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ABSTRACT
In this paper, we undertake the challenging task of uncovering

independencies of public-health behavioral data on populations’

vaccination rates collected by government officials in the United

States. We use computational game theory to model such data as

the result of distributed decision-making at the reported granular-

ity level (e.g., nations and states). To achieve our task, we posit

the view of aggregated behavioral data as jointly randomized, or

mixed, strategies of multiple agents. We propose a novel general

machine-learning approach to learn game-theoretic models within a

given hypothesis class of games from any potentially noisy dataset

of mixed strategies. We illustrate our framework using publicly

available data on vaccination rates in the continental USA.
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1 INTRODUCTION
The USA’s Center for Disease Control and Prevention (CDC) collects
and reports aggregate data about vaccination rates, along with stan-

dard deviations, for each state yearly. Each vaccination percentages

represent the state-wide behavior of the people living in the State.

Alternatively, we can view each state’s vaccination percentage as a

proxy measure of the state government’s achievement from effort

to raise its population vaccination rate for some disease or epidemic

(e.g., influenza and Ebola). We can view those vaccination rates of

the states as the joint-behavior of the states (i.e., the outcome of

their efforts). Given these state vaccination probabilities, we want to

understand how the epidemic vaccination decisions of the states af-

fect each other by modeling the strategic interaction as vaccination

games or α-IDS games (defined in Section 3).

Contribution, Related Work, and Preliminary. We view these prob-

abilities collectively as possibly approximate mixed-strategy Nash

equilibrium (MSNE) to account for noises.We (1) propose a machine

learning (generative) framework to learn a game given behavioral

data; (2) use our framework to derive a heuristic to learn α-IDS
games given the CDC vaccination data; and (3) experimentally show

that our framework is effective for learning α-IDS games.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

The closest work to ours is that of Honorio and Ortiz [12], in

which they provide a general machine-learning framework to learn

the structure and parameters of games from discrete behavioral

data (e.g., “Yes/No"-type responses). Moreover, they demonstrate

their framework on learning some classes of games. We refer the

reader to the related-work section of Honorio and Ortiz [12] for a

more detailed discussion. For brevity, all other previous methods

assume that the actions and payoffs are observable in the data

[5–7, 10, 15–17] while others are interested in predicting future

behavior from the past behavior (system dynamics) [13, 18].

We refer the reader to [9] for an introduction to basic concepts

in game theory. Let V = {1, 2, ...,n} be a set of players/agents. For
each i ∈ V , let Ai be the set of actions/pure-strategies available to i ,
andA = ×i ∈VAi the set of joint-actions/joint-pure-strategies. Denote
by ui : A→ R the payoff of i for each joint-action in A. Similarly,

let Xi be the set of mixed-strategies of i , and X ≡ ×i ∈VXi be the
set of joint-mixed-strategies, which is a probability simplex over Ai .
Given the context of this paper and the application domain (i.e., the

CDC dataset), we assume that Ai = {0, 1} for all i , so that we can

represent Xi = [0, 1], and interpret each xi ∈ Xi as the probability
that agent i plays ai = 1. We also assume that for all i , the maximum

and minimum payoff value of ui is 1 and 0, respectively. We denote

the set of all ϵ-MSNE of a gameG asNEϵ (G). A 0-MSNE is an exact
MSNE, which always exists for any non-cooperative game [14].

We refer the readers to the authors’ webpages for the full version.

2 A FRAMEWORK TO LEARN GAMES
Motivated in part by the CDC data, we propose a generative model

of behavioral data over the set of mixed-strategy (as in [12]). Let

µ be the Borel measure. (See [1] for an introduction to measure-

theoretic concepts.) More formally, the probability density function
(PDF) f for the generative model with parameters (q,G, ϵ ) over the
hypercube of joint-mixed-strategies [0, 1]n is

f(q,G,ϵ ) (x ) ≡ q
1[x ∈ NEϵ (G)]

µ (NEϵ (G))
+ (1 − q)

1[x < NEϵ (G)]

1 − µ (NEϵ (G))
, (1)

for all x ∈ [0, 1]n . The below lemma shows Eqn. 1 is well-defined.

Lemma 2.1. The set NEϵ (G) is Borel µ-measurable for any game
G and any ϵ ≥ 0. For any ϵ > 0, we have µ (NEϵ (G)) > 0

For Eqn. 1 to be valid, if ϵ = 1 or NEϵ (G) = [0, 1]n , then we

impose q = 1.

Learning Games via Maximum-Likelihood. We present a way to

infer games from behavioral data on mixed strategies. Let πϵ (G)
be the true proportion of ϵ-MSNE in the game G where πϵ (G) ≡

µ (NEϵ (G)) . Given a dataset D = {x (1) , ...,x (m) }, where each
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x (l ) ∼ fq,G,ϵ , i.i.d., let π̂
ϵ (G) be the empirical proportion of ϵ-MSNE:

π̂ϵ (G) ≡ 1

m
∑m
l=1 1

[
x (l ) ∈ NEϵ (G)

]
. We denote the Kullback-

Leibler (KL) divergence between two Bernoulli distributions with

parameters p1,p2 ∈ (0, 1) by KL(p1∥p2).

Proposition 2.2. (Maximum-likelihood Estimation) The tu-
ple ( ˆG, q̂, ϵ̂ ) is a maximum likelihood estimator (MLE), with respect
to dataset D, for the parameters of the generative model f(q,G,ϵ ) ,

as defined in Eqn. 1 if and only if (iff) q̂ = π̂ ϵ̂ (Ĝ), and (Ĝ, ϵ̂ ) ∈
arg max(G,ϵ ) KL(π̂

ϵ (G)∥πϵ (G)) .

