
Combating Behavioral Deviance via User Behavior Control

Chenxi Qiu, Anna Squicciarini
College of Information Science and
Technology, Pennsylvania State

University
University Park, PA, USA
{czq3,acs20}@psu.edu

Christopher Griffin
Applied Research Laboratory,
Pennsylvania State University
University Park, PA, USA

griffinch@ieee.org

Prasanna Umar
College of Information Science and
Technology, Pennsylvania State

University
University Park, PA, USA

pxu3@ist.psu.edu

ABSTRACT

Compared to traditional behavioral deviance, online deviant behav-
ior (like cyberbullying) is more likely to spread over online social
communities since it is not restricted by time and space, and can
occur more frequently and intensely. To control risks associated
with the spread of deviant and anti-normative behavior, it is es-
sential to understand online users’ reaction when they interact
with other users. In this paper, we model online users’ behavior
interaction as an evolutionary game on a graph and analyze users’
behavior dynamics under different network conditions. Based on
this theoretical framework, we then investigate behavior control
strategies that aim to eliminate behavioral deviance. Finally, we use
a real world dataset from a social network to verify the accuracy of
our model’s hypothesis. We also and test the performance of our be-
havior control strategy through simulations based on both real and
synthetically generated data. The experimental results demonstrate
that our behavior control methods can effectively eliminate the
impact of bullying behavior even when the proportion of bullying
messages is higher than 60%.
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1 INTRODUCTION

The fast growth of online social networks (e.g., Facebook, Instagram,
and etc.) has led to an increase of abusive incidents and cyberaggres-
sion, including cyberbullying1 [31, 34, 36]. Cyberbullying is a new
emerging phenomena that has seen a steep rise in the recent years.
While there is not a universal definition, a working definition of
cyberbullying is given as "using information technology to willfully
and repeatedly hurt, insult or harass others"[12].

According to a recent report, 19% of teens engaged in online so-
cial networking activities are reported being victims of some form

1For the purpose of this paper, we use the terms cyberbullying and cyberaggression
interchangeably. Yet, recent works tend to differentiate between the two forms of
aggression. Our model can in fact apply to any deviant behavior where social influence
plays a significant role in adoption.
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of cyberbullying [12]. Compared with traditional deviant behavior,
online behavioral deviance (i.e., referred as any behavior that pol-
lutes negatively online) tends to be more sinister because it is not
restricted by time and space and can occur more frequently and
intensely, making it more difficult to control [14]. As episodes of on-
line peer-to-peer abuse continue to increase in frequency and sever-
ity, several disciplines have actively engaged in research projects
surrounding cyberbullying [39]. Several studies have investigated
the dynamics of cyberbullying, bullies’ motives and interactions
[3, 23, 29, 33, 53, 57].

Within the computer science community, a growing body of
work has focused on detecting instances of cyberbullying, like
labelling offensive content through natural language processing
(NLP) [8, 19, 35, 56]. For instance, text features are often used to
extract attributes that can be used for supervised approaches (e,g.
URLs, part-of-speech, n-grams, Bag of Words as well as lexical
features such as sentiment or dictionary) [14, 20, 46].

One peculiar feature of cyberaggression (and even more of cy-
berbullying) is the role of peer and social pressure. Compared with
other proactive deviant behavior (i.e., intentionally attacking oth-
ers), the health of online communities relies heavily on individual
peers’ responses to certain triggers, which users may choose to
emulate or disengage from. As reported by [1], exposure to aggres-
sive behaviors allows for observational learning of such behavior
and hence increases their likelihood to display aggressive behavior,
especially for children, adolescents, and teenagers. For example, a
recent research has found that adolescents were more likely (e.g.,
by up to 183% [25]) to carry out some acts of violence if their friends
had also committed the same act.

The above observations motivate us to address the problem
of online behavioral deviance from a different perspective. That
is, we hypothesize that it is possible to reduce negative acts of
cyberaggression by controlling exposure and direct influence of
bystanders. To achieve this objective, it is essential to understand
how users’ behavior will evolve when interacting with others on
these online social platforms. Here, evolutionary game theory (EGT)

offers a conveniently adjustable and straightforward model for well-
characterized strategic interactions [30]. Particularly, researchers
have begun to use EGT on graphs to understand generic network
social behaviors [32]. In this paper, we first transform a funda-
mentally discrete-time model, i.e., influencing behavior in a social
network, into a graphical evolutionary game model, which is de-
fined in a continuous time region. We then study users’ behavior
dynamics based on this continuous time model, which has stronger
theoretical properties.

Specifically, we model an online social network of users on a
graph, where each user is considered as a specific species. At any
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time point, each user may take one of two “strategies”, i.e. post
bullying or non-bullying messages. The basic hypothesis is that
each user’s intention of posting (non-)bullying will be increased
if their neighbors (those who have social connections with this
user) post the same type of messages. Based on this hypothesis, we
define a payoff matrix for each user. By analyzing users’ behavior
dynamics, we then derive the relationship between users’ payoff
matrices and the evolutionary stable state (ESS) of (non-)bullying
messages. This relationship provides us a theoretic foundation to
adjust the parameters in the payoff matrix, to achieve behavior

control. The adjustments enable convergence of the distribution of
two types of behavior to the preferred ESS, where the proportion
of non-bullying messages equals to 1. We formulate a new math
optimization problem, called user behavior control problem, that
aims to converge user behavior to the preferred ESS with minimum
time, while guaranteeing the total change of payoff matrix does not
exceed a constraint. Due to the hardness of the problem, we derive
a theoretic lower bound of the optimal solution, and also devise a
greedy algorithm, called fast behavior control, as a solution.

