
OnQuerying for Safe Optimality in Factored Markov Decision
Processes

Extended Abstract

Shun Zhang
Computer Science and Engineering

University of Michigan
shunzh@umich.edu

Edmund H. Durfee
Computer Science and Engineering

University of Michigan
durfee@umich.edu

Satinder Singh
Computer Science and Engineering

University of Michigan
baveja@umich.edu

ABSTRACT
As it achieves a goal on behalf of its human user, an autonomous
agent’s actions may have side effects that change features of its
environment in ways that negatively surprise its user. An agent that
can be trusted to operate safely should thus only change features
the user has explicitly permitted. We formalize this problem, and
develop a planning algorithm that avoids potentially negative side
effects given what the agent knows about (un)changeable features.
Further, we formulate a provably minimax-regret querying strategy
for the agent to selectively ask the user about features that it hasn’t
explicitly been told about. We empirically show how much faster
it is than a more exhaustive approach and how much better its
queries are than those found by the best known heuristic.

KEYWORDS
Human-robot/agent interaction; Single and multi-agent planning
and scheduling

ACM Reference Format:
Shun Zhang, Edmund H. Durfee, and Satinder Singh. 2018. On Querying
for Safe Optimality in Factored Markov Decision Processes. In Proc. of the
17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
We consider a setting where a human user tasks a computational
agent with achieving a goal to change some state features of the
world (e.g., a housecleaning agent should change the state of the
floors and kitchen sink from dirty to clean). While accomplishing
the goal, the agent also changes other features (e.g., its own position
and power level, opening doors, moving furniture, scaring the cat).
Some of these side-effects might be expected by the user (e.g., mov-
ing), but others may be unexpected/unsafe (e.g., leaving doors open
lets the cat escape) even though they may speed goal achievement.
Although the user tells the agent about some features that can be
changed, as well as some to not change (e.g., don’t knock over the
priceless vase), the user often lacks the time, patience, or foresight
to articulate the changeability of every pertinent feature, and may
incorrectly assume that the agent has commonsense (e.g., about cat
behavior and the value of vases).

How can the agent execute a safely-optimal policy in such a
setting? We conservatively assume that, to ensure safety, the agent

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

should never side-effect a feature unless changing it is explicitly
known to be fine. Hence, the agent could simply execute the best
policy that leaves such features unchanged. However, no such pol-
icy might exist, and even if it does it might surprise the user as
unnecessarily costly/inefficient. Our focus is thus on how the agent
can selectively query the user about the acceptability of changing
features it hasn’t yet been told about. We reject simply querying
about every such feature, as this would be unbearably tedious to the
user, and instead put the burden on the agent to limit the number
and complexity of queries. In fact, in this paper we mostly focus on
finding a single query about a few features that maximally improves
upon the policy while maintaining safety.

2 PROBLEM DEFINITION
We consider a simulated robot gridworld-navigation domain in-
spired by [4] and depicted in Figure 1. The user tasks the agent with
turning off the switch as quickly as is safely possible. The quickest
path (π1) traverses the carpet, but this gets the carpet dirty and the
agent doesn’t know if that is allowed. The agent could instead enter
the room through door d1 and spend time moving box b1 or b2 out
of the way (π2 or π3 respectively), open door d2, and then go to the
switch. However, boxes might contain fragile objects and should
not be moved; the user knows each box’s contents, but the agent
doesn’t. There are of course many other more circuitous paths.

We model the domain as a factored Markov Decision Process
(MDP) [5]. In our example, the agent knows that the user expects
it to change its location and the switch’s status. The agent does not
know, however, about whether it can safely change other features
like the states of boxes, doors, or carpets. Formally, we define the
state s to be features’ values for a set of features, {ϕ1,ϕ2, . . . ,ϕn }.
The state space S is the cross-product of the values the features can
take. We assume the agent knows the transition dynamics.

π1

π2

π3

π4

d1 d2

b1

b2

carpet

b3

d3

Figure 1: The robot navigation domain. The dominating poli-
cies are shown as arrows.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2168

For the purposes of computing safely-optimal policies, the agent
partitions the features into the following sets: (1) ΦA

F : The free-fea-
tures (i.e., freely changeable). The agent knows that these fea-
tures can be changed freely (for example, its location). (2) ΦA

L : The
locked-features. The agent knows it should never change any of
these features. (3) ΦA

? : The unknown-features. These are features
that the agent doesn’t (initially) know whether the user considers
freely changeable or locked. The user similarly partitions features,
but only into the setsΦU

L andΦU
F . We assume that the agent’s knowl-

edge, while generally incomplete (ΦA
? , ∅), is consistent with that

of the user. That is, ΦA
F ⊆ ΦU

F and ΦA
L ⊆ ΦU

L .
Querying: We assume that the only way for the agent to figure
out that an unknown feature is in fact freely changeable is to ask
the user a query about that feature. Thus, the focus of the rest of
this paper is on how the agent can ask a good query about a small
number, k , of features.

