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ABSTRACT
Intelligent mobile robots have recently become able to operate au-
tonomously in large-scale indoor environments for extended periods
of time. Task planning in such environments involves sequencing
the robot’s high-level goals and subgoals, and typically requires
reasoning about the locations of people, rooms, and objects in the
environment, and their interactions to achieve a goal. One of the
prerequisites for optimal task planning that is often overlooked is
having an accurate estimate of the actual distance (or time) a robot
needs to navigate from one location to another. State-of-the-art mo-
tion planners, though often computationally complex, are designed
exactly for this purpose of finding routes through constrained spaces.
In this work, we focus on integrating task and motion planning
(TMP) to achieve task-level optimal planning for robot navigation
while maintaining manageable computational efficiency. To this end,
we introduce TMP algorithm PETLON (Planning Efficiently for
Task-Level-Optimal Navigation) for everyday service tasks using a
mobile robot. PETLON is more efficient than planning approaches
that pre-compute motion costs of all possible navigation actions,
while still producing plans that are optimal at the task level.
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1 INTRODUCTION
“Planning", or selecting a sequence of actions to achieve a goal, has
been a core focus of interest within the field of Artificial Intelligence
(AI) since the field was founded in the 1950’s. Initially, the focus of
attention was on task planning which is concerned with sequencing
actions within a symbolic representation of the state space [7]. For
example, if a robot has the goal of obtaining supplies for camping
including milk and frozen hot dogs, both of which could spoil if not
refrigerated, a symbolic planner, given a domain model that includes
coolers, ice, and conditions for spoiling, could identify that the robot
should first buy a cooler, then a block of ice, and then milk and hot
dogs. In general, task planners aim to find the shortest plan in terms
of number of symbolic actions. If action costs are available, some
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task planners are also able to identify the lowest cost plan (which in
general may be longer in terms of number of actions).

A key limitation of task planning is that it assumes that symbolic
actions can be executed “atomically." Continuing our example, it
does not reason about how the robot should traverse continuous
space in order to travel from its current location to the store. Rather
it assumes that the robot can teleport itself to the next location, per-
haps roughly estimating how long it would take to move there in
the real world. In contrast, a largely independent thread of research
exists on motion planning that focuses on producing a continuous
motion plan while avoiding collisions with obstacles in 2D or 3D
continuous space [24]. Traditionally, motion planning has been con-
cerned with computing a path connecting a start configuration to a
goal configuration, without any concern for sequencing of subgoals.

Two Types of TMP Problems. Task and motion planning (TMP)
have historically remained mostly (though not entirely — see re-
lated work) independent, because physical robots have only been
able to execute very short missions that could be solved entirely
with motion planning algorithms. TMP for manipulation (TMP-M)
has attracted much attention of late, mainly to ensure the geometric
feasibility of symbolic plans in highly confined workspaces, with
complex kinematic constraints [6, 10, 13, 23, 33]. Despite the great
success of these approaches, TMP for navigation (TMP-N), i.e., to
select task routes considering task-level domain knowledge and nav-
igation costs, presents sufficiently different challenges that different
approaches are needed, and has not yet been well addressed in the
literature.

Challenges of TMP-N. TMP-N frequently arises in large, knowledge-
intensive domains, in which a robot has to reason about many objects
and their properties, such as feasible locations to acquire and then to
store milk. Moreover, solutions to TMP-N may vary significantly in
quality, where suboptimal plans may significantly delay task com-
pletion schedule, due to long execution time navigating in large
environments.

Because of the recent advances in sustainability of long-term
autonomy on mobile service robots in large-scale environments [1,
14, 21], there is a pressing need to generate task plans that are fully
aware of—and indeed dependent upon—the grounded navigation
costs of task actions that can only be determined by motion planning
algorithms.

With well-defined physical constraints of symbolic states and
a model of the free space and obstacles in the environment, the
navigation costs of all possible task actions can be evaluated and
then used to select the optimal task route. However, in cases with
combinatorially many possible task sequences, doing so can be
computationally infeasible.
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Figure 1: Camping Preparation example: as the number of ob-
jects increases, the number of motion cost evaluations increases
exponentially.

