A Community Preserving Sampling

Algorithm for Streaming Graph

Data: S : Graph stream, n : Sample size, α : Initial fraction of nodes inserted, nd : size of the buffer,Alдo : a
community detection algorithm

Result: Sampled subgraphGs (Vs , Es ),Cs
1 InitializeGs :Vs = ϕ , Es = ϕ
2 Create an empty bufferH of size nd
3 Initialize bufferH:Hc = ϕ ,Hp = ϕ
4 f laд = 1, t = 0

5 for et in the graph stream S do
6 et = {u, v }

7 if |Vs |n < α ∧ et < Es then
8 Vs = Vs ∪ u ∪v
9 Es = Es ∪ et

10 Continue;

11 else if flag==1 then
12 RunAlдo onGs and detect community structureCs
13 f laд=0

14 else if u, v ∈ Vs then
15 Vs , Es , Cs = BothinSample (u, v, et , Vs , Es , Cs )

16 else if u, v < Vs ∧ u, v ∈ H then
17 H = NodeinBuf f er (u, H)
18 H = NodeinBuf f er (v, H)

19 else if u ∈ Vs ∧v < Vs ∧v ∈ H then
20 H = NodeinBuf f er (v, H)

21 else if u ∈ Vs ∧v < Vs ∧v < H then
22 Vs , Es , Cs , H = NodeisN ew (v, u, Vs , Es , H, Cs )

23 else if u < Vs ∧ u ∈ H ∧v < Vs ∧v < H then
24 Hc (u) = Hc (u) + 1
25 Vs , Es , Cs , H = NodeisN ew (v, u, Vs , Es , H, Cs )

26 else if u, v < Vs ∧ u, v < H then
27 Vs , Es , Cs , H = NodeisN ew (u, v, Vs , Es , H, Cs )
28 Vs , Es , Cs , H = NodeisN ew (v, u, Vs , Es , H, Cs )

29 t = t + 1

30 returnGs ,Cs

4 PROPOSED ALGORITHM: COMPAS
We propose ComPAS, aCommunity Preserving samplingAlgorithm

for Streaming graphs. ComPAS aims at sampling a streaming graph in

such a way that its underlying community structure is preserved in

the sample (Algorithm 1 and Figure 1 respectively present a pseudo-

code and a toy example). The algorithm attempts to identify the

high fidelity nodes (nodes with high degree and high clustering

coefficient) and suitably determine the communities to which they

belong.

Description of the algorithm:To start with, ComPAS keeps adding
streaming edges (nodes) into the sample Gs as long as a certain

number of nodes (α ·n, α < 1) are inserted (lines 7-10). This consti-

tutes the warm-up knowledge for the structure. Once the threshold

is reached, a pre-selected community detection algorithm Alдo is
run on Gs to obtain the initial community structure (line 12).
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Subsequent dynamics: Henceforth, once an edge et is picked up

from the stream, ComPAS inserts et into a bufferH (size nd ) which
consists of the two variables –Hc andHp .Hc counts the number

of times a node is encountered till that time
2
, andHp keeps track of

the current parent of a node (i.e., the node with which it arrived last).

This presents a crude estimation of the importance of the node, since

a recurrently occurring node is probably more important compared

to a node occurring only intermittently. The idea is inspired by the

reservoir sampling technique introduced in [4]. Once the bufferH

is full, the insertion activity triggers some chain reactions which

are different at the two specific phases (a). when the size of Gs is

between α · n and n - any incoming new node triggers the entry of

a node(x ) and corresponding edge (P(x), x ) from buffer to Gs and

(b). when Gs has already reached n - at that point a node has to be

removed from Gs to insert the incoming node (x ) from buffer. We

eliminate the node with least degree and clustering coefficient thus

ensuring progressive inclusion of high-fidelity node.

Genesis of the six modules of ComPAS: Considering differently,
for an incoming streaming edge et = {u,v}, each endpoint (u,v)
could be (i) a new node, (ii) present in the buffer or (iii) present

in the partially constructed sample graph Gs . Depending on the

current position ofu andv , one of the six conditions is encountered
which are consequently handled by the six submodules - (1) both

endpoints are present in the sample, (2) both are in buffer, (3) one

is in sample while the other is in buffer, (4) one is in sample while

the other is new, (5) one is in buffer while the other is new and (6)

both are new. We elaborate on the submodules next.

(i) Both u and v are present in the Graph Gs : When both u,v

are in Vs , BothinSample() (see Function 1) is called from line 15 of

Algorithm 1. The aim of this module is to place the edge in such a

way that themodularity of the evolving sample graph (Gs ) improves.

