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ABSTRACT
Human aware planning requires an agent to be aware of the mental

model of the human in the loop during its decision process. This can

involve generating plans that are explicable to the human as well

as the ability to provide explanations when such plans cannot be

generated. In this paper, we bring these two concepts together and

show how an agent can account for both these needs and achieve

a trade-off during the plan generation process itself by means of

a model-space search method MEGA∗. This provides a revised per-

spective of what it means for an AI agent to be “human-aware” by

bringing together recent works on explicable planning and plans

explanations under the umbrella of a single plan generation pro-

cess. We illustrate these concepts using a robot involved in a typical

search and reconnaissance task with an external supervisor.
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1 HUMAN-AWARE PLANNING

A Classical Planning Problem [8, 10] is a tupleM = ⟨D,I,G⟩
with domain D = ⟨F ,A⟩ – where F is a finite set of fluents that de-

fine a state s ⊆ F , andA is a finite set of actions – and initial and goal

states I,G ⊆ F . Action a ∈ A is a tuple ⟨ca , pre(a), eff±(a)⟩ where
ca is the cost, and pre(a), eff±(a) ⊆ F are the preconditions and

add/delete effects, i.e. δM (s,a) |= ⊥ if s ̸ |= pre(a); else δM (s,a) |=
s ∪ eff+(a) \ eff−(a) where δM (·) is the transition function.

The solution to the planning problem is a sequence of actions or a

(satisficing) plan π = ⟨a1,a2, . . . ,an⟩ such that δM (I,π ) |= G. The
cost of a plan π is given by C(π ,M) = ∑

a∈π ca if δM (I,π ) |= G;
∞ otherwise. The cheapest plan π∗ = argminπ C(π ,M) is the
(cost) optimal plan, whose cost is denoted by C∗M .
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AHuman-Aware Planning (HAP) Problem is given by the tuple

Ψ = ⟨MR ,MR
h ⟩whereM

R = ⟨DR ,IR ,GR ⟩ is the planner’s model

of a task, whileMR
h = ⟨D

R
h ,I

R
h ,G

R
h ⟩ is the human’s understanding

of the same (i.e. the human mental model).

Thus, a human-aware agent incorporates the human mental
model [3] in addition to the its own model in its deliberative pro-

cess in order to anticipate how its plans are perceived from the

point of view of the human in the loop. For example, an immediate

consequence of differences between the planner’s model and the

human mental model is that optimal plans produced by the planner

are no longer optimal when evaluated in the human mental model

and thus may be considered inexplicable by the human.

Explicable Planning – An “explicable" solution to an HAP is a

plan π such that (1) it is executable (but may no longer be optimal)

in the planner’s model but is (2) “closer” to the optimal (and hence,

expected) plan in the human mental model –

(1) δMR (IR, π ) |= GR ; and
(2) C(π ,MR

h ) ≈ C
∗
MR
h
.

“Closeness” or distance to the expected plan is modeled here in

terms of cost optimality, but in general this can be any metric such

as plan similarity. In existing literature [7, 12, 13] this has been

achieved by modifying the search process so that the heuristic that

guides the search is driven by the human mental model.

Plan Explanations – The other approach would be to compute

optimal (and possibly inexplicable) plans and provide an explana-

tion in terms of the differences with the human mental model that

causes this inexplicability. This is referred to as the model reconcil-
iation process [5, 11] which provides an (1) explanation or model

update E such that the (2) optimal plan is (3) also optimal (and

hence, explained) in the updated human mental model –

(1) M̂R
h ←− M

R
h + E; and

(2) C(π ,MR ) = C∗MR ;

(3) C(π , M̂R
h ) = C

∗
M̂R
h

.

2 EXPLICABILITY VERSUS EXPLANATIONS
Indeed, these two processes of explanations and explicability are

intrinsically related in an agent’s deliberative process. For example,

an agent can generate a explicable plan to the best of its ability or

it can provide explanations whenever required, or it can even opt

for a combination of both – e.g. if the expected human plan is too

costly in the planner’s model (e.g. the human might not be aware of

some safety constraints) or the cost of communication overhead for
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explanations is too high (e.g. limited communication bandwidth).

In the following discussion, we try to attain the sweet spot in this

explanations versus explicability tradeoff.

From the perspective of design of autonomy, the explicability

versus explanations trade-off has two interesting implications – (1)

The agent can now not only explain but also plan in the multi-model

setting with the trade-off between compromise on its optimality

and possible explanations in mind; and (2) By incorporating the

explanation generation process into an agent’s decision making

process itself, we mimic an argumentation process that is known

to be a crucial function of the reasoning capabilities of humans [9].

Indeed, general argumentation frameworks for resolving disputes

over plans have been explored before [2, 6]. Our work can be seen

as the specific case where the argumentation process is over a set

of constraints that prove the correctness and quality of plans by

considering the cost of the argument specifically as it relates to the

trade-off in plan quality and the cost of explaining that plan. This
is the first of its kind algorithm that can achieve this.

