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ABSTRACT
We introduce an axiomatic solution concept for generalized non-
cooperative games called the generalized N&K value. It is applied
as a mechanism for determining appropriate financial transfers
over DC optimal power flow (DC-OPF) instances in an electrical
network. The generalized N&K value rewards network participants
in proportion to the competitive position of the coalitions that
they could be part of. In this way it reflects the relative bargaining
powers of the electrical network participants.
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1 INTRODUCTION
For an electrical network, what electrically-feasible power flow and
budget-balanced financial transactions should occur between the
network participants when they each have different preferences?
This is a long-standing question.

A well known approach is called locational marginal pricing
(LMP), under which real-time prices vary between locations/areas
in the network in proportion to the marginal cost of the electricity
supplied to the location/area. This measure reflects the cost of
network transmission losses and congestion factors [9–11]. LMP
is grounded in the marginalist principle of economics, which is
readily observed in large markets. However when the electrical
interactions between individual participants are strongly coupled,
it is not obvious that such a principle provides a sensible description
of either a natural or an idealized market.

In many real-world settings there is a strategic interaction be-
tween electricity network participants. As such, we turn to game
theory to analyze the setting and develop a more appropriate mar-
ket pricing rule [7, 12]. We derive a novel solution concept called
the Generalized Neyman and Kohlberg value, or GNK value for short,
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from four suitable axioms. This new solution concept stems from
comparing the relative bargaining positions of coalitions of players
in the context of a generalized non-cooperative game.We show how
it defines a mechanism that allocates payments between network
participants proportional to their competitive position for mone-
tary compensation within an electricity network, and we present a
method for calculating it for networks under DC-approximation.

The main contributions of this paper are:
• We derive and justify the GNK value, by extending the ‘the
Value’ concept to the space of generalized games,

• We present a solution method for calculating the GNK value
with linear action-space constraints and convex player pref-
erences (suitable for DC approximated networks)

This paper is not about finding a point of optimal control between
consumers, prosumers, devices etc. [1, 2, 8], but rather about devel-
oping a method of determining economically reasonable payments
between such agents about this point, in an electrical network.

2 DERIVING THE GNK VALUE
There have been many attempts to answer the question of what co-
operative outcome should occur in the context of a non-cooperative
TU game. One well known answer is the Nash bargaining solution
between two players [6], which Harsanyi [4] extended to arbitrary
numbers of players when game payoffs are transferable. Harsanyi’s
solution was derived from a simple set of axioms by Neyman and
Kohlberg (N&K) [5]; our derivation mirrors the steps in theirs.

We consider N&K’s coalitional game of threats which is defined
by a pair d = ⟨N ,v⟩ where:

• N = {1, . . . ,n} is a finite set of players or agents, and
• v : 2N → R is a characteristic function or ‘threat’ with

v(S) = −v(N \ S) ∀S ⊆ N .

N&K’s key result was to prove that if D is the set of all such
games, then there exists a unique mapping ψ : D → Rn that
satisfies the following four axioms:

• Efficiency:
∑
i ψ (⟨N ,v⟩)i = v(N )

• Symmetry: If two players i and j are substitutes, such that:
if v(S ∪ i) = v(S ∪ j) ∀S ⊆ N \ {i, j},
thenψ (⟨N ,v⟩)i = ψ (⟨N ,v⟩)j

• Null Player: If a player i is a null player
(i.e. v(S ∪ i) = v(S) ∀S ⊆ N ) thenψ (⟨N ,v⟩)i = 0

• Additivity: for any v1 and v2 that:
ψ (⟨N ,v1 +v2⟩) = ψ (⟨N ,v1⟩) +ψ (⟨N ,v2⟩)
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Letting agent i’s element ofψ be denoted byψi , this mapping is:

ψi (⟨N ,v⟩) =
1
n

n∑
k=1

vi,k =
1
n

n∑
k=1

1(n−1
k−1

) ∑
S :i ∈S
|S |=k

v(S) (1)

where vi,k is the average value of v(S) for all coalitions of size k
that include i .

We define the threat or the advantage of a coalition v(S), in the
context of a generalized non-cooperative game, which is a game
where the strategies available to one player may be restricted by
the strategy choice of others. A generalized non-cooperative game
consists of a triplet G = ⟨N ,A,д⟩ in which:

• N = {1, . . . ,n} is a finite set of players,
• A ⊆ ∏

i ∈N Ai is a set of all possible joint strategies, where
Ai denotes the set of strategies of player i ∈ N , and A is a
subset of their product space,

• {ui (a) : A → R}i ∈N is a set of functions of payoffs to the
players when joint strategy a ∈ A is executed.

We define the payoff “threat” or “advantage” of a coalition S ⊆ N
in this context (letting AS =

∏
i ∈S A

i ), taking into account the
constraints that apply to the joint action space as:

v(S) = 1
2

max
x ∈AS

s.t.∃y,(x,y)∈A
min

y∈AN \S

s.t.(x,y)∈A

©«
∑
i ∈S

ui (x ,y) −
∑

i ∈N \S
ui (x ,y)

ª®¬
+

1
2

min
y∈AN \S

s.t.∃x,(x,y)∈A
max
x ∈AS

s.t.(x,y)∈A

©«
∑
i ∈S

ui (x ,y) −
∑

i ∈N \S
ui (x ,y)

ª®¬ (2)

Where (x ,y) ∈ A Denotes a partition of the joint action between
two coalitions S and N \ S respectively.