Vis-a-vis the existing community structure, the edge et can be (a).

an intra-community edge (totally inside a single community) or (b).

an inter-community edge (connecting two communities C(u) and
C(v)).

In case of an intra-community edge (edge {b,d} in Figure 1),

addition of et increases modularity of the community according

to Proposition 1
3
. Moreover, we also know from Proposition 2

that splitting of current community on addition of a new intra-

community edge does not increase modularity [37]. Therefore we

leave Cs in its current form without any modification.

Proposition 1. Addition of an edge to a community c ∈ C , in-
creases its modularity if Dc ≤ M − 1 (whereM = |E | and Dc is total
degree of all the nodes c ).

Proposition 2. Addition of any intra-community edge into a
community c ∈ C would not split into smaller communities.

In case of et connecting two different communities (edge {b, f }
in Figure 1), three possibilities may arise -

(i) u may leave its current community and join v’s community, (ii)

v may leave its current community and join u’s community and (iii)

u and v may leave their current communities and together form a

new community. In addition, if the community membership of u (or

v) is changed, this can also pull out its neighbors to join with it, and

2
In streaming graph, an edge might appear multiple times in the stream.

3
Detailed proofs of the proposition can be found in section 11

Figure 1: Toy example depicting various conditions handled
by ComPAS when a streaming edge arrives.

some of the neighbors might eventually want to change their mem-

berships as well [27]. To decide we first calculate ∆Q(u,C(u),C(v))
(where ∆Q(x ,C(x),C(y)) indicates the change in modularity after

assigning x from C(x) to C(y)) (case (i)), ∆Q(v,C(v),C(u)) (case
(ii)) and ∆Q({u,v}, {C(u),C(v)},C∗) (u and v change their current

communities to form a new communityC∗, case (iii)) and select the
case where the change in modularity is maximum. Consequently

we let the neighbors (of the node whose community membership

is altered by the above action) decide their best move in the similar

way. This continues recursively (neighbors of neighbors) until the

modularity stabilizes or decreases.

Function 1: BothinSample(u, v, et , Vs , Es , Cs )
1 if Cs (u) == Cs (v ) then
2 Es = Es ∪ et

3 else
4 if ∆Q (u, Cs (u), Cs (v )) < 0 ∧ ∆Q (v, Cs (v ), Cs (u)) <

0 ∧Q ({u, v }, {C (u), C (v )}, C∗) < 0 then
5 returnVs , Es , Cs

6 else
7 w = arдmax {∆Q (u, Cs (u), Cs (v )), ∆Q (v, Cs (v ), Cs (u)),
8 Q ({u, v }, {C (u), C (v )}, C∗)}
9 Movew to a new community and updateCS

10 for t ∈ N (w ) do
11 Let t decide its own community UpdateCs

12 returnVs , Es , Cs

Function 2: NodeinBuf f er (u, H)
1 Hc [x ] = Hc [x ] + 1
2 returnH

(ii) Both u and v are in buffer: The only action (lines 16 - 18 of

Algorithm 1) taken is that in the buffer H , Hc entries of u and

v are incremented by 1 which is achieved through the function

NodeinBu f f er () (executed twice with u and v). Example: (edge

{k,n} in Figure 1).

(iii) u is in sample and v is in buffer: In this case (edge {d, i} in

Figure 1) also the only action (lines 19 - 20 of Algorithm 1) taken is

that in the buffer H , Hc entry of v is incremented by 1 which is

implemented through the function NodeinBu f f er ().
Entry of a new node: In the three subsequent cases, at least one

node is neither present in the buffer or the sample (new). This

node triggers a rearrangement, whereby, another selected node

is removed from the buffer to make space for the new node, and

this selected node is inserted into the graph sample Gs which fur-

ther triggers a rearrangement of the sample in case it has already

reached its size limit (n). The function NodeisNew() is invoked
to accomplish this task. The rearrangements that take place are

described next.
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Remove node from buffer: This is triggered whenH is full and in

order to make room for the new node one of the existing nodes need

to be removed fromH . To this aim we preferentially remove x from

H based on the counts inHc with the additional constraint that

P(x) is present in Gs . We add node x and edges {P(x),x }, into Gs .

