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ABSTRACT
We study the problem of two competing camps aiming to maximize
the adoption of their respective opinions, by optimally investing in
nodes of a social network in multiple phases. The final opinion of a
node in a phase acts as its biased opinion in the following phase.
Using an extension of Friedkin-Johnsen model, we formulate the
camps’ utility functions, which we show to involve what can be
interpreted as multiphase Katz centrality. We hence present optimal
investment strategies of the camps, and the loss incurred if myopic
strategy is employed. Simulations affirm that nodes attributing
higher weightage to bias necessitate higher investment in initial
phase. The extended version of this paper analyzes a setting where
a camp’s influence on a node depends on the node’s bias; we show
existence and polynomial time computability of Nash equilibrium.
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1 INTRODUCTION
We consider two competing camps with positive and negative opin-
ion values (referred to as good and bad camps respectively), aiming
to maximize the adoption of their respective opinions in a social net-
work. With the opinion adoption quantified as the sum of opinion
values of all nodes [20, 21], the good camp aims to maximize this
sum while the bad camp aims to minimize it. Since nodes update
their opinions based on their neighbors’ opinions [1, 15], a camp
would want to influence the opinions of influential nodes by invest-
ing on them. Thus given a budget constraint, the strategy of a camp
comprises of: how much to invest and on which nodes, in presence
of a competing camp which would also invest strategically.

Motivation. In Friedkin-Johnsenmodel of opinion dynamics [16,
17], every node holds a bias in opinion. This bias plays a critical role
in determining a node’s final opinion, and consequently the opin-
ions of its neighbors, and hence that of its neighbors’ neighbors,
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and so on. If nodes give significant weightage to their biases, the
camps would want to influence these biases. This could be achieved
by campaigning in multiple phases, wherein a node’s opinion at
the conclusion of a phase would act as its biased opinion in the
next phase. With the possibility of multiphase campaigning, a camp
could not only decide which nodes to invest on, but also how much
to invest in each phase (hence, how to split its budget across phases).

Related Work. Problems related to maximizing opinion adop-
tion in social networks have been extensively studied in the litera-
ture [15, 22, 25]. A primary task in such problems is to determine
influential nodes, which has been an important research area in the
multiagent systems community [12, 19, 26, 27]. The competitive
setting has resulted in several game theoretic studies [2, 4, 18]. Spe-
cific to analytically tractable models such as DeGroot and Friedkin-
Johnsen, there have been studies to determine optimal investments
on influential nodes [5, 14, 21]. Our work extends these studies to
multiple phases by determining the influential nodes in different
phases, and how much they should be invested on in a given phase.

There have been a few studies on adaptive selection of influential
nodes in multiple phases [3, 8, 23, 28, 29, 31, 32]. A survey of such
adaptive methodologies is presented in [30]. An empirical study on
optimal budget splitting between two phases is presented in [13],
which is extended to multiple phases in [9]. While the reasoning
behind using multiple phases in these studies is to adaptively select
nodes based on previous observations, we use them for influencing
nodes’ biases; this necessitates a very different treatment.

2 OUR MODEL
We represent social network as a weighted directed graph, with set
of nodes N . Our model can be viewed as a multiphase extension
of [10]. Table 1 presents the notation. In our setting, the bias of
node i in phase q is v(q−1)i , which is the opinion value of node i at
the conclusion of phase q − 1. Since the influence of good camp on
node i in phase q would be an increasing function of its investment
x
(q)
i and weightagew(q)iд , we assume the influence to be +w(q)iд x

(q)
i

so as to maintain linearity of Friedkin-Johnsen model. Similarly,
−w(q)ib y

(q)
i is the influence of bad camp (negative opinion) on node i .

Considering budget constraints, the camps should invest in the p
phases such that

∑p
q=1

∑
i ∈N x

(q)
i ≤ kд and

∑p
q=1

∑
i ∈N y

(q)
i ≤ kb .

Let w be the matrix consisting of weightswi j . Let v(0), v(q), w0,
wg,wb, x(q), y(q) be the vectors consisting of elementsv(0)i ,v(q)i ,w0

ii ,
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Table 1: Notation

v (0)i initial biased opinion of node i prior to the dynamics
v (q)i opinion value of node i at the conclusion of phase q
w0
ii weightage attributed by node i to its bias in a phase

wi j weightage attributed by node i to the opinion of node j
w (q)iд weightage attributed by node i to good camp in phase q

w (q)ib weightage attributed by node i to bad camp in phase q
x (q)i investment made by good camp on node i in phase q
y(q)i investment made by bad camp on node i in phase q
kд budget of the good camp
kb budget of the bad camp

wiд ,wib , x
(q)
i , y(q)i , respectively. Vectors x(q), y(q), v(q−1) are static

throughout a phase q, while v(q) gets updated in the dynamics. Let ◦
denote Hadamard product: (a ◦ b)i = aibi . Hence, generalizing the
Friedkin-Johnsen update rule to multiphase setting and accounting
for camps’ investments, the update rule in phase q is:

∀i ∈ N : v (q)i ← w0
iiv
(q−1)
i +

∑
j∈N

wi jv
(q)
j +wiдx

(q)
i −wiby

(q)
i

⇐⇒ v(q) ← w0◦v(q−1) +wv(q) +wg◦x(q) −wb◦y(q)

