
Nash equilibrium Computation in Resource Allocation Games
Extended Abstract

Shivam Gupta

University of Illinois at Urbana-Champaign

Champaign, IL, USA

sgupta72@illinois.edu

Ruta Mehta

University of Illinois at Urbana-Champaign

Champaign, IL, USA

rutameht@illinois.edu

ACM Reference Format:
Shivam Gupta and Ruta Mehta. 2018. Nash equilibrium Computation in

Resource Allocation Games. In Proc. of the 17th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm,
Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
Nash equilibrium is one of the most fundamental solution concepts

within game theory. It is defined as a strategy profile in which no

individual can gain by changing its strategy unilaterally. Extensive

work within algorithmic game theory in the last two decades has

led to a plethora of results on computation of a Nash equilibrium

(NE) in various finite normal-form games [1, 5–7, 9]. The problem is

PPAD-complete even for two-player games [6, 9]. Despite this, the

classical result of von Neumann (1928) gave a linear programming

formulation for two-player zero-sum games, where one player’s

gain is the other’s loss [8, 12].

In this paper, we study the computation of a Nash equilibrium

in the polymatrix Blotto game that is zero-sum in total. To describe

how general this setting is, we first need to understand the classical

two-player Blotto setting, which has been previously studied [2, 3].

In this game, both players have a certain number of soldiers that

they allocate to a number of battlefields. A function h(b,k1,k2) rep-

resents the payoff of the first player from battlefield b when the first

player allocates k1 soldiers, and the second player allocates k2 sol-

diers to battlefield b. The second player’s payoff is −h(b,k1,k2). The

total payoff of a player is the payoffs summed over all battlefields.

The polymatrix zero-sum Blotto game is a multi-player version

of the two-player Blotto game. In the polymatrix zero-sum Blotto

game, each player has a number of soldiers to distribute among

battlefields. For each edge (u,v) in the network we are given two

functions,hvu andhuv , for playersu andv respectively, and they need

not add up to zero. The only guarantee is that the total payoff of all

the players is zero in any play. We show a LP formulation for the

zero-sum polymatrix game [4], and combine it with the algorithm

of [2] to obtain a polynomial time algorithm to compute a NE.

The Blotto game is typically used to model competition between

two players on multiple fronts using limited resources. Since our

game need not be pair-wise zero-sum, it is capable of capturing

competition between multiple teams, where a team is made of a

set of players who are coordinating with each other to beat other

teams.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

2 PRELIMINARIES
In this section, we briefly discuss the normal-form polymatrix game

and show a linear program for the computation of the NE when

the game is zero-sum. Additionally, we give a brief description of

the Blotto game.

Notations.Wewill use [n] to denote index set {1, . . . ,n}, bold-face
letter x to denote vectors, and xi or x(i) to denote the ith coordinate

of vector x. For matrix A, we use A(i, j) to denote its entry in ith

row and jth column. For a finite set S , ∆(S) represents all probability

distributions over elements of S .

Polymatrix Games. A game played on a network, where each

node is a player, and plays a two-player game with each of its

neighbors, is called a polymatrix game. Let the underlying undi-

rected graph be G = (V ,E). Let Su be the set of strategies of player

u ∈ V and ∆u = ∆(Su) be its set of mixed strategies. On edge

(u,v) ∈ E, let the payoff matrix of node u be Au ,v and that of v
be Av ,u . If each player v ∈ [m] plays strategy xv ∈ ∆v , we will

denote the strategy profile using x = (xv)v ∈V . The payoff of player

u ∈ V at x is Payoffu (x) =

∑
v :(u,v)∈E xuTAu ,vxv.

Again, x is said to be at Nash equilibrium (NE) if no player gains

by unilateral deviation. Existence of a NE follows from Nash’s theo-

rem [11]. Let us define the payoff of playeru ∈ V from her pure strat-

egy i ∈ Su to be Payoffu (i,x−u), where x−u represents the strategies

of all players except u. So, Payoffu (i,x−u) =

∑
v :(u,v)∈E (Au ,vxv)i .

Let S = ×u ∈V Su . The polymatrix Blotto game is said to be zero-
sum if, for every pure profile s ∈ S, the sum of payoffs of all the

players is zero, i.e.,

∑
u ∈V
∑
v ̸=u Au ,v (su ,sv) = 0.