A Balanced Solution – The result of a trade off in the relative

cost of explicability and explanations is a plan π and an explanation

E such that (1) π is executable in the agent model, and with the

explanation (2) in the form of model updates it is (3) optimal in the

updated humanmodel while (4) the cost (length) of the explanations

and the cost of deviation from optimality in its own model to be

explicable to the human is traded off according to a constant α –

(1) δMR (IR, π ) |= GR ;
(2) M̂R

h ←− M
R
h + E;

(3) C(π , M̂R
h ) = C

∗
M̂R
h

; and

(4) π = argminπ |E | + α × | C(π ,MR ) −C∗MR |.

With higher values of α the agent will prefer plans that require

more explanation, while with lower α it will be more explicable.

2.1 The MEGA∗ Algorithm
We employ a model space A∗ search (Algorithm 1) to compute the

expected plan and explanations for a given value of α . Similar to

[5, 11] we define a state representation over planning problems

with a mapping function Γ :M 7→ F which represents a planning

problem by transforming every condition in it into a predicate. The

set Λ of actions contains unit model change actions λ : F → F
which make a single change to a domain at a time. We start by

initializing the min node tuple (N) with the human mental model

and an empty explanation. For each new possible model, we test if

the objective value of the new node is smaller than the current min

node. We stop the search once we identify a model that is capable

of producing a plan that is also optimal in the robot’s own model.

This is different from [5], where we were just trying to identify the

first model where a given plan is optimal.

Property. MEGA∗ yields the smallest possible explanation for a

given HAP. This is beyond what is offered by [5], which only com-

putes the smallest explanation given a plan.

Property. α = | MR ∆MR
h | yields the most optimal plan along

with the minimal explanation in a given HAP. α = 0 yields the most

explicable plan. This is distinct from just computing the optimal

plan in the human mental model, since such a plan may not be

Algorithm 1 MEGA∗

1: procedure MEGA∗-Search

2: Input: HAP Ψ = ⟨MR ,MR
h ⟩, α

3: Output: Plan π and Explanation E
4: Procedure:
5: fringe← Priority_Queue()
6: c_list← {} ▷ Closed list

7: Nmin ← ⟨MR
h , {}⟩ ▷ Node with minimum objective value

8: π ∗R ← π ∗ ▷ Optimal plan being explained

9: πRh ← π s.t.C(π ,MR
h ) = C

∗
MR
h

▷ Plan expected by human

10: fringe.push(⟨MR
h , {}⟩, priority = 0)

11: while True do

12: ⟨M̂, E⟩, c ← fringe.pop(M̂)
13: if OBJ_VAL(⟨M̂, E⟩) ≤ OBJ_VAL(Nmin ) then
14: Nmin ← ⟨M̂, E⟩ ▷ Update min node

15: if C(π ∗
M̂
,MR ) = C∗

MR then

16: ⟨Mmin, Emin ⟩ ← Nmin
17: return ⟨πMmin , Emin ⟩ ▷ If π ∗

M̂
is optimal inMR

18: else
19: c_list← c_list ∪ M̂
20: for f ∈ Γ(M̂) \ Γ(MR ) do ▷ Models that satisfy Condition 1 [5]

21: λ ← ⟨1, {M̂ }, {}, {f }⟩ ▷ Removes f from M̂
22: if δMR

h ,MR (Γ(M̂), λ) < c_list then

23: fringe.push(⟨δMR
h ,MR (Γ(M̂), λ), E ∪ λ ⟩, c + 1)

24: for f ∈ Γ(MR ) \ Γ(M̂) do ▷ Models that satisfy Condition 2 [5]

25: λ ← ⟨1, {M̂ }, {f }, {}⟩ ▷ Adds f to M̂
26: if δMR

h ,MR (Γ(M̂), λ) < c_list then

27: fringe.push(⟨δMR
h ,MR (Γ(M̂), λ), E ∪ λ ⟩, c + 1)

28: procedure OBJ_VAL(⟨M̂, E⟩)
29: return |E | + α × | C(π ∗

M̂
,MR ) −C∗

MR |

executable so that some explanations are required even in the worst

case. This is a welcome additions to the explicability only view of

plan generation introduced in [7, 12, 13], where the human model

only guides plan generation but provides no insight into how to

make the remainder of the model reconciliation possible.

Demonstration – We provide a demonstration of MEGA∗ in a

typical [1] search and reconnaissance (USAR) scenario where a

remote robot is assigned tasks by an external (human) commander.

A video can be viewed at https://youtu.be/Yzp4FU6Vn0M . We show

how, for low α , MEGA∗ chooses a plan that requires the least amount

of explanation, i.e. the most explicable plan. This requires only a

single initial state explanation to make the plan seem optimal but

the robot must perform a costly rubble removal action to clear a

path that the human expects to be accessible. The robot switches

to the optimal plan for higher values of α along with a longer

explanation updating the human of the evolved state of the world.

User Study – We also conducted an extensive human-factors study

[4] to evaluate how these explanations are received by humans

in the loop. The salient findings of the study as it relates to the

explicability-explanations trade-off are available in the full report†.
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