This is achieved by executing the functionRemoveNode f romBu f f er ().
Selection of node for removal from Gs : Insertion of a node into

Function 3: RemoveNodef romBuf f er (H, Vs , Es , Cs )
1 Choose x preferentially fromH P(x ) ∈ Vs
2 Remove x fromH

3 Inser tNodeinSample (x, P(x ), Vs , Es , Cs )
4 returnH, Vs , Es , Cs

Vs (obtained in the previous step), necessitates the removal of an

existing node from the sample (Vs ) to make space for the new

entry. Nodes with the lowest degree in Gs are candidates for dele-

tion. Among these candidate nodes the one (say x ) with the lowest

clustering coefficient is then removed from the Gs to allow inser-

tion of a new node (selected in the previous step). Subsequently,

all the edges incident on x are removed from Gs . The function

CheckResizeSample() implements this task. Finally, the selected

node (x ) is inserted intoVs utilizing the function InsertNodeinSample(),
whereby, an edge (x ,P(x)) is added toVs and x is assigned the com-

munity of P(x).

Function 4: CheckResizeSample(Vs , Cs , n,m)
1 if Vs == n then
2 Removem nodes say, u

1
, u

2
, · · · , um (and all their adjacent edges) fromGs having lowest degree

and clustering coefficient

3 for u ∈ {u
1
, u

2
, · · · , um } do

4 Cs ← CommunityAf terNodeRemoval (u, Cs )

5 returnVs , Es , Cs

Function 5: Inser tNodeinSample(x, P(x ), Vs , Es , Cs )
1 Vs , Es , Cs = CheckResizeSample (Vs , Es , Cs , n, 1)
2 Vs = Vs ∪ x
3 Es = Es ∪ {x, P(x )}
4 Cs (x ) = Cs (P(x ))
5 UpdateCs returnVs , Es , Cs

Adjust communities after removing a node: Deletion of a nodemight

keep the previous community structure unchanged, or break the

community into smaller parts, or merge several communities to-

gether. The community structureCs is adjusted usingCommunity−
Af terNodeRemoval() (Function 6) incrementally. In the extreme,

removal of a node might render the community disconnected or

broken into smaller parts which might further merge to the other

existing communities [27]. Here we utilize the clique percolation

method [28] to handle this situation. In particular, when a vertex

v is removed from a community C , we place a 3-clique on one of

its neighbors and let the clique percolate until no vertices in C are

discovered. Nodes discovered in each such clique percolation will

form a community. We repeat this clique percolation from each

of v’s neighbors until each member in C is assigned to a commu-

nity. For example, in Figure 2 when node д is removed, we place a

3-clique on its neighbor a. Once the 3-clique starts percolating, it
accumulates all nodes except f . Therefore, two new communities

{a,b, c,d, e} and { f } emerge due to the deletion of д. In this way,

we let the remaining nodes of C choose their best communities to

merge in.

We now proceed to discuss the remaining cases.

(iv) u is in sample and v is new: In this case (handled by lines

Function 6: CommunityAf terNodeRemoval (u, Cs )
1 Assume node u and its adjacent edges are removed fromGs
2 i = 1

3 while N (u) , ϕ do
4 bi =Nodes found by a 3-clique percolation onv ∈ N (u)
5 if bi == ϕ then
6 bi = {v }

7 Cs = Cs ∪ bi
8 N (u) = N (u) \ bi
9 i = i + 1

10 UpdateCi
11 returnCs

Figure 2: Illustrative example of 3-clique percolation. Once
node д is removed, a 3-clique is placed on node a. The clique
percolates and accumulates all the nodes except node f
which forms a singleton community along with {a,b, c,d, e}.

21 - 22 in Algorithm 1) v is inserted into the buffer H if H is

not full. Otherwise its insertion triggers rearrangements ofH and

subsequently Vs . We use NodeisNew() to accomplish this task.

(v) u is in buffer and v is new: In this case (edge {m,p} in Figure

1), we increment the counter corresponding to u and attempt to

insert v intoH using the function NodeisNew().

Function 7: NodeisN ew (u, v, H, Vs , Es , Cs )
1 if H is full then
2 RemoveNodef romBuf f er (H, Vs , Es , Cs )

3 Insert u inH

4 Hc [u] = 1

5 Hp [u] = v
6 returnH, Vs , Es , Cs

(vi) Both u and v are new: In this case we attempt to insert both

u and v to the buffer by executing the function NodeisNew().
Summarizing, the algorithm continuously increases the propor-

tion of high fidelity nodes and improves the community structure

by the following actions – (a) delaying the insertion of a node to

the sample allows for determining the importance of a node.

(b) removal of low clustering coefficient nodes from the sample

ensures that only nodes with high clustering coefficient constitute

the final Gs .

(c) since all the actions are aimed at improving modularity at every

iteration, the final Gs potentially will have well-separated commu-

nity structure.