Theorem 2.1. If the polymatrix game is zero-sum, then the fol-
lowing linear-program gives a NE.

minimize
∑
u ∈V

wu

subject to wu ≥ Payoffu (i,x−u) ∀u ∈ V ,∀i ∈ Su

xu ∈ ∆u ∀u ∈ V

(1)

Blotto game. A Blotto game consists of B battle fields, and players

with a number of soldiers. In the two player case, let S1 and S2 be the

number of soldiers of the two players. If the first and second player

places j and k soldiers on battlefield b ∈ [B], then they receive pay-

off h1(b, j,k) and h2(b, j,k) respectively from this battlefield. Each

player i = 1,2 distributes her Si soldiers among B battlefields, and

her payoff is the sum of the payoffs from each battlefield. Clearly,

the number of pure strategies of player i is
(Si+B−1

B−1

)
, but the payoff

representation takes at mostO(B ∗ S1 ∗ S2) space. Thus, each player

has exponentially many strategies in the game representation.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1953

3 ZERO-SUM POLYMATRIX BLOTTO
We will derive polynomial time algorithms to solve zero-sum poly-

matrix Blotto games using ideas from [2].

Let the underlying graph of the polymatrix game be G = (V ,E),

and letm = |V |. There are B battlefields, and each player u ∈ V
has Su soldiers to allocate to these battlefields. A pure strategy

of player u is an integer vector x = (x1, . . . ,xB) ≥ 0 that defines

a partition of Su soldiers over B battlefields, i.e.,
∑B
k=1

xk = Su .
Let Xu denote the set of pure strategies of player u. Then, clearly,

|Xu |=
(Su+B−1

B−1

)
. Let ∆u = ∆(Xu) be the set of mixed strategies

available to player u. Let hvu (b, j,k) be the (arbitrary) payoff that

u receives from playing against v on battlefield b, when u uses j
soldiers and v uses k soldiers.

Since the number of pure strategies of each player is exponential,

we cannot directly find a NE by using LP 1. Instead, we will map

each strategy to a different strategy space. Let n(u) = B(Su + 1) be

the number of marginal strategy entries available to player u ∈ V .

For a binary matrix x̂ ∈ {0,1}n(u)
, let x̂(b, j) = 1 if and only if player

u places j soldiers on the bth battlefield. For x = (x1, . . . ,xb) ∈ Xu ,

this defines a mapping Gu (x) = x̂ ∈ {0,1}n(u)
. Now, define the set

Iu = {x̂ ∈ {0,1}n(u) |∃x ∈ X ,Gu (x) = x̂}. For x ∈ ∆u , similarly

define Gu (x) = x̂ ∈ [0,1]
n(u)

such that x̂(b, j) is the probability that

mixed strategy x puts j soldiers in the bth battlefield. Define the set

Ju = {x̂ ∈ [0,1]
n(u) |∃x ∈ ∆(X),Gu (x) = x̂}. Note that Iu does not

have a succinct representation and may have exponentially many

strategies.

If playeru plays pure strategy ŷ and playerv playsmixed strategy

x̂v , then the payoff of u against v on battlefield b is дvu (b, ŷ, x̂v) =∑Su
j=0

∑Sv
k=0

ŷ(b, j)hvu (b, j,k)x̂v (b,k). Then, if player u ∈ V plays

pure strategy ŷ ∈ Iu and every other player v ∈ V such that

v ̸= u plays strategy x̂v , then u receives payoff Payoffu (ŷ, x̂−u) =∑
v ̸=u
∑B
b=1

дvu (b, ŷ, x̂v).

3.1 Linear Program with Exponentially Many
Constraints

minimize

∑
u ∈V

wu (2)

subject to x̂u ∈ Ju ∀u ∈ V (Membership constraints)

wu ≥ Payoffu (ŷ, x̂−u) ∀u ∈ V ,∀ŷ ∈ Iu (Payoff constraints)

Lemma 3.1. LP (2) computes a NE of the polymatrix Blotto game
if it is zero-sum in the new space.