The expression in (2) represents the expectation of the competi-
tive advantage (or threat) that a coalition has over its complement in
a generalized strategy space under a fair coin-toss of who chooses
their strategies first. The formulation ofψ , per (1), with this char-
acteristic function (2) is our GNK value. It is a novel extension of
existing work to the space of generalized games.

2.1 How the GNK value applies to networks
The players with payoffs and strategies can be interpreted as net-
work participants with quantifiable utilities and electrical actions.
As v(N ) = maxa∈A(

∑
i ∈N ui (a)) represents the maximum achiev-

able sum utility that the network participants can achieve1, the
GNK value ψ splits this amount between the participants by the
efficiency axiom. The participants execute electrical actions that
achieve this maximal sum, and ψ is implemented by executing
required (budget balanced) financial transfers.

3 GNK VALUE FOR DC POWER FLOWS
An electricity network of consumption/generation between partici-
pants under DC-approximation can be modeled as a generalized
game. Hence the GNK value can be applied to this game and we
give the details of a computational method used.

We consider an electrical network to have a set of buses B with
power consumption at each bus pi and voltage phase-angle θi
1calculating v(N ) is an OPF problem as there are no variables to minimize over in (2)

(for all i ∈ B). The buses are connected by lines C ⊆ B × B with
susceptancebi, j and power flowpi, j (power from i to j , for (i, j) ∈ C ,
and with pi, j = −pj,i ). In this context, DC power-flow constraints
are expressed as follows [3]:

Variables: pi (i ∈ B), θi (i ∈ B), pi, j ((i, j) ∈ C)

constraints:
pli ≤ pi ≤ pui pi, j = −bi, j (θi − θ j ) ∀(i, j) ∈ C

pli, j ≤ pi, j ≤ pui, j pj =
∑
(i, j)∈C pi, j ∀j ∈ B

(3)
Where pli , p

u
i , p

l
i, j , p

u
i, j are the upper and lower bounds on power

consumption/generation and line limits respectively. We eliminate
redundant variables (the θi andpi, j ) and to ease presentation we use
the functions h and д to represent the resulting linear constraints:

Variables: pi (i ∈ B)
constraints: hj (p1,p2, . . . ) = 0 ∀j дk (p1,p2, . . . ) ≤ 0 ∀k (4)

The participants on each bus are treated as individual players in
a game (i.e. N = B), and the power consumption of that bus is the
respective player’s strategy space (i.e. Ai = [pli ,p

u
i ]). Hence the DC

constraints (equations 3 or 4) define the space of jointly executable
strategies (generalized strategy space A). We assume that there is a
utility (or payoff) associated with the power consumption for each
player, ui (pi ), Hence the situation is as a generalized game.

Since the GNK value is quite difficult to solve directly, we refor-
mulate (2) to be more amenable to standard optimization software
by transforming the inner maximization/minimization constraints
into KKT conditions. We replaced the constraint (x ,y) ∈ A with
the constraint that the (x ,y) satisfy the conditions for local min-
ima/maxima (i.e. that they be KKT points) in the same space: 2

2v(S) =max
pi
i ∈S


(∑i∈S ui (pi )−

∑
i<S ui (pi ))

s.t.∀i<S − dui
dpi
=
∑
j (λhj

∂hj
pi

)+∑k (λдk
∂дk
pi

)
∀j hj (p1,p2, ... )=0

∀k (1−Zk )λ̄дk ≥λдk ≥0
∀k дkZk ≤дk (p1,p2, ... )≤0


+

min
pi
i<S


(∑i∈S ui (pi )−

∑
i<S ui (pi ))

s.t.∀i ∈S dui
dpi
=
∑
j (λhj

∂hj
pi

)+∑k (λдk
∂дk
pi

)
∀j hj (p1,p2, ... )=0

∀k (1−Zk )λ̄дk ≥λдk ≥0
∀k дkZk ≤дk (p1,p2, ... )≤0



(5)

Where λ̄дk and дk are the estimated upper and lower bounds
on the KKT multipliers and constraint function respectively. This
reformulation is amenable for calculation by optimization solvers
and has been used to calculate the GNK value for DC networks.
Where it has been demonstrated that the GNK value:

• Doesn’t feature discontinuous congestion prices, unlike LMP;
• Is always budget balanced, unlike LMP.

However:
• It is significantly more difficult to compute than LMP;
• It is not incentive compatible (nor is LMP).

2By doing this we tacitly we assume that ui (pi ) is continuously differentiable, and sat-
isfy some regularity conditions. Furthermore the constraints under DC-approximation
are linear and hence define a convex polygon and if we assume that the functions
ui (pi ) are weakly-concave then any of the KKT points will be equal in value to the
global minima (or maxima). Hence the inner maximization (or minimization) over the
KKT points can be ignored
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