5 EXPERIMENTAL SETUP
In this section, we outline the baseline sampling algorithms and

the datasets used in our experiments.

Sampling algorithms:We compare ComPASwith five existing sam-

pling methods: (i) Streaming Node (SN) [4], (ii) Streaming Edge

(SE) [4], (iii) Streaming BFS (SBFS) [4], (iv) PIES [4], and (v) Green
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Table 1: Datasets used for evaluation.

Dataset Facebook arxiv hep-th Youtube Dblp LFR

# Nodes 63,731 22,908 1,134,890 317,080 25,000

# Edges 817,035 2,444,798 2,987,624 1,049,866 254,402

Algorithm (GA) [33]. The first four algorithms are exclusively de-

signed for streaming graphs while the last one is designed for static

graphs. Note that unlike ours, none of the existing methods explic-

itly produce a community structure as a by-product of the sampling,

and thus one needs to execute community detection algorithm sep-

arately on the sample to obtain the community structure. Therefore

to evaluate the competing methods w.r.t how the underlying com-

munity structure in the sample corresponds to that of the original

graph, for SN, SE, SBFS and PIES we run the Louvain algorithm [5]

4
on each individual sample and detect the communities. In case of

GA, we consider the aggregated graph and run GA to obtain the

sample, and further run Louvain algorithm on the sample to detect

the community structure. Note that although the use of aggregated

graph allows GA to leverage considerably more information about

the graph structure, we use it as a strict baseline in this study.

Datasets:Weperform our experiments on the following five graphs

(the first two are streaming and last three are static):

(i) Facebook5: An undirected graph where nodes (63,731) are users,

and edges (817,035) are friendship links that are time-stamped.

(ii) arxiv hep-th6: Here nodes (22,908) are authors of arXiv’s High
Energy Physics papers and an edge exists between two authors if

they have co-authored a paper; edges (2,444,798) are time-stamped

by the publication date.

(iii) Youtube7: Here nodes (1,134,890) represent Youtube users and
edges (2,987,624) represent friendship.

(iv) dblp8: This dataset consists of authors indexed in DBLP. The

graph is same as arxiv hep-th (317,080 nodes and 1,049,866 edges).

(v) LFR [19]: This is a synthetic graph with underlying community

structure implanted into it. We construct the graph with 25,000

nodes, 254,402 edges and 1,834 communities.

Since the last three graphs are static, we consider that each edge

arrives in a pre-decided (random) order, i.e., each edge has a (dis-

crete) time of arrival. The edge ordering, as we shall see, does

not influence the inferences drawn from the results (Section 6).

Moreover, since the first four graphs do not have any underlying

ground-truth community structure, we run Louvain algorithm on

the aggregated graph and obtain the disjoint community structure.

This community structure is the best possible output that we can

expect from our incremental modularity maximization method, and

therefore serves as the ground-truth. The details of the datasets are

summarized in Table 1.

6 EVALUATION
In this section, we list the standard metrics used to evaluate the

goodness of the community structure, followed by a detailed com-

parison of the sampling algorithms.

4
We also considered other algorithms (CNM [6], GN [12] and Infomap [31]) and found

the results to be similar.

5
konect.uni-koblenz.de/networks/facebook-wosn-links

6
konect.uni-koblenz.de/networks/ca-cit-HepTh

7
snap.stanford.edu/data/com-Youtube.html

8
snap.stanford.edu/data/com-DBLP.html

Evaluation criteria:Tomeasure how sampling algorithms capture

the underlying community structure, we evaluate them in twoways.

First we measure the quality of the obtained community structure

based on the topological measures defined by [36]. In particular,

we look into four classes of quality scores - (i) based on internal
connectivity: internal density (ID), edge inside (EI), average degree

(AD), fraction over mean degree (FOMD), triangle participation

ratio (TPR); (ii) based on external connectivity: expansion (EX), cut

ratio (CR); (iii) combination of internal and external connectivity:
conductance (CON), normalized cut (NC), maximum out-degree

fraction (MODF), average out-degree fraction (AODF), flake out-

degree fraction (FODF); and (iv) based on graph model: modularity

(MOD). Note, for every individual community we obtain a score,

and therefore a distribution of scores (i.e., distribution of ID, EI

etc.) is obtained for all the communities of a graph. We measure

how similar (in terms of Kolgomorov-Smirnov D-statistics9) these
distributions are with those of the ground-truth communities. The
lesser the value of D-statistics, the better the match between two
distributions.
Parameter estimation: As reported in Section 4, ComPAS consists

of two parameters: (i) α (initial fraction of nodes inserted), (ii)

nd (length of the buffer). We observe that D-statistics is initially
high and reduces as we increase α (Figures 3(a)). For low α , the
community structure obtained initially by running a community-

detection algorithm (line 12 in Algorithm 1) is coarse. For larger

values of α even though initial community structure obtained is

good, it is not allowed to evolve much. Similarly, in Figure 3(b),

given a small buffer size several nodes mostly arriving once would

be added to the sample leading to formation of pendant vertices.

