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1 MOTIVATION AND PROBLEM STATEMENT
Simple organisms have evolved local interactions among individu-

als that produce useful collective behaviors: Bacteria interact with

each other to move across cell surfaces efficiently by synthesizing

a large number of flagella [1]; ant colonies have evolved collective

behaviors for foraging, nest defense, path planning and construc-

tion [2]; bees are able to select best sites among many good sites at

their disposal [8]; and fish are able to avoid predators by organizing

themselves in collective shapes that deter predation [4].

Mimicking these collective behaviors in robots swarms would be

beneficial for understanding social intelligence, collective cognition,

and potential applications in engineering, artificial intelligence, and

robotics. The problem of finding a set of individual behaviors to

obtain a desired collective behavior is a hard problem. Convention-

ally, mimicking these behaviors with robots requires researchers to

study actual behaviors, derive mathematical models, and implement

these models as algorithms.

There are different ways to obtain the desired behaviors in

swarms such as artificial neural networks, genetic programming

based structures, logic-based symbolic controllers and behavior-

based controllers. One approach to identifying individual behaviors

that induce desirable collective behavior is to use Grammatical Evo-

lution (GE), a type of Evolutionary Algorithm. GEs [6, 7] work by

restricting the search space by “seeding” the solution space using

domain-specific knowledge. Thus GEs seek to find solutions to the

problems for which Genetic Programming (GP) [5] takes too long.

We propose a distributed algorithm, Grammatical Evolution algo-

rithm for Evolution of Swarm bEhaviors (GEESE), which uses gram-

matical evolution to evolve (a) a primitive set of human-provided

rules into (b) productive individual behaviors that (c) exhibit desir-

able collective behaviors.
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When multiple agents are distributed in different spatial regions,

the search for high-quality solutions can be accelerated if all the

agents start in a different spatial location and interact with each

other, sharing their knowledge of the search space accumulated so

far. Distributed evaluation of fitness and searching different parts

of the spatial domain suggest that a multi-agent GE may generate

effective collective behaviors in swarms. GEESE is implemented as

a distributed algorithm.

2 APPROACH
Grammatical Evolution (GE) is a context-free grammar-based GP

paradigm that is capable of evolving programs or rules in many

languages [6, 7]. GE adopts a population of genotypes represented

as binary strings, which are transformed into functional phenotype

programs through a genotype-to-phenotype transformation. The

transformation uses a BNF grammar, which specifies the language

of the produced solutions. In GE, there is a central population of

genomes where each genome is assigned a fitness or quality value.

Only the portion of the population having higher fitness values are

selected for genetic operations.

GEESE is similar to GE in terms of initialization, genetic oper-

ators, and genotype-to-phenotype mapping. GEESE starts with a

fixed number of agents initialized with a random string of integers

(genotype). In a mild abuse of notation, the genotype of an agent is

also referred to as an agent in GEESE; i.e, each agent has its own

individual genotype. Each agent is capable of performing three

basic functions: sense, act and update in a given environment.

Sense. During the sense step, agentAj uses input from its sensors

to get information about the environment. If agent Aj senses other

agents Ai nearby, denoted Neighborhood(Aj ), agent Aj requests

each agent Ai ∈ Neighborhood(Aj ) to share its genotypeGi . The

agent temporarily stores the genotypes of nearby agents in Mj .

Act. During the act step, agent Aj checks its memoryMj where

it stores all the genotypes received from agents in its neighborhood.

If its memory Mj is empty, then it doesn’t perform any action;

otherwise, it performs a series of operations. First, it adds its own

genotype to the memory. Second, a selection operator is performed

on its memory to get parents. Selection samples from memory a

subset of genotypes to be used to form a new population. Third,

the crossover operator is applied to the parents to add children to

the population; parents are discarded from the population after

crossover. The set of children is mutated using a mutation operator,
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fitness is evaluated for the set of children, and the mutated geno-

types are added to the population. The highest performing child,

G∗
, is returned.

Update. During the update step, an agent checks whether the

best genotype returned by the act step is superior to the current

genotype. Agent Aj will replace genotype G j withG
∗
if the fitness

of G∗
exceeds the fitness of G j .