Since LP (2) can find a Nash equilibrium of the game as long

as the sum of payoffs of all the players is always zero, and we

do not require that hvu (b, j,k) = −huv (b, j,k) as in [2]. Note that LP

(2) has polynomially many variables, but the representation of Ju
may require exponentially many inequalities. So, LP (2) may have

exponentially many constraints. Thus, the only way to solve it is

by using the ellipsoid method [10]. For this, we need to construct a

polynomial-time separation oracle for the polyhedron of LP (2).

A separation oracle (SO) is a polynomial time algorithm that

takes a point and either finds a hyperplane that separates the point

from the feasible region, or returns that the point is in the feasible

region. We construct efficient separation-oracles for both Member-

ship and Payoff constraints individually.

SO for the Membership Constraints. For every u ∈ V , we can
construct a separation oracle for the membership constraint that

takes a point x̂u as input and either finds a hyperplane that separates
x̂u from Ju , or reports that no such hyperplane exists. We need to

find a hyperplane α0 +

∑n(u)

j=1
α jx j = 0 such that x̂u is on one side of

the hyperplane, and all ŷ ∈ Iu are on the other side. This is because

Ju is the convex hull of points in Iu , so if a hyperplane separates x̂u
from all the points in Iu , then it separates x̂u from Ju . The following
linear feasibility problem finds such a hyperplane if it exists.

α0 +

n(u)∑
j=1

α j x̂u(j) ≥ 0, α0 +

n(u)∑
j=1

α j ŷ(j) < 0 ∀ŷ ∈ Iu (3)

Since there are exponentially many constraints in this linear

feasibility problem (3) also, we must construct a separation oracle to

solve it. We construct a separation oracle that takes α0, . . . ,αn(u)
as

input, and tries to find a ŷ ∈ Iu that maximizes α0 +

∑n(u)

j=1
α j ŷ(j). To

do this, we will first write the following dynamic program (DP) that

takes c0, . . . cn(u)
for someu ∈ V and returns the maximum possible

value of (c0 +

∑n(u)

j=1
c j ŷ(j)). We will use ci,j to denote cB(i−1)+j .

d[b, j] = max

0≤j′≤j
{d[b − 1, j − j ′] + ci,j′ } ∀b ∈ [B],∀t ∈ [0,Su]

Base case: d[0,0] = c0 (4)

Lemma 3.2. Dynamic program (4) computes themaximum possible
value of c0 +

∑n(u)

j=1
c j ŷ(j) for ŷ ∈ Iu .

We can use back pointers to find a ŷmax ∈ Iu that maximizes

the value. Then, our separation oracle will use DP (4) with ci = αi
for every i ∈ [0, . . . ,n(u)]. If d[B,Su] < 0, it will report that the

hyperplane of the LP 3 satisfies the constraint, and if d[B,Su] ≥ 0,

it will return the violated constraint α0 +

∑n(u)

j=1
α j ŷmax

(j) ≥ 0.

SO for Payoff Constraints. We construct a separation oracle for

the payoff constraints in LP 2 that takes x̂u and wu ∀u ∈ V . The

payoff,

∑
v ̸=u
∑B
b=1

∑Su
j=0

∑Sv
k=0

ŷ(b, j)hvu (b, j,k)x̂v(b,k)

=

∑B
b=1

∑Su
j=0

ŷ(b, j)[
∑
v ̸=u
∑Sv
k=0

hvu (b, j,k)x̂v(b,k)]

We set cb,j =

∑
v ̸=u
∑Sv
k=0

hvu (b, j,k)x̂v(b,k).

Then, we can run algorithm (4) to find the ŷmax ∈ Iu that

maximizes the above. Then, if d[B,Su] ≤ wu , it will report that

the payoff constraint is satisfied, and if d[B,Su] > wu , then it will

return this violated constraint.

Algorithm (4) runs in time O(B ∗ (maxu ∈[n]
Su)

2
) time using DP.

Since algorithm (4) runs in polynomial time and both the separation

oracles run in polynomial time, we can use ellipsoid method to

solve the LP 2 in polynomial time. Next, since the vector {x̂u}u ∈V
obtained from the LP is in the marginal strategy space Ju , we must

retrieve the corresponding strategy profile {xu}u ∈V in the original

strategy space Xu . For this, we can use the efficient procedure

developed in [2]. From the above analysis, together with Lemma

3.1, the next theorem follows.