As we increase the buffer size ComPAS performs better till a certain

point, after which the improvement is negligible. Since we are

constrained by space, we fix nd at 0.0075n. Similarly α is set to
0.4. We also set n to 0.4|V | as default (see Section 6 for different

values of n). Further note that apart from Louvain we also consider

other algorithms (CNM [6], GN [12] and Infomap [31]) for obtaining

the initial community structure. The average D-statistics values
(calculated for LFR) across all the quality scores for Louvain, CNM,

GN and Infomap are respectively 0.182, 0.191, 0.216 and 0.197 .

Above results indicate that the quality of the initial communities

are largely independent of the algorithm used. So we stick to the

most popular one - Louvain for evaluation.
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Figure 3: AverageD-statistics value across all the topological
measures for various values of α and nd .

Since the nodes are labeled, as a second level of evaluation, we

use the community validationmetrics – Purity [26], Normalized

9
It is defined as D =maxx { |f (x )− f

′
(x ) | } where x is over the range of the random

variable, and f and f
′
are the two empirical cumulative distribution functions of the

data.
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Table 2: Summary of the D-statistics (the lower, the better) values of the topological measures for all the datasets. For Youtube
we present all the results, while for the rest we provide the average D-statistics and standard deviation (SD). Detailed results
on other datasets can be found in [1]. ComPAS truns out to be the second best algorithm after GA (the most informed static
graph sampling algorithm for which the sample is obtained from the aggregated graph and Louvain is run on the sample,
thus serving as the strict baseline). Top two values for each average result is highlighted.

Algorithm

Youtube Facebook dblp LFR hep-th

ID EI AD FOMD TPR EX CR CON NC AODF MODF FODF MOD Avg,SD Avg,SD Avg,SD Avg,SD Avg,SD

ComPAS 0.063 0.051 0.078 0.057 0.227 0.082 0.054 0.091 0.260 0.073 0.201 0.121 0.052 0.10,0.07 0.17,0.09 0.16,0.10 0.18,0.06 0.10,0.03
SN 0.164 0.171 0.471 0.061 0.542 0.581 0.112 0.265 0.064 0.157 0.182 0.092 0.216 0.23,0.17 0.33,0.17 0.29,0.20 0.27,0.07 0.26,0.04

SE 0.257 0.244 0.241 0.501 0.281 0.098 0.287 0.087 0.151 0.097 0.246 0.093 0.198 0.21,0.11 0.27,0.11 0.25,0.14 0.32,0.08 0.29,0.06

SBFS 0.126 0.131 0.172 0.106 0.454 0.145 0.056 0.165 0.045 0.257 0.108 0.076 0.181 0.15,0.10 0.26,0.09 0.24,0.10 0.25,0.09 0.26,0.04

PIES 0.234 0.241 0.252 0.190 0.409 0.042 0.051 0.049 0.061 0.157 0.042 0.053 0.121 0.14,0.10 0.29,0.06 0.24,0.07 0.26.0.05 0.21,0.05

GA 0.156 0.055 0.065 0.053 0.267 0.066 0.076 0.053 0.085 0.150 0.075 0.069 0.102 0.09,0.06 0.12,0.04 0.12,0.06 0.14,0.06 0.08,0.04

Table 3: NMI between the ground-truth and community
structure obtained from individual sampling algorithms for
all datasets.