Finally, we analyzed a dataset from an online social network,
where users’ messages are labeled as bullying or non-bullying. The
dataset verifies our hypothesis in the game theory model, i.e., users
are more likely to post (non-)bullying messages if their neighbor
post messages of the same type. Based on this seed dataset, we then
test the performance of FBC via simulation. Our results demon-
strate that FBC can effectively reduce or nearly eliminate the effects
of deviant behavior and (over time) change messages in network
to non-deviant. Specially, we observe that, when the initial pro-
portion of bullying messages is higher than 60%, which is likely
to move to 100% quickly, FBC can alter the moving direction in a
short time (i.e., 1 time slot) and eventually converge the bullying
message proportion to 0%. Even under the scenarios where the
initial proportion of bullying messages will move to 0% without
any control, FBC can still be applied to increase the convergence
speed by up to 122.2%.

Simply put, our contributions can be summarized as:
1. User behavior analysis through graphical EGT : We first transform
a discrete-time influencing behavior model into a continuous-time
graphical EGT, and then analyze users’ behavior dynamics over
time. As far as we know, this is the first work to apply graphical
EGT for modeling and developing strategies to address the deviant
behavior problems.
2. User behavior control: Based on the above framework, we then
formally formulate a new problem that aims to eliminate deviant
behavior via controlling users’ interaction.We derive a lower bound
of the optimal solution for this problem, and also propose a time
efficient algorithm FBC as a solution.
3. Experiments: We perform extensive experiments based on both
real data and synthetic data. The experimental results demonstrate
the efficiency of FBC, in terms of both convergence time and cost.

The remainder of the paper is organized as follows: We introduce
the model in Section 2 and propose the behavior control approach
in Section 3. In Section 4, we verify the hypothesis of our model
and evaluate the performance of our method. Finally, we present
related work in Section 5 and conclude in Section 6.

2 MODEL

In this part, we introduce the model, including notations and as-
sumptions, that will be used throughout the paper. Specifically, we
first introduce how we model online users’ interaction by graphical
EGT in Section 2.1 and then analyze the dynamics of users’ behavior
(including EES) based on the model in Section 2.2.

2.1 Finite Population Replicator Dynamics on
a Graph

We consider a set of usersV = {1, 2, ...,N } in an online social plat-
form (e.g., Instagram, Facebook), and use a directed graph G(V, E)

to describe the social topology of all users, where each edge ej,i ∈ E

denotes the social connection between users i and j. We assign a
weight ηj,i to each link ej,i to represent the probability that user
i is affected by user j when user j posts a new content. We con-
sider a binary action space: non-bullying (N ) or bullying (B) for
the content posted by users. Each user creates a collection of such

messages. Let x (k )
i,l

be the number of messages of type l ∈ {N ,B}

user i has generated at time epoch k . The messages will form the
population in an evolutionary game played on the social network
graph structure.

When a message interacts with another, i.e., when users view
their neighbor’s messages, new messages are produced. We can
encode the birth process of thesemessages in the following chemical
diagrams:

N + N → κNN N + B → (κN − α)N (1)

B + B → κBB B + N → (κB − β)B (2)

These expressions can be read as: when user i , having produced a
non-bullying message that interacts with a neighbor having pro-
duced a non-bullying message, then κN non-bullying messages are
produced as a result of comfort with the non-bullying messages.
On the other hand, when user i’s message interacts with a neighbor
having produced a bullying message, thenκN −α non-bullying mes-
sages are produced through a peer-pressure effect. Here, comfort is
the users preferred behavioral mode on the social network. Similar
explanation can be applied to the case when user i has produced a
bullying message (i.e., the 2nd line in the chemical diagrams).

We assume that α , β,κN ,κB ≥ 0. We can think of the message
multipliers as entries in a payoff matrix:

A =

[
κN κN − α

κB − β κB

]
. (3)

Let x(k )i = [xi,N ,xi,B ]
� ∈ Z2 be a vector giving the number of

messages of each type (N and B) generated by user i at time epoch
k . Let

s(k ) =
∑

l=N ,B

∑
i ∈N

x
(k )

i,l
(4)

be the total number of messages generated by all users at time

epoch k , respectively. Then, we use p(k )i = x
(k )
i /s(k ) to represent

the proportion of messages in each type (N and B) generated by
user i at time epoch k .

For the moment, we model time incrementally. Suppose at each
time epoch, each user interacts randomly with a neighbor by com-
paring her messages to a random message of the neighbor and new
messages are generated using the update rule. On the other hand,
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considering that the more users’ messages are posted in the plat-
form, the more messages are possibly omitted (e.g., users usually
only pay attention to the most recent or popular messages posts in
front of the message list), we assume each message has a probability
ρ to "die". Then we can write:

x
(k+1)
i,l

= x
(k )

i,l
+ γx

(k )

i,l

∑
j ∈Ni

e�
l
Ax

(k )
j ηj,i∑

j ∈Ni
1�x

(k )
j ηj,i

− ρx
(k )

i,l
(5)

= x
(k )

i,l
+ γx

(k )

i,l

∑
j ∈Ni

e�
l
Ãp

(k )
j ηj,i∑

j ∈Ni
1�p

(k )
j ηj,i

(6)

where
Ã =

[
κN −

ρ
γ κN − α −

ρ
γ

κB − β −
ρ
γ κB −

ρ
γ

]
. (7)

Here, 1 is a vector of 1’s and γ ∈ [0, 1] is a probability that any
message in type l is responded (or response ratio) and Ni is the
neighborhood of user i . Formally, each message of type l generated
by user i interacts with a randommessage from user j . This message

distribution is given by p
(k )
j .