3 METHOD
Our solution is to first prune fromΦA

? features that are guaranteed to
not be relevant to ask, and then to efficiently find the best (minimax-
regret) k-sized subset of the relevant features to query.
Querying Relevant Unknown-Features: Intuitively, when is a
feature in ΦA

? relevant to the agent’s planning of a safely-optimal
policy? In the navigation domain, if the agent plans to take the
quickest path to the switch (π1 in Figure 1), it will change the state
of the carpet (from clean to dirty). The carpet feature is thus relevant
since the agent would change it if permitted. If the carpet can’t be
changed but the door d2 can, the agent would follow (in order of
preference) policy π2,π3, or π4, so d2, b1, and b2 are relevant. Box
b3 and door d3 are irrelevant, however, since no matter which (if
any) other features are free, an optimal policy would never change
them. Thus, an unknown feature is relevant when under some cir-
cumstance (some answer to some query) the agent’s optimal policy
would side-effect that feature. Such policies are dominating policies.
Formally, a dominating policy is a safely-optimal policy for the
circumstance where the unknown features ΦA

? are partitioned into
locked and free subsets. The features changed by any dominating
policy are called relevant features, denoted by Φr el .

Following Altman [2], we can use linear programming to find
the optimal policy that does not change ΦL or Φ?. Instead of finding
the dominating policies for all exponentially (in |ΦA

? |) many subsets
Φ ⊆ ΦA

? , we contribute an algorithm that finds dominating policies
incrementally (and in practice more efficiently) by constructing the
sets of relevant features and dominating policies simultaneously.
Initially, let Φ′

r el = ∅. In each iteration, it examines a new subset of
Φ′
r el , Φ, and finds the safely-optimal policy π with Φ being locked

(and Φ′
r el \ Φ being free). It then adds the features changed by π

to Φ′
r el . It repeats this process until Φ

′
r el stops growing and all

subsets of Φ′
r el are examined. When it terminates, Φ′

r el is the set
of relevant features.
Finding minimax-regret queries: The agent need only query
the user about relevant features, but could further reduce the user’s
burden by being selective about which relevant features it asks.
We allow the agent to pose a k-feature query, Φq (Φq ⊆ Φr el and
|Φq | = k), which asks about the changeabilities of features in Φq .

We first define the post-response utility when the agent asks
query Φq and Φc ⊆ ΦA

? are actually changeable: u(Φq ,Φc) =
maxπ ∈Π

ΦA? \(Φq∩Φc)
V π . This is the value of the safely-optimal policy

after the user’s response. We then consider the circumstance where
a set of features Φc are changeable and under which the difference
between the utilities of askingΦq andΦq′ is maximized.We call this
difference of utilities the pairwise maximum regret of queries
Φq and Φq′ , defined in a similar way to Regan and Boutilier [15]:
PMR(Φq ,Φq′) = maxΦc ⊆ΦA

?
(u(Φq′ ,Φc) − u(Φq ,Φc)). The maxi-

mum regret of query Φq is determined by the Φq′ that maximizes
PMR(Φq ,Φq′):MR(Φq) = maxΦq′ ⊆Φr el , |Φq′ |=k PMR(Φq ,Φq′). The
agent wants to askminimax-regret (k-feature) query: ΦMMR

q =

argminΦq ⊆Φr el , |Φq |=k MR(Φq).
Althoughwe could compute themaximum regrets of allk-subsets

of relevant features and find the one has the minimax-regret, we can
avoid doing so by pruning the query space using dominance rela-
tions between queries, and by stopping search for queries when we
know we have found the optimal one. More details of the algorithm
and the evaluations below can be found in [18].
Empirical evaluations: We compare the following algorithms in
a robot navigation domain: (1) Brute force finds all relevant features
first and evaluates all k-subsets of the relevant features. (2) Our
algorithm. (3) A modified heuristic from the literature (CoA) [16].
(4) Other baseline methods: random queries and no queries. As ex-
pected, our algorithm always finds a minimax-regret query just as
the brute force algorithm does, but more efficiently than the brute
force algorithmwhich quickly becomes computationally intractable
with increased k . CoA is computationally even more efficient than
our algorithm, but it does not always find the minimax-regret query.
In particular, our algorithm’s benefits increase with more opportu-
nities to be selective (larger

(|Φr el |
k

)
). The baseline methods, though

the fastest, lead to considerably worse performance than either our
algorithm or CoA .