With
∑
j ∈N |wi j | < 1, the dynamics in phase q converges to [11]:

v(q) = (I −w)−1(w0 ◦ v(q−1) +wg ◦ x(q) −wb ◦ y(q)) (1)

3 PROBLEM FORMULATION
We first derive an expression for

∑
i ∈N v

(p)
i , the sum of opinion val-

ues of the nodes at the end of terminal phasep. Let (I−w)−1 = ∆. Let
r
(1)
i =

∑
j ∈N ∆ji and r

(t )
i =

∑
j ∈N r

(t−1)
j w0

j j∆ji . That is, r
(1) = ∆T 1

and r(t) = ∆T (r(t−1) ◦ w0). It can be shown that, premultiplying
Equation (1) by 1T for q = p, and solving the recursion, we get:

∑
i∈N

v (p)i =
∑
i∈N

r (p)i w0
iiv
(0)
i +

p∑
q=1

∑
i∈N

r (p−q+1)i (wiдx
(q)
i −wiby

(q)
i ) (2)

Multiphase Katz Centrality. r (1)i =
(
(I −wT )−11

)
i resembles

Katz centrality of node i [24], capturing its influencing power over
other nodes in a single phase setting (corresponds to terminal
phase in multiphase setting). However, the effectiveness of node i
with t phases to go (r (t )j ), depends on its influencing power over
those nodes j (∆ji ), which would give good weightage to their
bias in the next phase (w0

j j ), and also have good effectiveness in

the next phase with t − 1 phases to go (r (t−1)j ). This is captured by

r
(t )
i =

∑
j ∈N r

(t−1)
j w0

j j∆ji . Since r
(t )
i quantifies i’s influence looking

t phases ahead, it can be interpreted as the t-phase Katz centrality.
The Problem. Here (x(q))pq=1 and (y

(q))pq=1 are the respective
strategies of the good and bad camps. Given an investment strategy
profile

(
(x(q))pq=1, (y

(q))pq=1
)
, let uд

( (
(x(q))pq=1, (y

(q))pq=1
) )

be the
utility of good camp and ub

( (
(x(q))pq=1, (y

(q))pq=1
) )

be the utility
of bad camp. The good camp aims to maximize (2), while the bad
camp simultaneously aims to minimize it. Hence the problem is:

Find Nash equilibrium, given that

uд
( (
(x(q))pq=1, (y

(q))pq=1
) )
=
∑
i∈N

v (p)i , ub
( (
(x(q))pq=1, (y

(q))pq=1
) )
= −

∑
i∈N

v (p)i

subject to
p∑
q=1

∑
i∈N

x (q)i ≤ kд ,

p∑
q=1

∑
i∈N

y (q)i ≤ kb , ∀q ∈ {1, . . . , p } ∀i ∈N :x (q)i , y (q)i ≥ 0

Optimal Investment Strategies. Since the optimization terms
with respect to different variables are decoupled in Equation (2),
the optimal strategies of camps are mutually independent. For the
good camp, we order the terms {wiдr

(p−q+1)
i }i ∈N ,q=1, ...,p in de-

scending order. If the investment allowed per node is unbounded,
its optimal strategy is to invest kд on node i∗ in phase q∗, where
(i∗,q∗) = argmax(i,p)wiдr

(p−q+1)
i (no investment if this value is

non-positive). If the investment per node is bounded by U, the
(i,p) pairs are chosen one-by-one according to the aforementioned
descending ordering, and invested on withU each, until budget kд
is exhausted. The optimal strategy of the bad camp is analogous.

(a) Optimal budget splits (b) Myopic vs farsighted

Figure 1: Results illustrating the effects ofw0
j j (NetHEPT)

Simulation Results. For 2 phases on NetHEPT dataset (15,233
nodes) [6, 7, 25], Figure 1(a) presents optimal budget allotted for
phase 1 as a function of w0

j j (assuming equal w0
j j ,∀j ∈ N ) with

kд = kb =100 (U=1 andv
(0)
i = 0,∀i ∈N ). Detailed simulation setup

is provided in [11]. For loww0
j j , the optimal strategy of camps is to

invest almost entirely in phase 2, since the effect of phase 1 would
diminish considerably in phase 2. The value r (2)i =

∑
j ∈N r

(1)
j w0

j j∆ji
would be significant only if i influences nodes j with significant
values ofw0

j j . So investing in phase 1 would be advantageous only
if nodes have significantw0

j j . The slight non-monotonicity of plots
is explained in [11]. General observations indicate that a high range
ofw0

j j makes it advantageous for camps to invest in phase 1, so as to
effectively influence the biases in phase 2. The reasoning generalizes
tomore than 2 phases. Figure 1(b) illustrates the loss incurred by bad
campwhen it is myopic (perceiving its utility as−∑i ∈N v

(1)
i instead

of −∑i ∈N v
(2)
i ), while the good camp is farsighted (considering no

bound on investment per node). A myopic bad camp would invest
its entire budget in phase 1, and with the same reasoning as above, it
would incur more loss for lower values ofw0

j j (ref. [11] for details).

EXTENDED VERSION [11] analyzes a setting where a node
attributes higher weightage to the camp more aligned with its bias.
The camps’ strategies are no longer mutually independent; we show
existence and polynomial time computability of Nash equilibrium.
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