Then the expected number of new messages in type l per inter-
action is: ∑

j ∈Ni
e�
l
Ãp

(k )
j ηj,i∑

j ∈Ni
1�p

(k )
j ηj,i

.

In words, the user i considers all messages of type l she has
ever sent in round k − 1 and inspects the messages of user j. Then
generates new messages of type l based on these rules .

We can now pass to the mean-field approximation by observing
the approximation:

xi,l (t + Δt ) ≈ xi,l (t ) +
dxi,l (t )

dt
Δt +O (Δt 2) (8)

To facilitate the approximation, we must assume that γ ∼ γ̂Δt . That
is, as the time interval between epochs shrinks, the probability
of interaction varies linearly in Δt . Substituting Equation (8) into
Equation (6) and simplifying yields:

Δt
dxi,l (t )

dt
= Δtγ xi,l (t )

∑
j∈Ni

e�
l
Ãp

(k )
j ηj,i∑

j∈Ni
1�p

(k )
i ηj,i

(9)

Thus, we conclude:

�xi,l (t ) = γ xi,l (t )

∑
j∈Ni

e�
l
Ãp

(k )
j ηj,i∑

j∈Ni
1�p

(k )
i ηj,i

(10)

This equation gives the mean-field approximation on the number
of messages of type l produced by user i . However, it is more
instructive to know the proportions of different message types
produced by user i . This can be computed by applying the quotient
rule to compute the derivative:

d

dt

( xi,l
s

)
=

�xi,l

s
− xi,l

�s

s2
=

�xi,l

s
− pi,l

�s

s
(11)

Here pi,l is the l
th element of pi . Note:

�xi,l (t)

s(t)
= γpi,l (t)

∑
j ∈Ni

e�
l
Ãp

(k )
j ηj,i∑

j ∈Ni
1�p

(k )
i ηj,i

, (12)

since xi,l (t)/s(t) = pi,l (t). Also:

�s(t) =
∑
i

∑
l

�xi,l (t) = γ
∑
i

∑
j ∈Ni

xi (t)
�Ãpj (t)ηj,i∑

j ∈Ni
1�pjηj,i

(13)

which implies that

�s(t )

s(t )
= γ

∑
i

∑
j∈Ni

pi (t )
�Ãpj (t )ηj,i∑

j∈Ni
1�pjηj,i

. (14)

Combining terms yields the cyber-bullying network equation:

�pi,l = γpi,l

(
Ui,l (p) −U (p)

)
(15)

where

Ui,l (p) =

∑
j ∈Ni

e�
l
Ãpjηj,i∑

j ∈Ni
1�pjηj,i

(16)

U (p) =
∑
r

∑
l

pr,lUi,l (p) (17)

By fitting A, this estimates the proportion of bullying and non-
bullying messages sent by user i at any time. This is a special form
of multi-species/subspecies games studied in [51].

2.2 Evolutionary stable state

After modeling users’ behavior by graphic EGT, the next step is
to analyze the behavior dynamics of users, especially to derive
the stable equilibrium of their behaviors after a period of strategic
interactions, namely the evolutionarily stable state (ESS).

It is intractable to derive the closed form of ESS in arbitrary
graph. In fact, many community detection (e.g., graph clustering)
have been proposed to scale down and simplify the structure of
dynamic and complex networks [6, 45]. In this part, we make a
simplifying assumption that the graph G is a homogeneous clique
of identical users, i.e., Ni = V\i for each user i and ηj,i = η for
each pair of users i and j, which means we target on analyzing the
dynamics of a single online community.

As we set our goal as minimizing the influence of bullying mes-
sages within the network, in the following, we analyze the dynamics
of the total number (or the proportion) of two types of messages
from all users:
EES of the total number of two types of messages from all

users. Let xl (t) =
∑
i xi,l (t). We can derive that

�xN =
∑
i

�xi,N = γ
∑
i

xi,N

∑
j∈V\i

e�N Ãpj , (18)

from which we obtain

�xN = γ

(
a1N

(
x 2
N

xN + xB
−

∑
i x

2
i,N

xN + xB

)
+a2N

(
xBxN

xN + xB
−

∑
i xi,Bxi,N

xN + xB

))
,

(19)

where a1
N
= (κN −

ρ
γ ) and a

2
N
= (κN − α −

ρ
γ ). Considering that∑

i x
2
i,N 	 x2

N
and

∑
i xi,Bxi,N 	 xBxN , we can approximate

�xN (t) by
�xN ≈ дN (xN , xB ) = γ xN

(
a1N −

αxB

xN + xB

)
. (20)

Similarly, we can obtain
�xB ≈ дB (xN , xB ) = γ xB

(
a1B −

βxN

xN + xB

)
, (21)

where a1
B
= (κB −

ρ
γ ) and a

2
B
= (κB − β −

ρ
γ ).

Figure 1 gives several examples of xN and xB ’s direction fields
with different payoff matrix parameters. The figure illustrates that
the differences in the payoff matrix structure yield bifurcations in
the flow.
EES of the proportion of two types ofmessages fromall users.
Let pl (t) =

∑
i pi,l (t) and hence �pl =

∑
i �pi,l (l ∈ {N ,B}). We first
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Figure 1: Variations of the dynamics of XN and XB in the direction field with different payoff matrices. The arrows indicate

the motion direction as t increases. *κ ′ = max{κN − α ,κB − β}.
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(b) when −α<κ(B)−κ(N)<β
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 pN = (κ(B)−κ(N)+α)/(α+β)

Figure 2: The dynamics of pN in the three different cases.

derive Ui,N (p), Ui,B (p), and U (p) and embed them to Equations
(15)-(17).