A Motivating Example: Camping Preparation. Figure 1 illustrates
a scenario where a robot needs to prepare items for camping: a hot
dog and a newspaper need to be collected and moved to the storage
room; and the robot has to have a cooler as the container for hot
dogs. In the first setting, to find the optimal task plan, the robot
has to evaluate 7 motion costs. In the second setting, the number of
cost evaluations grows to 20, even after the task planner rules out
plans that do not meet action preconditions (the robot has to collect
a cooler before collecting a hot dog from a fridge). Continuing to
scale up the number of objects, we can see the prohibitively large
number of motion cost evaluations.

The aim of this research is to integrate task and motion planning
to select the optimal (lowest-cost) task route for robot navigation in
a computationally efficient manner. We introduce a novel algorithm,
called Planning Efficiently for Task-Level-Optimal Navigation (PET-
LON), that returns task-level-optimal solutions while significantly
reducing the number of motion cost evaluations. We say a task plan,
in the form of a sequence of symbolic actions, is task-level-optimal,
if its overall action cost is not higher than that of any task plan,
where action costs of the task plans are evaluated using a motion
planner. PETLON is a general approach that can work with a variety
of task and motion planners. In this paper, we evaluate PETLON
with mobile robot delivery tasks both in simulation and on a real
robot. It significantly improves planning efficiency in most cases,
compared with a competitive, task-level-optimal baseline.

2 RELATED WORK
The integration of task and motion planning has a long history
(in some sense, Shakey [30], which executed its plans in the real
world, is the earliest example). However, it is not until recently
that “integrated task and motion planning” has been used as a term

to refer to a family of algorithms that use both task and motion
planners. These algorithms have been developed under very different
assumptions with very different goals, making direct comparisons
a challenge. Here we summarize representative algorithms for this
problem.

aSyMov, as one of the earliest algorithms on integrated task and
motion planning, bridged the gap between task and motion planners
via a set of predefined roadmaps, one for each action [2]. The search
was conducted only at the motion level within and across different
roadmaps (not at the task level), so aSyMov cannot guarantee task-
level optimality.

Hierarchical task network (HTN) [29], as a framework for task
planning, has been integrated with motion planners. Resulting algo-
rithms include SAHTN [37] and HPN [18]. To improve the HTN-
level search efficiency, SAHTN uses an irrelevance function to rule
out irrelevant domain variables (e.g., objects not blocking the way
are not modeled in navigation actions), and HPN uses depth-first tra-
versal and interleaves planning and execution. As a result, SAHTN
and HPN can solve extremely long-horizon planning problems. Al-
though SAHTN is a “hierarchically optimal” algorithm, i.e., its
optimality is conditioned on the hierarchy, it requires an irrelevance
function that is frequently unavailable in practice. More recent work
has extended HPN to model the uncertainty in action outcomes and
observability [19], but neither the original nor the extended HPN
algorithms can guarantee task-level optimality.

Another realization of TMP was achieved via introducing sym-
bolic state constraints at the task level [6], where new constraints are
added into the task planner when no feasible kinematic solution can
be found for the plan generated by the current task planner. Task-
level optimal solutions can be found in that work, only if costs of all
actions are evaluated at the motion level, which can be prohibitively
time-consuming in practice (PETLON is specifically designed to
avoid this). In the work of [4], this idea was formalized to achieve
probabilistically complete TMP, leveraging the incremental solution
capability of Satisfiability Modulo Theories (SMT) [5].

Off-the-shelf task and motion planners can be integrated using a
planner-independent interface [33]. Their task planner is optimistic
at the very beginning and generates very short plans that are fre-
quently infeasible at the motion level. To update the task planner,
their interface needs to explain the motion-level failures to the task
planners. While their approach is applicable to our navigation do-
mains, failure diagnosis is generally a difficult reasoning problem,
especially when a relatively large number of objects and their prop-
erties need to be considered.