Dealing with πϵ (G) directly would require us to compute all ϵ-
MSNE of G; computing only one ϵ-MSNE is PPAD-hard in general

[3, 4]. The following lemma provides bounds on the KL divergence.

Lemma 2.3. Given a game G with 0 < πϵ (G) < π̂ϵ (G) and
µ (NEϵ (G)) ∈ (0, 1), we have
−π̂ ϵ (G) log π ϵ (G) − log 2 < KL(π̂ ϵ (G) ∥π ϵ (G)) < −π̂ ϵ (G) log π ϵ (G) .

From the above, it is easy to see that when πϵ (G) is “low enough,”

we can obtain an approximation to the MLE by simply maximizing

π̂ϵ (G) only: i.e., arg maxG KL(π̂ϵ (G)∥πϵ (G)) ≈ arg maxG π̂
ϵ (G).

3 APPLICATION: GENERALIZED IDS GAMES
In α-IDS games [2] with n state-agents, each state-agent i deter-
mines whether or not to invest in protection (against epidemics).

We denote ai = 1 if i invests and ai = 0 if i does not invest and let

xi be the probability that ai = 1. We let x = (x1, ...,xn ) to be the

joint-mixed strategy profile of all agents and x−S to be the profile

of all agents that are not in S . There is a cost of investment Ci and
loss Li associated with the bad event occurring, either through

a direct or indirect (transferred) contamination. We denote by pi
the probability that agent i will experience the bad event from a

direct contamination and by qji the probability that agent i will
experience the bad event due to transfer exposure from agent j.
The parameter αi ∈ [0, 1] specifies the probability that agent i’s
investment will not protect i against transfers of a bad event. Given
the parameters, the expected cost function of agent i isMi (xi ,x−i )

≡ xi [Ci + αiri (x−i )Li ] + (1 − xi )[pi + (1 − pi )ri (x−i )]Li ,

where ri (x−i ) ≡ 1−si (x−i ) and si (x−i ) ≡
∏

j,i (x j+(1−x j ) (1−qji ))
are i’s overall risk and safety functions, respectively. By definition,

an ϵ-MSNE x of an α-IDS game satisfies

Mi (xi ,x−i ) − ϵ ≤ Mi (0,x−i ) &Mi (xi ,x−i ) − ϵ ≤ Mi (1,x−i ). (2)

Learning. We approximate our MLE objective by maximizing the

number of ϵ-MSNE in the data when the true proportion of ϵ-MSNE

of the game is less than the empirical proportion of ϵ-MSNE in the

datasetWe empirically observe that the true proportion of ϵ-MSNE
in α-IDS games is very low. This would justify Lemma 2.3 and our

method.

We subdivide the optimization by first optimizing over G, and

then optimizing over ϵ . We use an upper bound by applying Eqn. 2.

Then, we approximate the indicator function in the upper bound

using a sigmoid function, which is the standard approach leading

to the BackProp algorithm in neural networks [11].

Using standard primal-dual optimization and regularization tech-

niques, we obtain and solve a non-linear program (using gradient-

ascent/descent optimization) subject to the respective constraints

on the variables. The process terminates when the objective func-

tion satisfies some condition and after exceeding some threshold

based on the total running time (i.e., ≈ 5 hours for the CDC dataset).

4 EXPERIMENTS ON VACCINATION DATA
Viewing each State as a player in the game, we interpret the vacci-

nation percentages as mixed-strategies and generate 1500 samples

i.i.d. according to an n-variate jointly-independent Gaussian PDF,

where n = 48, with the joint mean and standard deviations given

by each State’s reported vaccination rate and standard deviation

in the CDC 2009-2010 US States H1N1 data
1
. This is our way to

account for the noise in the data. We impose an a priori bias for
learning where only neighboring states may transfer the virus.

Learned α-IDS Games. Although game parameters themselves

are not our main interest, we highlight similar observations on 10

learned games because they provide anecdotal validation.

Players’ Characteristics. All of the players have strategic substi-
tutability behavior – this happens if αi < 1−pi for each player i . In
Figure 1, the x-axis denotes the α values of the players, the y-axis

denotes the 1 − p values of the players, and the line is the equation

α = 1 − p. The plot is scaled to capture the α and 1 − p values. The

plot illustrates that our learning formulation produces values of

the parameters that are consistent with vaccination scenarios, in

which α < 1 − p.
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Figure 1: Players’ Characteristics of a Learned Game.

Player’s Best-Response Correspondences. All of the players have
non-trivial best-response – players do not have any “obvious" dom-

inant strategies.

Players’ Transfer Risks. The transfer risks of the players are not
random – they are correlated to the training examples.

Players’ Equilibrium Behavior. Given the learned games, we

run a version of some learning-heuristics/regret-minimization [8],

in which we use the mean vaccination rates as the initial mixed-

strategy profile to compute ϵ-MSNE in these games.

It turns out that the mean vaccination-rates given in the CDC

data is an 0.35-MSNE of the learned game. We are able to find an

exact MSNE which is also a PSNE after trying many initial mixed-

strategies that are drawn uniformly at random.

1
https://www.cdc.gov/flu/fluvaxview/reportshtml/reporti0910/resources/2009-10_

coverage.xlsx
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