Ui,N (p) =

∑
j∈Ni

e�
N
Ãpj∑

j∈Ni
1�pj

=
∑
j∈Ni

e�N Ãpj

=
���
(
κN −

ρ

γ

) ∑
j∈V\i

pj,N +

(
κN − α −

ρ

γ

) ∑
j∈V\i

pj,B
���

Considering that pj,l 	 pl , we approximate
∑
j ∈V\i pj,l by pl , and

then we obtain
Ui,N (p) ≈

(
κN −

ρ

γ

)
− αpB . (22)

Similarly, we can derive
Ui,B (p) ≈

(
κB −

ρ

γ

)
− βpN . (23)

Finally, by embedding Equations (22) and (23) into Equation (15),
we obtain

U (p) =
∑
i

∑
l

pi,lUi,l (p) = pNκN + pBκB − (α + β)pNpB −
ρ

γ
. (24)

Consequently, we can derive �pN ( �pB = − �pN ):

�pN = γpN (1 − pN ) ((α + β )pN + κN − κB − α ) (25)

According to the above equation, we discuss the dynamics of pN
in the following three cases:

I When κB − κN ≤ −α (Figure 2(a)): Two rest points p∗0
N
= 0

and p∗1
N
= 1 are repulsive and attractive, respectively. As �pN

is always positive in the interval (0, 1), pN will always move
to 1 under this case.

II When −α < κB − κN ≤ β (Figure 2(b)): Three rest points
p∗0
N
= 0, p∗

N
=

κB−κN +α
α+β

, and p∗1
N
= 1 are attractive, re-

pulsive, and attractive, respectively. Since �pN is negative in

the interval
(
0, κB−κN +α

α+β

)
and is positive in the interval(

κB−κN +α
(α+β

, 1
)
, pN will move to 0 in

(
0, κB−κN +α

α+β

)
and to 1

in
(
κB−κN +α

α+β
, 1

)
.

III When κB −κN > β (Figure 2(c)): two rest points p∗0
N
= 0 and

p∗1
N
= 1 are attractive and repulsive. respectively. As �pN is

always negative in the interval (0, 1), pN will always move
to 0 under this case.

3 USER BEHAVIOR CONTROL

According to the analysis in Section 2.2, whether pN will converge
to 0 or 1 depends on the locations of the rest points, which are de-
termined by the payoff matrix. Hence, an intuitive idea for behavior
control is to move the rest points by adjusting the parameters in
the payoff matrix (Table 1 lists several examples of social network
actions enabling a change of κN , κB , α , and β) such that pN is
always in the area that flows to 1. The details on how to adjust
these parameters will be introduced in Section 3.

Table 1

Control category Algorithm action

Social link control Delay/Block messages

κN , κB Block friend requests
Social capital control Alter like count

α , β Alter follower counts

In this section, we introduce our behavior control method. We
first formulate the problem in Section 3.1 and propose a greedy
algorithm as a solution in Section 3.2.

Before introducing our control strategy, we note that when κB −

κN ≤ −α and κB −κN > β , temporary control won’t affect the EES
of pN since pN will eventually converge to 1 and 0 (respectively)
once the control stops2. In fact, the first case indicates a healthy
network that will automatically eliminate the influence of bullying
messages without any control. The second case seldom happens
since β is usually much higher than the difference between κN and
κB in practical (which is also illustrated in our dataset described
in Section 4.1). Accordingly, we only discuss the case when −α <
κB − κN ≤ β in what follows.

3.1 Problem formulation
For simplicity, we first let z = p∗

N
=

κB−κN +α
α+β

. Then, Equ. (25) can

be rewritten as

�pN = f (z, pN ) = γ (α + β )pN (1 − pN ) (pN − z) (26)

2We assume that the behavior control is temporary, which means once the control
actions stop, the payoff matrix will be recovered to its original value.
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As analyzed in Section 2.2, to converge pN is essentially to relocate
the rest point z (i.e., to be smaller than pN ) such that pN is in
the area flowing to 1, as Figure 3(a) shows. Moreover, pN should
converge to 1 as fast as possible, which means we need to find the
location of z that maximizes the value of �pN = f (z,pN ).

On the other hand, changing z too quickly and too drastically
may be detrimental to users, due to blatant modifications to user-
sâĂŹ social network experience (e.g., users may be unhappy with
social network experience whenmany of their messages are delayed
by the system). Particularly, if pN is pushed to the convergence area
such that it will flow to 1 quickly, then to keep controlling z can only
make tiny improvement of pN ’s convergence speed at expense of
unnecessary cost. In this case, z should be recovered to its original
value to reduce the cost, as Figure 3(b) shows. Next, by considering
both pN ’s convergence speed and the limit of z’s modification, we
formulate the problem as an optimization problem.

We assume that actions to achieve behavior control can only
be taken in a series of discrete time points δ , 2δ , ..., Kδ , where Kδ

is the maximum acceptable time for convergence. We use p(k )
N

to
represent pN (kδ ) and call the time interval [(k − 1)δ ,kδ ) time slot
k . We assume that δ is small enough such that

p
(k+1)
N

− p
(k )
N
=

∫ kδ

(k−1)δ
f (z, pN )dt ≈ f

(
z(k ), p

(k )
N

)
δ . (27)

We also use z(k ) to represent z value in time slot k . For each positive
integer k , we have

p
(k )
N
=

k−1∑
l=1

f
(
z(l ), p

(l )
N

)
+ p

(1)
N
. (28)

Our objective is to find the minimal integer ym such that p
(ym)
N
= 1.

