Learning Agents in Financial Markets: Consensus Dynamics on Volatility

Extended Abstract

Tushar Vaidya
SUTD Singapore
tushar_vaidya@mymail.sutd.edu.sg

Carlos Murguia
University of Melbourne
Melbourne, Victoria
Carlos.murguia@unimelb.edu.au

Georgios Piliouras
SUTD Singapore
georgios@sutd.edu.sg

ABSTRACT

Black-Scholes (BS) is the standard mathematical model for European option pricing in financial markets. Option prices are calculated using an analytical formula whose main inputs are strike (at which price to exercise) and volatility. The BS framework assumes that volatility remains constant across all strikes, however, in practice it varies. How do traders come to learn these parameters? We introduce and analyze the convergence properties of natural models of learning agents, in which they update their beliefs about the true implied volatility based on the opinions of other traders.

KEYWORDS

opinion dynamics; volatility smiles; trading agents

ACM Reference Format:

1 INTRODUCTION

A European option is the right to buy or sell an underlying asset at a fixed point in the future at a fixed price, also known as the strike. A call option gives the right to buy an asset and a put option gives the right to sell an asset at the agreed price. On the opposite side of the buyer is the seller who has relinquished his control of exercise. Buyers of puts and calls can exercise the right to buy or sell. The payoff of a buyer of a call option with stock price \(S \) at expiry time \(T \) and exercise price \(K \) is \(\text{max}\{S_T - K, 0\} \), whereas for a put option is \(\text{max}\{K - S_T, 0\} \).

To get a price we input the current stock price \(S_0 \) (e.g. $101), the exercise price \(K \) (e.g. $90), the expiry \(T \) (e.g. three months from today) and the volatility \(\sigma \) in the Black-Scholes (BS) formula and out comes the answer, the quoted price of the instrument [8].

\[
\text{Price} = BS(S_0, K, T, \sigma).
\]

Volatility, which captures the beliefs about how turbulent the stock price will be, is left up to the market. This parameter is so important that in practice the market trades European calls and puts by quoting volatilities.\(^1\) How does the market decide about what the quoted volatility should be (e.g. for a stock index in 3 months from now) is a critical, but not well understood, question.

If the underlying asset and the time to exercise \(T \) (e.g. 3 months) are the same, one would expect the volatility to be the same at different strikes. In practice, however, markets after the 1987 crash have evolved to exhibit different volatilities. This rather strange phenomenon is referred to as the smile, or smirk (see figure 1). Depending on the market, these smirks can be more or less pronounced [14].

Related work. Multiple learning models have been studied in economics [16] and machine learning/AI [18, 25, 31]. We focus on simultaneous observational learning and not sequential learning common in many theoretical economics models [32]. Specific models on order placement by traders are developed in [22, 34].

Discrete dynamical systems are now standard tools in opinion formation [20]. As in [3, 23] we use a linear dynamical systems framework. The work closest to us in spirit is that of [4] though our focus is on building novel tractable models for volatility smiles. Our models are quite distinct from previous works.

2 CONSENSUS (AGENT DYNAMICS)

We assume that the agents are able to learn how far off they are from the true volatility by informational channels in the marketplace. There are many avenues, platforms and private online chat rooms that provide quotes for option prices; some of these are stale and some are fresh. The agents’ learning ability determines the quality of the feedback from all these sources. We aggregate all of this information in the form of a feedback controller. If the agents are fast learners, they adjust their volatility estimates quickly.

2.1 Consensus with Feedback

We model this feedback by introducing an extra driving term into the opinion dynamics. In particular, we feedback the difference between the agents’ opinion and the true volatility \(\sigma(K, T) \) scaled by a learning coefficient \(\epsilon_i \in (0, 1) \). We assume that \(\sigma(K, T) \) is invariant, i.e., for some fixed \(\bar{\sigma} \in (0, 1) \), \(\sigma(K, T) = \bar{\sigma} \) for some fixed strike \(K \) and maturity \(M \). The opinion \(x_i^j \in \mathbb{R} \) of the \(i \)-th agent is given by

\[
x_i^j = \sum_{j=1}^{N} a_{ij} x_{i-1}^j + \epsilon_i (\bar{\sigma} - x_i^{j-1}),
\]

or in matrix form

\[
X_i = AX_{i-1} + E(\bar{\sigma} 1_n - X_{i-1}),
\]

\(^1\)Using the Black-Scholes formula with particular implied volatility, traders obtain a dollar value price.
True volatility is exogenous, however, we require no static arbitrage, by which we mean that all the quotes in volatility which translate to option prices are such that one cannot trade in the different strikes to create a profit. Checking whether a volatility surface is indeed arbitrage free is nontrivial, nevertheless some sufficient conditions are well known [7]. As long as the volatility surface satisfies them our analysis implies global stability towards an arbitrage free smile. How these arbitrage-free curve volatility conditions are developed is not an easy task: see an account by [27].

3 CONNECTIONS AND CONCLUSION

In actuality, for each smile there are only a few strikes that are actively traded. This means whatever model a trader chooses, there is flexibility in choosing different parameters to produce a perfect fit. In this reality, opinion dynamics seems clear. Model choice is addressed in [6, 9, 21] but the issue of opinions or interaction is not considered. Even with perfect calibration there will be periods when one model outperforms another [15]. In such situations, it makes sense to be close to the crowd! Market-makers optimize to make profits [10] but even here one has to be confident in one’s estimates. Our models convey how such confidence may develop between transactions.

The smile itself is a conundrum and there have even been articles questioning whether it can be solved [5]. The traditional way from the ground up is to develop a stochastic process for the volatility and asset price [19].

While such models have been successfully developed the time is ripe to incorporate multi-agent models with arbitrage free curves.

Thus far, we proved convergence to equilibrium. A natural step forward would be to look at the beliefs as probability measures, where each measure corresponds to a different option pricing model. Our learning models focus on interaction between agents. Actually, traders can be interpreted as algorithms. Each algorithm corresponding to a particular belief of a pricing model.

ACKNOWLEDGMENTS

We acknowledge SUTD Presidential fellowship, National Research Foundation (NRF) grant (Award No. NRF2014NCR-NCR001-40), SUTD grant SRG ESD 2015 097, MOE AcRF Tier 2 grant 2016-T2-1-170 and NRF 2018 Fellowship NRF-NRFF2018-07.
REFERENCES