Learning algorithms have been incorporated to guide the search in
task and motion planning problems. For instance, the framework pro-
duced in [33] was improved by incorporating reinforcement learning
(RL) for plan refinement and learning from expert demonstrations
to guide the search at task level [3]. Recent work aims at predicting
solution constraints to reduce the search space in task and motion
planning problems [22]. In that work, a new representation was devel-
oped to facilitate the transfer of knowledge (in the form of solution
constraints) from one problem instance to another to significantly
reduce the search space.

Recently, an algorithm called FFRob has been developed for task
and motion planning [10]. FFRob does not require a motion planner,
but directly conducts task planning over a set of samples generated
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in the configuration space. In order to efficiently search in this large
sample space, FFRob extends the FastForwad heuristic [16] to gener-
ate a set of heuristics (to reason with geometric constraints) to guide
the search. FFRob aims at plans of the shortest length (or “mode-
sequence" length in their terms), which is different from our focus.
This idea has been further extended to plan in factored transition
systems for exposing the topology of their solution space [8], and
to reason with possibly infinite sequences of object poses and static
predicates [9]

Instead of aiming at a general planning framework, researchers
have studied, for instance, rejecting inconsistent task actions for
kinematically restricted problems [23], objective optimization [36],
and a selective sampling approach for efficient exploration [31].
These algorithms focus on one or more components of the TMP
problem, instead of aiming at a general solution.

Although the above algorithms are built on very different assump-
tions, two observations are shared over all of them: manipulation
has been the main challenge at the motion level, e.g., grasping and
ungrasping, although some involve navigation actions; and none
of them guarantees task-level optimality.1 PETLON is an efficient,
task-level-optimal algorithm that is applicable to large-scale robot
navigation domains that include both low-level (navigational) con-
straints and high-level (task ordering) constraints.

3 ALGORITHM
Within the context of task and motion planning (TMP) problems,
existing research has been conducted with very different assump-
tions and goals (see Section 2). In this section, we formalize TMP
for navigation (TMP-N) problems at task and motion levels, and
introduce our PETLON algorithm.

3.1 Planning at Task and Motion Levels
Let 𝒟t specify a task planning domain that includes a set of states,
S, and a set of actions, A. We assume a factored state space such
that each state s ∈ S is defined by the values of a fixed set of vari-
ables; each action a ∈ A is defined by its preconditions and effects.
A cost function Cost maps the state transition to a real number:
Cost (⟨s,a,s′⟩) → R, which represents the cost of action a being
executed in state s, as in the MDP setting. 2

Given domain 𝒟t , a task planning problem is defined by an initial
state sinit ∈ S and a specification of the goal that corresponds to a
set of goal states SG ⊆ S. A plan, p ∈ P, includes a sequence of tran-
sitions that can be represented as: p = ⟨s0,a0, · · · ,sN−1,aN−1,sN⟩,
where s0 = sinit ,sN ∈ SG and P is the set of satisfactory plans.

Solving a task planning problem, using optimal planner 𝒫t , pro-
duces plan p∗ that is optimal among all satisfiable plans:

p∗ = argminp∈PΣ⟨s,a,s′⟩∈pCost (⟨s,a,s′⟩). (1)

Let 𝒟m specify a motion planning domain, where we directly
search in the 2D workspace, since in this work we focus on only
2D navigation problems for motion planning. Given 𝒟m and a robot

1The work of [6] is an exception, where task-level optimality is achieved in a computa-
tionally expensive way.
2The overall domain can be modeled as a hierarchical MDP, where the cost depends
only on the latest transition: not at all on the transitions that happened beforehand. We
use the formulation that depends on s′ for ease of connection with the motion-level
action evaluation in Section 3.3

model ℳ, a motion planning problem can be specified by an initial
position xinit and a goal set Xgoal . The 2D space is represented as a
region in Cartesian space such that the position and orientation of
the robot can be uniquely represented as a pose (x,θ ). Some parts
of the space are designated as free space, and the rest is designated
as obstacle.