In addition, we need to set a constraint Λ to limit the total change
of z in the whole process:

∑ym
k=1

|z(0) − z(k ) | ≤ Λ. Consequently, we
formulate the user behavior control problem as:

min y (29)

s.t. p
(k )
N
=

k−1∑
l=1

f
(
z(l ), p

(l )
N

)
+ p

(1)
N
, ∀k = 1, 2, ..., K (30)

min
{
k

���p(k )N
= 1, 1 ≤ k ≤ K

}
≤ y, (31)

K∑
k=1

���z(0) − z(k )
��� ≤ Λ, (32)

z(1), ..., z(K ) ∈ [0, 1] and y ∈ Z+ (33)

where z(1), ..., z(K ) and y are decision variables, z(0) is the original
value of z, Kδ is pN ’s maximum convergence time allowed by the
platform, and Z+ represents positive integers.

The above problem is a mixed integer problem (MIP), which is
NP-hard in general. Even if we relax y to a continuous region, the
relaxed problem is still non-convex. Considering the computational
tractability, in the following we propose a greedy algorithm, namely
the fast behavior control (FBC) algorithm, that can effectively con-
verge pN to 1 with low time complexity. Before introducing the
algorithm, we first derive a lower bound of ym in Proposition 3.1.
By comparing this lower bound with the solution of FBC, we can
find how close that FBC can achieve to the optimal.

Proposition 3.1. The minimum element in the set Ω, defined by

Ω =

⎧⎪⎪⎨⎪⎪⎩k ∈ Z+

������
(
1 + γ δ (α+β )

4

)k−1
p
(1)
N

−
γ δ (α+β )

4

(
(k − 1) z(0) − Λ

)
≥ 1

⎫⎪⎪⎬⎪⎪⎭ (34)

p(k)
N

Move z

z(0) (z(k))

(a) When pN < z , move z to be
smaller than pN to push pN to 1.

p(k)
N

Move z

z(k) z(0)

(b) When pN > z , move z back to
its original value to reduce cost.

Figure 3: Two cases in behavior control.

Σl=1(z(l)-z(0))/�k

p(k)
N

≥

1

1

0

0

Figure 4: The constraint of FBC’s z change in time slot k .

must be a lower bound of ym.

Proof. First, according to the constraint Equation (32), we have
ym−1∑
k=1

(
z(0) − z(k )

)
≤

ym−1∑
k=1

���z(0) − z(k )
��� ≤ Λ, (35)

and hence
∑ym−1
k=1

z(k ) ≥ (ym − 1) z(0) −Λ. Then based on Equation

(26) and (27), and the inequality
(
1 − p

(k )
N

)
p
(k )
N

≤ 1
4 , we have

p
(k+1)
N

−p
(k )
N

≤
γ δ (α + β )

4

(
p
(k )
N

− z(k )
)
for each k = 1, ..., ym − 1 (36)

from which we can further derive that (to save space we let ξ =
γ δ (α+β )

4 )
p
(ym)

N
≤ (1 + ξ )ym−1 p

(1)
N

− ξ

ym−1∑
k=1

(
z(k ) (1 + ξ )ym−k−1

)
≤ (1 + ξ )ym−1 p

(1)
N

− ξ

ym−1∑
k=1

z(k ) (since ξ > 0)

≤ (1 + ξ )ym−1 p
(1)
N

− ξ
(
(ym − 1) z(0) − Λ

)
. (37)

By embeddingp
(ym)
N
= 1 into Equation (37), we obtain the constraint

defined in Equation (34)(
1 +

γ δ (α + β )

4

)ym−1

p
(1)
N

−
γ δ (α + β )

4

(
(ym − 1) z(0) − Λ

)
≥ 1. (38)

Hence ym must be in Ω, indicating the minimum value in Ω is a
lower bound of ym. �

To find the minimum element of Ω, we simply check the integers
from 1 to K one by one by increasing order, and pick up the first
one satisfying Ω’s inequality, where the time complexity is O(K).
The comparison of this lower bound and the solution of FBC will
be shown in Section 4 (Figure 8).

3.2 The FBC algorithm

The basic idea of FBC is to maximize the convergence efficiency of
pN , v(k ), in each time slot k , where v(k ) is a relative measure of
pN ’s convergence speed to the change of z(k ):

v (k ) =
(
�p
(k )
N

)r /���z(0) − z(k )
��� . (39)

Here, r is FBC’s speed parameter that affects the convergence speed
and cost of the algorithm. The higher r is set, the faster pN will
converge to 1, and the more z will be modified.

On the other hand, we need to limit the modification of z in each
step. As Fig. 4 shows, in each step, FBC is essentially to move pN
to 1 and simultaneously to prevent the sum of (z − z(0))/Λ from
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reaching 1. Accordingly, after adjusting z(k ) in each time slot k ,
if we can make sure that the relative remaining space allowed to

modify z, i.e., 1 −

∑k
l=1

(
z(0)−z(l )

)
Λ , is larger than 1 − pN , then we

can guarantee the total change of z can never exceed Λ before pN
converging to 1. Consequently, we formulate the following problem
for FBC in each time slot k :

max v (k ) s.t. 1 −

∑k
l=1

��z(0) − z(l )
��

Λ
≥ 1 − pN (40)

The above problem is a constrained single variable minimization
problem with decision variable z(k ). It is essentially to find z(k ) that

maximizes the value of non-liner function
γ (α+β )p

(k )
N

(
1−p(k )

N

) (
p
(k )
N

−z(k )
)

|z(0)−z(k ) |

in interval
[∑k−1

l=1

���z(0) − z(l )
��� − pNΛ + z(0),Λ −

∑k−1
l=1

���z(0) − z(l )
��� + z(0)] ,

and we can directly apply the existing well-developed solutions to
address this problem [28].