4 RELATEDWORK & CONCLUSION
Amodei et al. [4] address the problem of avoiding negative side-
effects by penalizing all side-effects while optimizing the value. We
instead allow the agent to communicate with the user. In other
works, safety is formulated as resolving reward uncertainty [3, 7],
handling imperfectly-specified instructions [11], learning safe state
distributions [9], and safe exploration [1, 8, 12]. Other works can
be found in related surveys [4, 6, 10]. Minimax-regret is also used
in other model uncertainty settings [13, 15]. Querying is a common
approach to resolve such uncertainty [14, 17]. Our query selection
strategy differs in that we deal with incomplete knowledge on
feature-changeability.

In summary, we addressed the problem of an agent selectively
querying a user about what features can be safely side-effected. We
borrowed existing ideas from the literature about dominating poli-
cies and minimax regret, wove them together in a novel way, and
injected tweaks into the resulting algorithms to improve scalability
while maintaining safe optimality.
Acknowledgements: Supported in part by the US Air Force Office
of Scientific Research, under grant FA9550-15-1-0039.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2169

REFERENCES
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

policy optimization. In Proceedings of the 34th International Conference on Machine
Learning (ICML). 22–31.

[2] Eitan Altman. 1999. Constrained Markov Decision Processes. Vol. 7. CRC Press.
[3] Kareem Amin, Nan Jiang, and Satinder Singh. 2017. Repeated inverse rein-

forcement learning. In Advances in Neural Information Processing Systems (NIPS).
1813–1822.

[4] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565
(2016).

[5] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. 2000. Stochastic
dynamic programming with factored representations. Artificial intelligence 121,
1 (2000), 49–107.

[6] Javier Garcıa and Fernando Fernández. 2015. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning Research 16, 1 (2015), 1437–
1480.

[7] Dylan Hadfield-Menell, Smitha Milli, Stuart J Russell, Pieter Abbeel, and Anca
Dragan. 2017. Inverse reward design. InAdvances in Neural Information Processing
Systems (NIPS). 6749–6758.

[8] Alexander Hans, Daniel Schneegaß, AntonMaximilian Schäfer, and Steffen Udluft.
2008. Safe exploration for reinforcement learning. In European Symposium on
Artificial Neural Networks (ESANN). 143–148.

[9] Michael Laskey, Sam Staszak, Wesley Yu-Shu Hsieh, Jeffrey Mahler, Florian T
Pokorny, Anca D Dragan, and Ken Goldberg. 2016. SHIV: Reducing supervisor
burden in DAgger using support vectors for efficient learning from demonstra-
tions in high dimensional state spaces. In IEEE International Conference on Robotics
and Automation (ICRA). 462–469.

[10] Jan Leike, MiljanMartic, Victoria Krakovna, Pedro AOrtega, Tom Everitt, Andrew
Lefrancq, Laurent Orseau, and Shane Legg. 2017. AI safety gridworlds. arXiv
preprint arXiv:1711.09883 (2017).

[11] Smitha Milli, Dylan Hadfield-Menell, Anca D. Dragan, and Stuart J. Russell.
2017. Should robots be obedient?. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI). 4754–4760.

[12] TeodorM.Moldovan and Pieter Abbeel. 2012. Safe exploration inMarkov decision
processes. In Proceedings of the 29th International Conference on Machine Learning
(ICML). 1711–1718.

[13] Arnab Nilim and Laurent El Ghaoui. 2005. Robust control of Markov decision
processes with uncertain transition matrices. Operations Research 53, 5 (2005),
780–798.

[14] Kevin Regan and Craig Boutilier. 2009. Regret-based reward elicitation for
Markov decision processes. In Proceedings of the 25th Conference on Uncertainty
in Artificial Intelligence (UAI). 444–451.

[15] Kevin Regan and Craig Boutilier. 2010. Robust policy computation in reward-
uncertain MDPs using nondominated policies. In Association for the Advancement
of Artificial Intelligence (AAAI). 1127–1133.

[16] Paolo Viappiani and Craig Boutilier. 2009. Regret-based optimal recommendation
sets in conversational recommender systems. In Proceedings of the Third ACM
Conference on Recommender Systems. 101–108.

[17] Shun Zhang, Edmund Durfee, and Satinder Singh. 2017. Approximately-optimal
queries for planning in reward-uncertain Markov decision processes. In Proceed-
ings of the 27th International Conference on Automated Planning and Scheduling
(ICAPS). 339–347.

[18] Shun Zhang, Edmund Durfee, and Satinder Singh. 2018. Minimax-regret querying
on side effects for safe optimality in factored Markov decision processes. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI). To appear.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2170

	Abstract
	1 Introduction
	2 Problem Definition
	3 Method
	4 Related Work & Conclusion
	References