The motion planning problem is solved by the motion planner
𝒫m to compute a collision-free trajectory ξ ∗ (connecting xinit and
a pose xgoal ∈ Xgoal taking into account any motion constraints on
the part of the robot) with minimal trajectory length Len(ξ ) = L. We
use Ξ to represent the trajectory set that includes all collision-free
trajectories. The optimal trajectory is

ξ
∗ = argminξ∈ΞLen(ξ ), (2)

where ξ (0) = xinit and ξ (L) = xgoal ∈ Xgoal .
A symbolic state s in 𝒟t corresponds to a geometric constraint in

𝒟m that can be represented as a set of poses X in the configuration
space. For instance, the symbol “beside a table" corresponds to a
(infinite) set of positions within a small range of the table. The
geometric constraints ensure the motion-level feasibility between
task state transitions.

We use a state mapping function, f : X = f (s), to map the symbolic
state s into a set of feasible poses X in continuous space, for the
algorithm to sample from. We assume the availability of at least one
pose x ∈ X in each state s, such that the robot is in the free space of
𝒟m. If it is not the case, the state s is declared infeasible.

It should be noted that such state mapping functions break global
optimality. We would like to be able to guarantee full motion-level
optimality. But in continuous domains, such a guarantee is elusive
due to the fundamental difference between representations at the
two levels. In line with past research [2, 6, 33], we use a state
mapping function, which makes it possible for us to achieve task-
level optimality, i.e., optimality conditioned on the motion planner
and state mapping function.

3.2 Definition of Task-Level-Optimal TMP-N

The input of a TMP-N problem is a six-tuple

Ω : ⟨𝒟t ,𝒟m,sinit ,SG,xinit , f ,ℳ⟩

where xinit ∈ f (sinit ), meaning that the geometric initial position is
consistent with the symbolic initial state.

A satisfactory output of a TMP-N problem is a two-tuple,

⟨p, [ξ0,ξ1, · · · ,ξN−1]⟩

that includes a symbolic plan and a set of collision-free trajectories,
where p(0) = sinit , p(N) ∈ SG, |p| = N, ξ0 (0) = xinit , ξi (0) ∈ f (si),
and ξi (Ti) ∈ f (si+1) for i = {0,1, . . . ,N− 1}. Ti is the end time of
trajectory ξi.

Finally, we define a task-level optimal plan to be a lowest-cost
plan p∗, conditioned on a motion planner 𝒫m and state-mapping
function f :

p∗ = argminp∈P
(

∑
0≤i<|p|

Len(ξi)|𝒫m, f
)
, (3)

where ξi = 𝒫m (⟨si−1,ai−1,si⟩, f ,𝒟m,ℳ) is the trajectory returned
by 𝒫m given state transition ⟨si−1,ai−1,si⟩ ∈ p.
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Figure 2: Overview of PETLON to efficiently solve TMP-N
problems, with guaranteed task-level optimality.

3.3 PETLON
PETLON (Planning Efficiently for Task-Level-Optimal Navigation),
is visualized in Figure 2, where task planner 𝒫t and motion planner
𝒫m serve as the two main components. The task planner interacts
with humans by taking their service requests and generates symbolic
plans. The motion planner generates realistic motion costs of each
symbolic action. Our guarantee of task-level optimality relies on an
admissible heuristic for motion costs, which can be easily obtained
such as straight-line distance in 2D space.

Before introducing the algorithm, it is necessary to first define
three cost functions:
• Heuristic cost function (h): we use h to represent our ad-

missible heuristic cost function that computes the Euclidean
distance between x and x′ in 2D space.

h(x,x′) = ||x− x′||2 (4)

• Evaluated cost function (Ĉ): function Ĉ calls our motion
planner 𝒫m to estimate the geometric-level cost of traversing
from x ∈ f (s) to x′ ∈ f (s′) given robot workspace 𝒟m:

Ĉ(x,x′) = Len
(
𝒫m (⟨s,a,s′⟩, f ,𝒟m,ℳ)

)
. (5)

• Maintained cost function (Cost): values of Cost (s,a,s′) are
initialized to h(x,x′), and then are selectively updated by Ĉ
as the algorithm proceeds.