4 EMPIRICAL VALIDATION

In this section, we turn our attention to practical applications of
the proposed behavior control mechanism. We first validate the
main hypotheses of our model (in Section 4.1). We test our FBC
algorithm through simulations, based on both real-world data (in
Section 4.2) and synthetically generated data (in Section 4.3). The
main metrics we will measure include:
1) Proportion of bullying triggering messages (denoted by ptrB );
2)Average ratio thatmessages are responded by bullying (non-bullying)

messages (denoted by κ
rsp
B (κ

rsp
N ));

3) Convergence time, the num. of slots to converge pN to 1;
4) Total change cost, the total change of the rest point z over time.

4.1 Datasets

To verify the feasibility of our model and behavior control approach,
we first used a real-world dataset from a real social network. Further,
we created our own synthetic dataset to further validate and assess
our model and related algorithms in more controlled settings.

MySpace dataset. TheMySpace dataset in [35] contains 3032 posts
on the MySpace social network generated by 1129 distinct users
in 118 distinct threads and over the course of approximately four
years. In each thread, a set of triggering messages are first posted,
and then users can respond to either the triggering comments or to
other users’ comments. When posting messages, users may read the
messages left by other users in the same thread. All the messages
have been labeled by either “bullying” or “non-bullying”. The graph
depicted in Figure 5(a) records how users (represented by nodes)
sent response messages (represented by edges) to others, where
the bullying and non-bullying messages are marked by red and
blue color, respectively (each edge may have multiple messages and
we marke it by red color if it has at least one bullying message).
As small number of bullying comments can hardly generate any
influence, in this part, we only focused on the 76 threads that have
at least 3 triggering bullying comments from the trace.

We first calculated the average response ratio to (non-)bullying
messages in each thread, and compared their distribution over 76
threads in Figure 5(b). The average response ratios to bullying and
non-bullying messages are 1.033 and 0.896, respectively, which
suggests users are more likely to respond bullying messages than

(a) The network topology of the
MySpace trace

0 0.5 1 1.5 2 2.5 30

10

20

Re
sp

on
se

 ra
tio

0 0.5 1 1.5 2 2.5 30

10

20

Ratio of response

Response ratio of
non−bullying msgs

Response ratio of
bullying msgs

(b) Ave. response ratio distribution of
(non-)bullying messages

0 0.1 0.2 0.3 0.4 0.5

Proportion of triggering bullying msgs

0

0.2

0.4

0.6

0.8

1

Av
e r

ati
o m

sg
s a

re
 re

sp
on

de
d 

by
 th

e t
wo

 ty
pe

s o
f m

sg
s

Bullying
Non-bullying

(c) Correlation between the proportion of
triggering bullying and its peer pressure
to the two types of responses

0 0.2 0.4 0.6

Responce ratio to bullying msgs

0

0.2

0.4

0.6

0.8

1

Av
e r

ati
o m

sg
s a

re 
res

po
nd

ed
 

by
 tw

o t
yp

es
 of

 m
sg

s Bullying
Non-bullying

(d) Correlation between the response ra-
tio to bullying messages and its pressure
to two types of responses

Figure 5: Analysis of the MySpace dataset

non-bullying ones. We also obtain the average response ratio of all
the messages γ̂ = 0.906.

We then checked how ptrB is correlated to users’ response in

different threads, say κ
rsp
B and κ

rsp
N . As shown in Figure 5(c), the

correlation between ptrB and κ
rsp
B equals 0.80, and the correlation be-

tween ptrB and κ
rsp
N equals -0.81. Hence, there is a strong correlation

between users’ different types of response and ptrB , supporting the
hypothesis introduced in our chemical diagrams (Equation (1)-(2))
which assumes that higher proportion of bullying comments will
increase (decrease) users’ intention of generating bullying (non-
bullying) messages. In addition, Figure 5 shows that the response
ratio to bullying messages is positively and negatively correlated to
κ
rsp
B and κ

rsp
N , respectively, where their correlations equal to 0.5628

and -0.5522. Intuitively, this indicates that reducing the response
ratio of bullying messages (e.g., via blocking messages) may help
decrease the influence of bullying messages.
Payoff matrix parameter learning. To simulate users’ behavior,
we first need to estimate the payoff matrix parameters α , β , κN , and
κB . As opposed to the metrics analyzed in Figure 5, α , β , κN , and
κB cannot be directly measured. However, these parameters can be
inferred from other observable metrics, like ptrN, p

tr
B , κ

rsp
N , and κ

rsp
B .

Specifically, we have
[
ptrN ptrB

]
A =

[
κ
rsp
N κ

rsp
B

]
, and by linear

regression we can infer that β̂ = 1.66, κ̂N = 0.87, κ̂B = 1.23, and
α̂ = 0.84. We will use these estimated parameters in both real-trace
and synthetic simulation.