The advantage of GEESE over standard GE is that each agent

is capable of applying genetic operators on its own. Using GEESE,

each agent is able to compute GE onboard without centralized stor-

age of genome population; i.e. GEESE computation is distributed

and performed online. This enables each agent to search the evolu-

tionary fitness landscape starting from a different location in the

landscape. Instead of evaluating the whole population at each gen-

eration, GEESE evaluates locally, increasing the chances of average

individuals to reach the next generation. This enables GEESE to

maintain genetic diversity and slow down convergence.

3 EVALUATION
Santa Fe Trail. Santa Fe Trail [3] is toroidally connected grid

structure where food is scattered in a predefined way. The objec-

tive of the Santa Fe Trail problem is to evolve a program that can

navigate this trail, finding all the food. An agent can perform three

moves: turn left, turn right, and move ahead.

For this experiment, 50 evolutionary runs were conducted for

both conventional GE and for GEESE. Population size was set to

100, maximum generation to 50, mutation probability to 0.01 and

crossover probability to 0.9 for the experiment.

Figure 1: On average, GEESE converges quicker than GE.

Figure 1 demonstrates that GEESE converges to a solution faster

than standard GE. The solid line is the mean fitness. GEESE required

fewer generations with a smaller effective population size to solve

the Santa Fe Trail problem in comparison with standard GE. The hit
rate (percentage of trials that collect all food) for Standard GE with

50 runs is just 6% whereas the hit rate from GEESE is 57%. Also, one

of the programs evolved by GEESE was able to complete the trail in

324 steps which is fewer than any other known solution [10]. This

shows that GEESE outperforms standard GE in the Santa Fe Trail

problem.

Foraging. GEESE was evaluated on a foraging scenario known

as the center place food foraging problem [9]. The agent’s task is to

collect food from a source region in the environment and bring the

food to a hub region in the environment. Initially, all the agents are

located inside the hub. Agents carry the food units from source to

hub where the food is stored. Agents do not have prior information

regarding the source location. Agents carry as many food units

back to the hub as possible during a fixed time frame.

GEESE requires a BNF grammar to evolve a solution. For the

foraging problem, we design the grammar based on the primitive

behaviors the agent can perform in the environment. The pheno-

type obtained from the grammar defines a rule. A rule is made up

of three elements: states, preconditions and transitions. States are the
low-level behavior, which is an activity that an agent can execute

in the environment. Preconditions are the boolean values which are

evaluated before transitioning to other states. Transitions refer to
the probability of transitions between states. Thus, the phenotype

encodes a state-machine.

We created a hand-coded benchmark for comparison. The bench-

mark consisted a set of 13 rules from the grammar. The hand-coded

program was able to collect 77 units of food in an average of 284

timesteps. For both standard GE and GEESE, fifty evolutionary

runs were executed with 100 agents, 0.9 crossover probability, 0.01

mutation probability, tournament selection, and generational-type

replacement. On average, 56 units of food were collected by the

agents using standard GE, which is fewer than the hand-coded

benchmark. Moreover, the evolved programs lacked communica-

tion behaviors, even though the grammar was capable of expressing

communication.

The GEESE evolved program was more efficient than the hand-

coded program; one evolved program had only 8 rules in contrast

to the 13 rules in the hand-coded program. The evolved program

on average collected 83 units of food in 284 timesteps which is

higher than the benchmark value. The evolved program contained

communication behaviors. One of the benefits of using GE for

the evolution of swarm behaviors is that evolved behaviors are

expressed as a human-readable program.

4 SUMMARY
This paper presented the GEESE algorithm, a grammatical evolu-

tion algorithm for a multi-agent system. Results demonstrated the

effectiveness of GEESE on the Santa Fe Trail problem, outperform-

ing the state of the art in terms of minimum steps to solve the

problem. Additionally, GEESE was used to evolve individual behav-

iors that lead to successful colony-level foraging, outperforming

behaviors evolved by conventional grammatical evolution as well

as hand-coded individual behaviors.
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