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ABSTRACT
Obviously strategyproof (OSP) mechanisms maintain the incentive

compatibility of agents that are not fully rational. They have been

object of a number of studies since their recent definition. We are

motivated by the result showing that OSP mechanisms without

money cannot return good approximations, even if the designer

monitors the agents during the execution of the mechanism [10].

We ask whether there are different (harsher) forms of punishments

and novel ways to exert control over the agents that can overcome

this impossibility. We define a model of probabilistic verification

wherein agents are caught misbehaving with a certain probability

and show how OSP mechanisms without money can implement

a given social choice function at the cost of either imposing very

large fines for lying or verifying a linear number of agents.
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1 INTRODUCTION
Will people strategize against an incentive-compatible mechanism?

The answer depends on whether they will understand that doing so

is against their own interest and, ultimately, on their rationality and

cognitive skills. This question has often been raised in literature

(see, e.g., [11, 19]) and much of the recent research in (algorithmic)

mechanism design is motivated by this question. Several definitions

for “simple” mechanisms have been recently given in literature:

posted price mechanisms and variants [1, 4, 8], Bulow-Klemperer-

like auctions [14], verifiably truthful mechanisms [6]. This quest

for the right definition for simple mechanisms culminated with the

introduction of obviously strategyproof (OSP) mechanisms [16].

OSP mechanisms are the only ones that preserve the incentive-

compatibility of agents who lack contingent reasoning skills [16],

that is, a class of agents that are not fully rational and prone to

strategize uselessly. Consequently, this concept has attracted a con-

siderable amount of recent work [3, 5, 10] that mainly focuses on

the limitations of these appealing mechanisms. Of particular in-

terest for our study are the results proved by Ferraioli and Ventre

[10] showing that OSP mechanisms cannot have good approxima-

tion guarantees for machine scheduling and facility location, two
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canonical optimization problems studied in the area. This negative

result is reinforced for our purposes by the fact that, when the

designer can “monitor” the agents at work (meaning that the utility

of lying agents depends on their type and bid) monetary transfers

are sufficient and necessary for the existence of optimal OSP mech-

anisms. Since money is undesirable in many applications (cf. the

vast literature on approximate mechanism design without money

initiated by [18]) our main aim here is to understand how we can

reconcile approximation and OSP mechanisms without money.

Given the current state of the art, we need to look at novel ways

the designer can limit the agents’ ability to misbehave. We intro-

duce a model of probabilistic verification wherein the mechanism

designer has a (potentially faulty) verification device that she can

use at runtime to check whether an agent has lied. The device will

catch the lie of the checked agent with certainty, or with a certain

probability if faulty. E.g., if the type t of an agent is her location

on the real line (as in facility location) the designer can use a GPS

logger to check where the agent is against her reported type b. In
our terminology, this tool is faulty if its reading t ′ of t is subject to
some measurement error δ and the agent would be caught only if

|b − t ′ | > δ ; more generally, different tools can make mistakes in

their measurements with some probability rather than in range (e.g.,

it gets better as the difference between reported and real type in-

creases). This notion generalizes and combines the different notions

of verification introduced in related literature (see, e.g., [7, 17]).

We begin by studying what we call the full probabilistic verifica-
tion model, wherein every agent is verifiable and therefore there is a

non-null probability of catching lies. We prove that, in this setting,

it is always possible to obtain an OSP mechanism without money.

Since in some contexts it might be impossible that for all the agents

to be verifiable (e.g., not all the agents might have been equipped

with a GPS logger), we look at the partial probabilistic verification
model, where for some agents we cannot use any verification. We

then prove that there is a problem P for which all ε-OSP mecha-

nisms (i.e., agents will not deviate for small gains ε) that solve P
need to verify in expectation a linear number of agents.

2 PRELIMINARIES
A mechanism design setting is defined by a set of n selfish agents
and a set of allowed outcomes S. Each agent i has a type ti ∈ Di ,

where Di is called the domain of i . The type ti is assumed to be

private knowledge of agent i . Each selfish agent i has a valuation
function vi : Di × S → R. For ti ∈ Di and X ∈ S, vi (ti ,X ) is the

valuation that agent i has for outcome X when her type is ti . We
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will often use ti (X ) as a shorthand for vi (ti ,X ). The domain Di of

agent i is bounded if ti (X ) ∈ [t
inf
, tsup] for all i , t ∈ Di , X ∈ S.

A mechanism M is a process for selecting an outcome X ∈ S,

defined by a directed tree T = (V ,E) such that:

• every leaf ℓ of the tree is labeled by a possible outcome X (ℓ) ∈ S;

• every internal vertex u ∈ V either is labeled by an agent S(u) ∈
[n], or is a chance vertex labeled by character c;

• every edge e = (u,v) ∈ E going out from a non-chance vertex is

labeled by a set T (e) ⊆ D = D1 × · · · × Dn of type profiles s.t.:

– the sets of profiles that label the edges outgoing from the same

vertex u are disjoint;,

– the union of the sets of profiles labeling the edges outgoing

from non-root vertex u is equal to the set of profiles labeling

the edge going in u;
– the union of the sets of profiles that label the edges outgoing

from the root vertex r is equal to the set of all profiles;

– for every u,v such that (u,v) ∈ E and every b, b′ ∈ T (ϕ(u),u)
such that bS (u) = b

′
S (u), if b ∈ T (u,v), then also b′ ∈ T (u,v);

• every e = (u,v) ∈ E, u being a chance vertex, has label T (e) = D
if u is a root, and T (e) = T (ϕ(u),u) otherwise;

• every non-chance vertex u is associated to an information set

I (u) ⊆ D, where I (r ) = D, and, for u , r , either I (u) = D or

I (u) = T (ϕ(v),v) for some v in the path from r to u.