Overall, h is a very inexpensive operation compared to Ĉ that
relies on calling a motion planner, and h underestimates motion cost.
The following relationship among the three cost functions holds
throughout the steps in PETLON:

h(x,x′) ≤Cost (s,a,s′) ≤ Ĉ(x,x′). (6)

Therefore, PETLON is efficient to the extent that it minimizes the
number of times the motion planner is called, while still ensuring
that the returned plan is the same as if all state actions had been
evaluated by the motion planner.

Algorithm 1 presents PETLON, taking the following terms as
input:
• Initial state sinit , initial position xinit (in free space of 𝒟m),

and goal specification SG

• State mapping function f : s→ X
• Admissible heuristic cost function h : (x,x′)→R (to initialize

the maintained cost function Cost)
• Task Domain Description 𝒟t , motion domain description 𝒟m,

and robot model ℳ
• Task planner 𝒫t : (sinit ,SG,Cost,𝒟t )→ p
• Motion planner 𝒫m : (⟨s,a,s′⟩, f ,𝒟m,ℳ)→ ξ

Algorithm 1 PETLON algorithm

Require: sinit , xinit ,SG, f , h, 𝒟t , 𝒟m,ℳ, 𝒫t , 𝒫m

Ensure: Symbolic plan p that is optimal at the task level
1: Initialize function Cost with h and sampled poses x ∈ f (s):

Cost (s,a,s′)← h(x,x′)
2: Initialize empty state-action-state array: Aevld

3: Initialize the so-far-best cost: Cs f b← Inf
4: while true do
5: [p̂∗,P]← 𝒫t (sinit,SG,Cost,𝒟t ), where p̂∗ is optimal given

Cost, P includes a set of (near-)optimal plans, and p̂∗ ∈ P
6: if ⟨s,a,s′⟩ ∈ Aevld ,∀⟨s,a,s′⟩ ∈ p̂∗ then
7: return p̂∗

8: end if
9: for each p ∈ P and Cost (p) <Cs f b do

10: for each ⟨s,a,s′⟩ ∈ p do
11: Update motion planner 𝒫m

12: if ⟨s,a,s′⟩ < Aevld then
13: while x′ < FreeSpace(𝒟m|ℳ) do
14: Re-sample x′ ∈ f (s′)
15: end while
16: Evaluate motion cost: Cost (s,a.s′)← Ĉ(x,x′)
17: Append ⟨s,a,s′⟩ to Aevld

18: end if
19: end for
20: Cplan = Σ⟨s,a,s′⟩∈pCost (s,a,s′)
21: Cs f b = min(Cplan, Cs f b)
22: end for
23: end while

The algorithm starts by initializing: the maintained cost function
Cost with our (admissible) heuristic function h (Line 1); an empty
plan array for recording evaluated state-action-state tuple (Line 2);
and a scalar cost value Cs f b with Inf, indicating the “evaluated”
cost of the so-far-best plan (Line 3).3 Entering the first while-loop,
PETLON computes a set of symbolic plans P, including the current
estimate of optimal plan p̂∗, using the maintained cost function Cost.
If all actions in the current optimal solution have been evaluated,
PETLON returns p̂∗ as the optimal task-level solution p∗(Line 6-8).
If not, PETLON enters the outer for-loop (Lines 9-22), processing
one plan p ∈ P at each iteration. In the inner for-loop, each state-
action-state tuple is considered, in a forward order (Lines 10-19).
First, 𝒫m is updated based on post-conditions of the previous action
(Line 11), to adapt to potential changes in ℳ, 𝒟m, and feasibility
of sampled poses in 𝒫m. If state-action-state tuple ⟨s,a,s′⟩ has not
been evaluated before, PETLON first checks the feasibility of the
sampled end pose x′ (Line 13-Line 15, not necessary if considering
static configuration spaces), then evaluates the cost value by calling
Ĉ (Line 16), and last appends ⟨s,a,s′⟩ to the evaluated state-action-
state set Aevld (Line 17).