Dataset ComPAS SN SE SBFS PIES GA
Facebook 0.52 0.34 0.28 0.41 0.48 0.61

hep-th 0.51 0.32 0.21 0.36 0.39 0.68

Youtube 0.72 0.49 0.33 0.58 0.51 0.77

dblp 0.65 0.28 0.21 0.57 0.39 0.69

LFR 0.69 0.29 0.32 0.38 0.31 0.72

Average 0.61 0.34 0.27 0.46 0.41 0.69

Mutual Information (NMI) [7] andAdjusted Rand Index (ARI) [17] to

measure the similarity between the ground-truth and the obtained

community structures. The more the value of these metrics, the higher
the similarity.
Comparison of sampling algorithms: We start by measuring

the similarity between the obtained and the ground-truth commu-

nity structures using topological measures. In Table 2 we summarize

the D-statistics values of all the scoring functions for the Youtube
dataset; for the other graphs we only present the average value (and

standard deviation) across the D-statistics for different topological
measures (detailed results on other datasets can be found in the

[1]). Since GA is specifically designed for static graphs, we simulate

GA on the aggregated network consisting of every edge that has ar-

rived, thereby allowing it more information compared to the other

(streaming) algorithms which never have the whole graph under

consideration. Clearly ComPAS outperforms all the streaming algo-

rithms across different datasets and conceivably GA performs better

than ComPAS as apart from utilizing the whole network structure,

it further utilizes clustering coefficient and Pagerank of each node

to obtain the sample. Further we find ComPAS is the second ranked

algorithm after GA with an average (over all datasets) purity, NMI

and ARI of 0.74, 0.61 and 0.53 respectively (see Table 3 for NMI,

details in [1]). Thus, ComPAS matches the ground truth community

both structurally and in content.

Among the rest of the sampling algorithms PIES performs best as

it is biased towards the high degree nodes but at no point attempts

to maximize modularity or clustering coefficient. The limited ob-

servability of graph structure using a window in case SBFS, renders

it ineffective in properly sampling high fidelity nodes. For SN since

nodes are picked uniformly at random the nodes with low degreee

are shortlisted. Similarly for SE, edges are picked uniformly at

random and is again not inclined to pick nodes with any specific

Table 4: Machine specifications used for experiments.

RAM CPU OS Cores

64 GB

Intel Xeon X5690

@ 3.47 GHZ

Ubuntu 12.04 LTS 24

property. Hence SN and SE perform poorly in the task of preserving

community structure.

Effect of edge ordering and sample size: In this section, we

show that most of our inferences are valid irrespective of any edge

ordering. We randomly pick one pair of edges and swap their ar-

rival time. We repeat it for y% of edges (where y varies between

5 and (as high as) 50) present in each aggregated graph. For each

such ordering we obtain a representative sample (sayGy ) and com-

pare (average D-statistics) with the ground-truth community. In

figure 4(a) we plot the D-statistics value averaged over all the scor-

ing functions for the Youtube dataset. The plot clearly shows that

the edge-ordering affects the final sample marginally (the pattern

is same for other graphs).

Lastly, we present the effect of sample size (n) on the obtained

community structure. We plot average D-statistics values across
all the topological measures for all the algorithms on Youtube (see

others in [1]) as a function of n (Figure 4(b)). As expected, with the

increase of n we obtain better results. Interestingly, for ComPAS and

GA, the pattern remains consistent compared to others. Moreover

as we increase n the divergence between their performance de-

creases.
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Figure 4: Average D-statistics across all the topological mea-
sures for (a) different edge ordering and (b) sample size (n)
of the Youtube graph.

7 COMPLEXITY ANALYSIS
We perform two sets of experiments to determine the scalability of

the algorithm - (i) dependence on stream size (total number of edges

arriving in a single pass of the stream) and (ii) dependence on graph

size (N ). We stress that the complexity of the algorithm is (almost)
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Figure 5: Execution time of ComPAS with increasing (a)
stream size and (b) population size (N ). A linear behavior is
observed.

linear with the size of the stream as at every step we perform cer-

tain local operations (depending on the case encountered) namely

calculating modularity and clustering coefficient (calculated only

for low degree nodes during deletion). As a proof of concept, we

consider an LFR graph with 25000 nodes and generate a sample of

size 7500 with increasing stream sizes. In figure 5(a) we plot the time

required for generating the sample. We note the machine specifica-

tions in Table 4. We observe a linear behavior which corroborates

our hypothesis. We further look into dependence on the size of the

graph as well. In this regard we consider graphs of increasing sizes

and measure the time required to obtain a sample of size 30% of the

population (refer to figure 5(b)). We again observe a linear behavior

for the same machine specifications noted in Table 4. The above

results hence indicate that ComPAS is scalable for large graphs as

well.

8 INSIGHTS
In this section, we present certain micro-scale insights illustrating

why ComPAS outperforms the other algorithms in generating the

community structure.

(i) ComPAS admits high fidelity nodes and improves the mod-
ularity of the sample: We observe how modularity, average clus-

tering coefficient and average degree of the sample change over

time as the edges arrive in a stream (refer to figure 6(a)). All these

factors increase over time. Here we report the results from the point

the sample size (n) is reached for the first time up to the end of the

stream.