Observe that for every profile b there is only one leaf ℓ = ℓ(b)
such that b belongs toT (ϕ(ℓ), ℓ). For this reasonwe say thatM(b) =
X (ℓ). Moreover, for every type profile b and every node u ∈ V , we

say that b is compatible with u if b ∈ I (u). Finally, two profiles b, b′

are said to diverge at vertex u if there are two vertices v,v ′
such

that (u,v) ∈ E, (u,v ′) ∈ E and b ∈ T (u,v), whereas b′ ∈ T (u,v ′).

Now we define obvious strategyproofness. An extensive-form

mechanism M is ε-obviously strategy-proof (ε-OSP) if for every
agent i with real type ti , for every vertex u such that i = S(u), for
every b−i , b′−i (with b′

−i not necessarily different from b−i ), and
for every bi ∈ Di , with bi , ti , such that (ti , b−i ) and (bi , b′−i ) are
compatible withu, but diverge atu, it holds thatvi (ti ,M(ti , b−i )) ≥
vi (ti ,M(bi , b′−i )) − ε . M is obviously strategy proof (OSP) if ε = 0.

Given a social choice function f : D → S, a mechanism M im-
plements f if M(b) = f (b) for every b.

Probabilistic Verification. Fix i and b−i . Let t and t ′ denote the
true and reported type of agent i , respectively. A mechanism with
probabilistic verification M catches agent i lying with probability

(1 − pit ′,t (b−i )) and punishes the agent caught lying with a fine

F it ′,t (b−i ) > 0. Except for the fines, the mechanism does not use

any other form of transfers: following previous works, we then say

that our mechanisms are without money. When misreporting her

type to a mechanism with probabilistic verification, agent i will
then have a valuation t(M(t ′, b−i )) − (1 − pit ′,t (b−i ))F

i
t ′,t (b−i ).

Our interest will be in understanding the expected number of

agents verified by a mechanism with probabilistic verification.

Therefore, we will say that an agent is verified with probability

1 −pit ′,t (b−i ) so that the number of verified agents in a mechanism

with probabilistic verification is a random variable V =
∑n
i=1Vi ,

where Vi = 1 if agent i is caught lying, and 0 otherwise.

We will consider two different categories of mechanisms with

probabilistic verification: the full model wherein all the agents

are verifiable, so that we can define pit ′,t (b−i ) ∈ [0, 1] for every

tuple (i, t , t ′, b−i ), and the partial model wherein there exists at

least one agent i that is not verifiable, that is, for which we require

pit ′,t (b−i ) = 1 for every b−i and every t , t ′ with t , t ′.

3 OUR RESULTS
Theorem 3.1 focuses on the full probabilistic verification model.

Theorem 3.1. If the domains of agents are bounded, then for
every social choice function f there is an OSP mechanism with full
probabilistic verification that implements f and verifies in expectation
only a constant number of agents.

Unfortunately, the mechanism that proves Theorem 3.1 needs

very large fines. However, we prove that full probabilistic verifica-

tion still turns out to be a powerful tool even if large fines are not

available. In particular, we observe a trade-off between fines and

the number of verified agents. Hence, one may be able to work with

lower fines, by having more accurate verification (in a sense, we

can reduce fines only if we spend more for our verification tools).

Next we focus on the partial probabilistic verification model.

Specifically, we investigate whether it is possible to obtain OSP

mechanisms that verify few agents.

To this aim, suppose there is a subsetU of verifiable agents. Such

a subset, just like the outcome, can be chosen randomly and can

depend on the declaration of the agents. For bounded domains

we can guarantee through fines that, no matter the quality of the

verification device, truthtelling will be obviously dominant for all

the agents inU . Therefore, themechanism “only” needs to obviously

incentivize the agents that are not in U . Unfortunately, we show

that there is a social choice function for which this is possible only if

|U | = n−o(n), that is the number of unverifiable agents is sublinear.

Consider the public project problem: we need to decide whether

to implement or not a public project (e.g., building a bridge) whose

cost is c . The society is comprised of n agents. The valuation of

agent i if the project is implemented may be either vi (1) = 1 or

vi (1) = δ > 0, where, δ ≪ 1 (e.g., δ = 1

n2
). We say that the type of

i is 1 in the first case, and δ in the second. Moreover, each agent

has valuation vi (0) = 0 if the project is not implemented. This

problem has been introduced by [15] and it is a basic and very

well studied problem in economics and computer science (see, e.g.,

[2] and references therein). The designer would like to implement

the project only if at least c agents have type 1. I.e., the designer
would like to implement the public project function f that returns 1

if

∑
i vi (1) ≥ c , and 0 otherwise. We have the following theorem.

Theorem 3.2. For every ε-OSP mechanism implementing the pub-
lic project function, with ε ∈ [0, 1), there is an instance for which the
mechanism verifies in expectation n − o(n) agents.

Future Directions. Li [16] proved that OSP is the “right” definition

of truthfulness for “bounded rational” agents, where the kind of

bounded rationality (i.e., limited contingent reasoning) is exactly

the one observed in many experimental settings. Still, it would be

interesting to investigate mechanism design for other (possibly, less

stringent) notions of bounded rationality.

It would be also interesting to find settings in which an OSP

mechanism with partial probabilistic verification exists that verifies

only few agents.
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