4.2 Real-Trace Driven based Simulation
In this part, we carry out a simulation based on the 76 threads in
MySpace dataset. We consider the triggering messages and their
responses in each thread as the messages in time slot 1 and 2,
respectively. We then simulate users’ behaviors (posting bullying or
non-bullying messages) in the later 18 slots based on the estimated
payoff matrix. For the settings of FBC, we select to control the rest
point z via adjusting κB , with the total change cost no larger than
3, and we set the speed parameter r = 3 by default.

Session 6: Social Networks AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

207



10 20 30 40 50 60 70
5

10

15

20

C
on

ve
rg

en
ce

 ti
m

e

Without BC
FBC (�=5.0)

10 20 30 40 50 60 70

Different threads

0.5

1

p B(1
)

z(0)

pN
(1)

10 20 30 40 50 60 70

0.5

1

1.5

2

To
ta

l c
ha

ng
e 

co
st

z(0) = 0.48

7.8% threads have p(1)
N   lower than z(0). 

pN will never converge to 1 without FBC

Group 1

Group 2Group 3

63.2% threads have p(1)
N  higher than 76%. 

pN will converge to 1 quickly even without FBC

(a) Convergence time of 76 threads (threads are ordered by decreasing p(1)N ).

5 10 15 20
0

0.5

1

p N

without FBC
FBC (�=2.0)
FBC (�=2.5)
FBC (�=3.0)

5 10 15 20
Time slots

0.6

0.8

1

p N

without FBC
FBC (�=0.5)
FBC (�=1.0)
FBC (�=1.5)

When pB
(1) < z(0)

When pB
(1) > z(0)

(b) Examples when p(1)N is lower and higher

than the original rest point z(0) .

1 2 3 4 5
0

10

tim
e 

slo
ts

1 2 3 4 5
Speed parameter r

0

2

4

to
ta

l c
ha

ng
e 

co
st

Convergence time

Total change cost

(c) The performance of the FBC algo-
rithm with different r .

Figure 6: Simulation based on real-world data.

We first compare the convergence time with and without FBC

over 76 threads in Figure 6(a), in which we also depict p(1)N and the
total change cost of different threads. In the figure, we order the

threads by decreasing p
(1)
N , and divide all the threads into three

groups, which have p(1)N ∈ [0, 0.48), p(1)N ∈ [0.48, 0.76], and p(1)N ∈

[0.76, 1], respectively. Here, 0.48 is the value of initial rest point z(0)

and 0.76 is the value of p
peak
N

that maximizes the convergence speed
�pN (defined in Equation (26)). Both 0.48 and 0.76 are calculated
based on the estimated payoff matrix.

Not surprisingly, we find that the threads in group 1 (7.8% of all)

cannot move their pN to 1 without FBC, as the initial p(1)N is in the
area converging to 0. However, FBC can alter the moving direction
of pN and eventually converge pN to 1. In contrast to group 1, the
threads in group 3 (63.2% of all) have their pN moving to 1 quickly
even without any control. Further, there is no significant difference
between the convergence time with and without FBC in group 3,

as when pN ≥ p
peak
N

, moving z will either reduce the convergence
speed (when moving to 0) or only make a tiny improvement in
speed (when moving to 1). Therefore, FBC needs to take fewer
actions in group 3 and the total change cost is at most 0.5. Finally,
from group 2, we observe that FBC increases the convergence speed
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Figure 7: Simulation based on synthetically generated data.

of pN significantly (by up to 122.2%), especially when p
(1)
N

≤ 0.7,
though most threads can move pN to 1 automatically.

In the next experiment, we check how FBC helps pN converge
to 1 with different constraint Λ. We randomly pick one thread in
group 1 and 2, respectively, and depict the convergence process of
pN over time without and with FBC (using different Λ) in Figure
6(b). Specifically, we adjust Λ from 2 to 3 in group 1 and from 0.5
to 1.5 in group 2. From the two figures, we observe that 1) when

p
(1)
N
< z(0), FBC can alter the motion direction of pN in a short

time (1 time slot) and eventually move pN to 1; 2) when p(1)
N
> z(0),

FBC can increase the convergence speed of pN ; 3) FBC has higher
convergence speed when Λ is higher.

Finally, we test how the change of FBC’s speed parameter r will
affect FBC’s performance. We adjust r from 1 to 5 and depict the
median, 5th and 95th percentile of the convergence time and the
total change cost of FBC over all 76 threads in Figure 6(c). The two
figures demonstrates that, with the increase of r , the convergence
time of pN is reduced and the total change of z enhances, indicating
higher speed requires higher cost. Also, we observe that compared
with r = 3, the convergence time of r = 4, 5 is reduced slightly (by
at most 3.3%), but the cost is increased considerably (by at least
101.2%), which suggests that r should be set lower than 4.

4.3 Synthetic Data based Simulation
For these experiments, we again use the payoff matrix estimated

via MySpace data, and manually change other parameters, like p(1)N ,
the death ratio ρ, and the response ratioγ to test the model and FBC
under different scenarios. The simulation is run for 20 time slots,
and over 4,000 messages are generated at the first time slot. The goal
of these experiments was to further validate our algorithm under
various configurations, and specifically to assess evolution of the
game over multiple time slots, as well as its theoretical boundaries.