(ii) ComPAS retains a large fraction of intra-community edges
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Figure 6: (a) Modularity and average clustering coefficient
of the sample as it evolves over time, (inset) evolution of
average degree of the sample over time.(b) Average degree
of nodes in each bin (total time for streaming is divided
into 500 equi-sized buckets), (inset) fraction of nodes in each
bucket of the sample obtained using ComPAS. The experiment
is performed on Facebook dataset.

ensuring a better community structure: We observe that intra-

community edges in the sample account for ∼ 80% of all the edges

while in the original network the corresponding value is ∼ 67%.

(iii) ComPAS produces a sample that has an edge density which
corresponds highly to the original graph: Note that ComPAS is

node-based, and Gs consists of only those edges which arrive af-
ter their corresponding nodes appear in Gs - hence an efficient

ComPAS would insert the nodes as early as possible. We compare

the number of edges inGs against that in the subgraph (Ĝs ) induced

by the sampled nodes in the original graph. We observe that on

averageGs retains ∼ 71% of the edges of Ĝs . This indicates that the

insertion time of nodes (in Gs ) compared to their first appearance

in the stream is early as Gs is able to retain most of the possible

edges.

(iv) ComPAS samples high fidelity nodes uniformly over the
time stretch: ComPAS samples more high fidelity nodes in time

stretches where such nodes appear more frequently compared to

the other stretches. To this purpose we split the stream into a set

of buckets and a node is placed into a bucket based on the time it

first arrived and calculate the average degree of each bucket (refer

to figure 6(b)). We observe that the average degree drops as we

move from the first toward the subsequent buckets. We then con-

sider the sample obtained from ComPAS and calculate the fraction

of sampled nodes in each bucket (figure 6(b)(inset)). We observe a

similar pattern indicating that ComPAS is not only able to sample

the high degree nodes but the rate of sampling from each is roughly

proportional to the average degree of each bucket.

9 APPLICATIONS OF COMPAS IN ONLINE
LEARNING

In online learning, sometimes memory is limited and it is required

to train the model on limited number of instances. One of the

important problems in learning is to judiciously choose the training

sample set - a random sampling of edges do not produce a good

representative set [34].

We hypothesize that more diverse the chosen set, better would

be the performance. ComPAS is useful in such cases since it tries to

sample from several communities, hence improving the diversity of

the training set. To this end, we consider Wiki-Rfa
10

[35], a stream-

ing signed graph in which nodes represent Wikipedia members

and edges (with time-stamp) represent votes. Each vote is typically

accompanied by a short comment. The task is to predict the vote

(+1, -1) of an incoming edge based on the textual features – (i) word

count, (ii) sentiment value, and (iii) LIWC features of the statement

corresponding to the edge. Moreover, we can use certain extra fea-

tures like whether the edge is an intra or inter community edge, the

average degree and the clustering coefficient of the nodes connected

with an edge etc. to train the model. We allow training instances

to be included till a certain time period t (first 75% of the edges

are allowed to enter) and run the sampling algorithms in parallel.

However not all instances can be considered for training due to the

memory constraint. We assume n, the sample size as the allowed

training size and obtain sampled training set from individual sam-

pling algorithms. The size of the network is 4000 and that of the

sample size is 1200 which is 30% of the population. We train SVM

with linear kernel (see [1] for other classifiers) on each sampled

training set, and predict the labels (votes) of those instances coming

10
https://snap.stanford.edu/data/wiki-RfA.html
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Table 5: Performance of SVMusing the training set obtained
from sampling methods.

ComPAS SN SE SBFS PIES GA

AUC 0.48 0.31 0.25 0.28 0.36 0.53
F-Score 0.61 0.35 0.28 0.31 0.43 0.64

after t . Table 5 shows that GA and ComPAS perform the best in terms

of AUC and F-Score. This once again emphasizes that ComPAS se-
lects most representative training instances for (restricted) online

learning.

10 DISCUSSION
To conclude, we in this paper proposed ComPAS, a novel sampling al-

gorithm for streaming graphs which is able to retain the community

structure of the original graph. Through rigorous experimentation

on real-world and synthetic graphs we showed that ComPAS per-

forms better than four state-of-the-art graph sampling algorithms.

We also stress that the complexity of the algorithm is (almost) linear

with the size of the graph as at every step we perform certain local

operations (depending on the case encountered) namely calculat-

ing modularity and clustering coefficient (calculated only for low

degree nodes during deletion).