Theorem 3.3. There is a polynomial time algorithm to compute a
NE of the zero-sum polymatrix Blotto game.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1954

REFERENCES
[1] Bharat Adsul, Jugal Garg, Ruta Mehta, and Milind Sohoni. 2011. Rank-1 Bimatrix

Games: A Homeomorphism and a Polynomial Time Algorithm (STOC ’11). ACM,

New York, NY, USA, 195–204. https://doi.org/10.1145/1993636.1993664

[2] Amir Mahdi Ahmadinejad, Sina Dehghani, Mohammad Taghi Hajiaghayi, Bren-

dan Lucier, Hamid Mahini, and Saeed Seddighin. 2016. From Duels to Battlefields:

Computing Equilibria of Blotto and Other Games (AAAI’16). AAAI Press, Phoenix,
Arizona, 369–375. http://dl.acm.org/citation.cfm?id=3015812.3015869

[3] Soheil Behnezhad, Sina Dehghani, Mahsa Derakhshan, Mohammad Taghi Haji-

aghayi, and Saeed Seddighin. 2017. Faster and Simpler Algorithm for Optimal

Strategies of Blotto Game. In AAAI.
[4] Yang Cai, Ozan Candogan, Constantinos Daskalakis, and Christos Papadimitriou.

2016. Zero-Sum Polymatrix Games: A Generalization of Minmax. Mathematics
of Operations Research 41 (Jan. 2016). https://doi.org/10.1287/moor.2015.0745

[5] Y. Cai and C. Daskalakis. 2011. On Minmax Theorems for Multiplayer Games. In

Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Al-
gorithms. Society for Industrial and Applied Mathematics, 217–234. http://epubs.

siam.org/doi/abs/10.1137/1.9781611973082.20 DOI: 10.1137/1.9781611973082.20.

[6] Xi Chen and Xiaotie Deng. 2006. Settling the Complexity of Two-Player Nash

Equilibrium (FOCS ’06). IEEE Computer Society, Washington, DC, USA, 261–272.

https://doi.org/10.1109/FOCS.2006.69

[7] Vincent Conitzer and Tuomas Sandholm. 2006. A Technique for Reducing Normal-

form Games to Compute a Nash Equilibrium (AAMAS ’06). ACM, New York, NY,

USA, 537–544. https://doi.org/10.1145/1160633.1160731

[8] George Bernard Dantzig. 1951. A Proof of the equivalence of the programming

problem and the game problem. Activity Analysis of Production and Allocationn,
T C. Koopmans (eds). John Wiley & Sons, New York: 330-335 (1951).

[9] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. 2006.

The Complexity of Computing a Nash Equilibrium (STOC ’06). ACM, New York,

NY, USA, 71–78. https://doi.org/10.1145/1132516.1132527

[10] M. Grötschel, L. Lovasz, and A. Schrijver. 1981. The ellipsoid method and its

consequences in combinatorial optimization. Combinatorica 1, 2 (June 1981),

169–197. https://doi.org/10.1007/BF02579273

[11] J. F. Nash. 1951. Non-cooperatie games. Annals of Mathematics 54(2) (1951),
286–295.

[12] John Von Neumann. 1944. Theory Of Games And Economic Behavior. Princeton
University Press. http://archive.org/details/theoryofgamesand030098mbp

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1955

https://doi.org/10.1145/1993636.1993664
http://dl.acm.org/citation.cfm?id=3015812.3015869
https://doi.org/10.1287/moor.2015.0745
http://epubs.siam.org/doi/abs/10.1137/1.9781611973082.20
http://epubs.siam.org/doi/abs/10.1137/1.9781611973082.20
https://doi.org/10.1109/FOCS.2006.69
https://doi.org/10.1145/1160633.1160731
https://doi.org/10.1145/1132516.1132527
https://doi.org/10.1007/BF02579273
http://archive.org/details/theoryofgamesand030098mbp

	1 Introduction
	2 Preliminaries
	3 Zero-sum Polymatrix Blotto
	3.1 Linear Program with Exponentially Many Constraints

	References