First, we test how initial status of pN affects the convergence

of pN . We set p(1)N by 0.60, 0.40, and 0.48, and ran the simulation
with each setting for 100 times. We then randomly pick up 5 results

for both p(1)N = 0.60, 0.40 and 10 results for p(1)N = 0.48, where pN ’s
moving process over time of all the picked results are depicted in
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Figure 7(a)(b). We also compare these simulation results with the
curves derived from formulas (Equation (20) and (21)) in the two
figures. From Figure 7(a), we observe that all pN s move to their

stable points (1 when p(1)N = 0.60 and 0 when p(1)N = 0.40) at the be-
ginning, and pN ’s motions in different trials are all consistent with
their corresponding formula curves. However, when pN is located
at an unstable rest points, like in Figure 7(b), the moving direction
is uncertain at the beginning and is possibly oppose in different
trials. But once pN leaves the unstable rest point 0.48, the moving
direction seldom changes unless it reaches a stable rest point.

In addition to learning the proportion of (non)-bullyingmessages,
we are also interested in observing how the number of the two types
of messages evolve over multiple time slots. Here, we take two cases
as examples:
Case I: when max {κN ,κB } ≤

ρ
γ (we set ρ = 0.6 and γ = 0.4)

Case II: when max{κN − α ,κB − β} ≤
ρ
γ ≤ min{κN ,κB } (we set

ρ = 0.6 and γ = 0.6), where the direction fields of the two cases are

shown in Figure 1(a) and (e). In Case II, we also set p(1)
N

to be lower
than 0.45 (Note that, in this case, the number bullying messages
and non-bullying messages increases and decrease in Figure 1(e)).
In Figure 7(c) and (d), we depict the number&proportion of (non)-
bullying messages over time with and without FBC in the two cases.
We observe that without any control, 1) the number of both types
of messages decrease in Case I, which is consistent with Figure 1(a),
2) the number of bullying and non-bullying messages increases and
decreases, respectively in Case II, which is consistent with Figure
1(e), and 3) pN in both cases moves to 0. But FBC can still push pN
to 1 eventually in both cases.

Finally, in Figure 8- for theoretical interest- we also compare
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Figure 8: Convergence time of

FBC and the lower bound

the solution of FBC with
the lower bound derived in
Proposition 3.1. In this ex-

periment, we change p
(1)
N

from 0.3 to 1. We observe
that the ratio of the lower
bound to FBC ranges from
0.6 to 1, which is no smaller
than the approximation ra-
tio, as the optimal solution
must be in the gap between the lower bound and FBC. The figure
also shows that with the decrease of pN , the gap between FBC and
the lower bound increases. This is partially due to the relaxation
of �pN ’s upper bound when deriving the inequality constraint in
Proposition 3.1. The relaxation takes place in each time slot, and
hence the error is likely to accumulate over time.

5 RELATEDWORK

There are many social, biological, and physical systems in which a
number of discrete individuals adjust an internal variable based on
mutual interactions, leading the group to converge towards some
sort of consensus (see [44] and its references). These models also
depend sensibly on the connectivity of the individuals [7, 16, 38],
so many of these models have been considered in the context of
networks, like social networks [2, 18, 26]. For example, KrauseâĂŹs
original consensus model [38] has been studied in networks, in

particular by Olfati-Saber Murray [49] and Blondel et al. [4, 5] .
Algorithms for consensus are proposed in [15, 17, 22]. Recent work
by Proskurnikov et al. [52] studies the opinion consensus problem
with hostile camps. Distributed consensus in a stochastic setting is
studied in [55] and in second-order multi-agent systems in [43].

A distinct class of models consider the spread of a behavior on a
social network as a contagion and applied mathematical epidemio-
logical models. Epidemic models are also graph-based, and focus
on individual accounts and connections between them. Individu-
als in the graph are exposed to a contagion through interaction
with a neighbor in the network. Nodes are influenced by or altered
by this exposure with some probability [27]. These models have
been successfully used to explain the dynamics of diverse processes
from emotional contagion on Facebook [13, 37] to health-related be-
haviors such as smoking, alcohol consumption and obesity [9–11].
Negative online behavior spread, like anti-normative comment-
ing can also be modeled by a variation on an epidemic model (see
[40, 41] and its references).

Among the models for interactions in dynamic systems, evolu-
tionary game theory offers a conveniently adjustable and straight-
forward model for well-characterized strategic interactions, which
include aspects such as sub-optimal stable equilibria and multiple
equilibria [30]. Work in theoretical biology has begun to use evo-
lutionary games on graphs in similar ways to understand network
topologies for which evolutionary stability can be expected [47, 48]
and develop variations on the replicator dynamic (see e.g., [21, 54]).
Hussein [32] investigated a similar problem for generic network
social behaviors while Pantoja and Quijano [50] investigate a dis-
tributed optimization problem on a network with the replicator. We
note that recent work by Madeo and Mocenni [42] has developed a
general replicator dynamic on graph structures, extending previous
results [47, 48]. A result most closely related to this paper is found
in [24], which studies convergence of best-response strategies on
graphs. As far as we know, our paper is the first work to apply
graphical EGT for modeling and developing strategies to address
the deviant behavior problems.

6 CONCLUSIONS
In this paper, we used graphical evolutionary game to model the
interaction among online users’ behavior, and analyzed the dynam-
ics of (non-)deviant behaviors of all users given the payoff matrix.
Based on this framework, we then proposed a behavior control
strategy, namely FBC, to converge the proportion of deviant behav-
ior to 0 by adjusting the payoff matrix with limited change. The
simulation results based on both real world data and synthetic data
demonstrate the efficiency of FBC.

In the future, we plan to investigate the problem in a heteroge-
nous setting, in which users may have different social influence to
their neighbors and hence the payoff matrices among users might
be different. Further, we plan to carry an extensive real user study
online to further test and revise the model, and also develop a
behavior control prototype in an actual online social platform.
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