One of the important problems in learning is to judiciously

choose the training sample set and in this context, we demonstrated

that ComPAS can be used to shortlist the training sample. We would

like to point out that, although encouraging, these are initial results.

A thorough analysis needs to be done on each individual use-case

before strong (and universal) claims can be advocated - this would

exactly be our immediate future pursuit.

11 APPENDIX
11.1 Proof of propositions
PROPOSITION 1.Addition of an edge to a community c ∈ C , increases
its modularity if Dc ≤ M − 1 (whereM = |E |).

Proof. Recall the formulation of modularity as:

Q (G(V , E), C) =
∑
c∈C

(
mc

M
−

D2

c
4M2
) (1)

where C is the community structure of G,mc is the total number

of edges inside c , Dc is the sum of degree of all the nodes inside a

community c ∈ C , andM = |E | is the total number of edges G.
From Equation 1, we see the contribution of individual commu-

nity c ∈ C in modularity as: Qc =
mc
M −

D2

c
4M2

. where mc is the

number of edges inside c , M is the total number of edges in the

graph, and Dc is the sum of degrees of all the nodes in c .
Addition of a new edge within c , the c’s contribution of modu-

larity becomes:

Q ′c =
mc + 1

M + 1
−
(Dc + 2)

2

4(M + 1)2

So the increase in modularity is ∆Qc = Q
′
c −Qc ,

∆Qc =
4M2 − 4mcM2 − 4DcM2 − 4mcM + 2D2

cM + D
2

c
4(M + 1)2M2

≥
4M2 − 6DcM2 − 2DcM + 2D2

cM + D
2

c
4(M + 1)2M2

≥
(2M2 − 2DcM − Dc )(2M − Dc )

4(M + 1)2M2

≥ 0

The equality holds if Dc ≤ M − 1. This thus implies (2M2 − 2DcM −
Dc ) ≥ 0. This proves the proposition. □

PROPOSITION 2. Addition of any intra-community edge into a
community c ∈ C would not split into smaller communities.

Proof. We will prove this proposition by contradiction. Assume

that once a new intra-community edge is added into c , it gets split
into k small modules, namely X1, X2, ·,Xk . Let DXi and ei j be the
total degree of nodes inside Xi and number of edges connecting Xi
and X j respectively.

Recall that the contribution of Xi in the modularity value is

QXi =
mXi
M −

D2

Xi
4M2

. Before adding the edge, we haveQc ≥
∑k
i=1QXi

(where Qc is the total modularity of community c), because oth-
erwise all Xi s can be split earlier, which is not in this case. This

implies that:

mc
M
−

D2

c
4M2

>

k∑
i=1
(
mXi

M
−

D2

Xi

4M2
)

Since X1,X2, ·,Xk are all disjoint modules of c , Dc =
∑k
i=1 DXi and

mc =
∑k
i=1mXi +

∑
i<j ei j . This further implies that:

mc
M
−

k∑
i=1

mXi

M
>

D2

c
4M2

−

k∑
i=1

D2

Xi

4M2

or, ∑
i<j

ei j >

∑
i<j DXiDX j

2M

Without loss of generality, let us assume that the new edge is

added inside X1. Since we assume that after adding the new edge

into c , it gets split into k small modules, the modularity value

should increase because of the split. Therefore, the new modularity

Q ′c <
∑k
i=1QXi . This implies that

Q ′c <

k∑
i=1

QXi

⇔

∑k
i=1mXi +

∑
i< j ei j + 1

M + 1
−
(
∑k
i=1 DXi+2)

2

4(M + 1)2

<
mX1

+ 1

M + 1
−
(DX1

+ 2)2

4(M + 1)2
+

k∑
i=2
(
mXi
M + 1

−
D2

Xi
4(M + 1)2

)

⇔

∑k
i=1mXi +

∑
i< j ei j + 1

M + 1
−
(
∑k
i=1 DXi+2)

2

4(M + 1)2

<

∑k
i=1mXi + 1

M + 1
−
(DX1

+ 2)2

4(M + 1)2
−

k∑
i=2

D2

Xi
4(M + 1)2

⇔
∑
i<i

ei j <

∑k
i=1 DXi − 2DX1

+
∑
i< j DXiDX j

2(M + 1)

Since

∑k
i=1 DXi − 2DX1

< 2M , this implies that∑
i< j DXiDX j

2M
<

∑
i< j

ei j <

∑k
i=1 DXi − 2DX1

+
∑
i,j DXiDX j

2(M + 1)

<

∑
i< j DXiDX j

2M
+ 1

Therefore, the proposition holds. □
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