The so-far-best cost Cs f b is updated if the current plan has lower
evaluated cost value Cplan (Line 21). It maintains the lowest evalu-
ated cost value among all evaluated plans.

3A “so-far-best” plan is the plan that is currently believed to be optimal using the
maintained cost fuction. PETLON keeps updating the so-far-best plan as more action
costs are evaluated.
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3.4 Two Configurations of PETLON
In Line 5 of Algorithm 1, the task planner returns a plan set P,
that includes the optimal plan based on the maintained Cost and an
arbitrary number of suboptimal (near-optimal) plans.4 Based on the
trade-off between task and motion planning computational expense,
PETLON can choose to evaluate the motion costs of actions from
more plans in P in order to converge within fewer iterations. We
evaluate two extreme configurations as noted in the following:
• OptOne: In each iteration, given the maintained cost function

Cost, only the motion costs of the actions in the optimal p̂∗

are evaluated.
• OptAll: In each iteration, the actions in all plans in P whose

costs are lower than the so-far-best cost Cs f b (the lowest cost
over all evaluated plans) are evaluated.

OptOne guarantees the minimal number of calls to the motion
planner, which is beneficial when the motion planner is computation-
ally expensive. OptAll has computational advantages when the task
planner is relatively expensive. It trades more action cost evaluations
for fewer iterations to converge compared to OptOne. PETLON’s
two configurations are evaluated in Section 5 with two different task
planners.

3.5 Proof of Task-Level Optimality of PETLON
PROPOSITION 1. Given motion planner 𝒫m and state mapping

function f , Algorithm 1 returns p∗ that has the lowest cost over all
satisfactory plans, i.e., the plan returned by Algorithm 1 satisfies
Equation 3.

Proof : Suppose this proposition is false, meaning that there exists at
least one plan, p, whose geometric-level cost is lower than that of
p∗, the plan returned by PETLON:

∑
⟨s,a,s′⟩∈p

Ĉ(s,a,s′) < ∑
⟨s,a,s′⟩∈p∗

Ĉ(s,a,s′) (7)

where Ĉ is the evaluated cost function as is detailed in Section 3.3
in the main paper.

In Algorithm 1, the task planner uses function Cost, the main-
tained cost function, and ensures that the returned plan is optimal
given Cost:

∑
⟨s,a,s′⟩∈p∗

Cost (s,a,s′) ≤ ∑
⟨s,a,s′⟩∈p

Cost (s,a,s′). (8)

where p is an arbitrary satisfactory plan.
Algorithm 1 (Lines 12-18) also ensures that all action costs of the

returned plan are evaluated by the motion planner:

∑
⟨s,a,s′⟩∈p∗

Cost (s,a,s′) = ∑
⟨s,a,s′⟩∈p∗

Ĉ(s,a,s′). (9)

We also know that the maintained cost function, Cost, cannot
return a value that is higher than the evaluated cost, because func-
tion Cost is initialized by our heuristic cost function, h, that never
overestimates the cost (Inequality 6):

∑
⟨s,a,s′⟩∈p

Cost (s,a,s′) ≤ ∑
⟨s,a,s′⟩∈p

Ĉ(s,a,s′) (10)

4Since solving a task planning problem can take a long time, some modern task planners
can output some suboptimal plans before returning the optimal. Such plans are collected
in plan set P.

From Inequalities 8 and 10, and Equation 9, we draw conclusion:

∑
⟨s,a,s′⟩∈p∗

Ĉ(s,a,s′) ≤ ∑
⟨s,a,s′⟩∈p

Ĉ(s,a,s′) (11)

Inequality 7 therefore contradicts with Inequality 11, proving the
task-level optimality guarantee of p∗. ■

PROPOSITION 2. Given motion planner 𝒫m and state mapping
function f , Algorithm 1 returns p∗ in finite steps.

Proof : Algorithm 1 terminates when the returned plan p has all
its action costs evaluated by the motion planner, as suggested in
Line 6. PETLON conducts at least one action cost evaluation at each
iteration before termination. Given that the state space at the task
level is finite, we can guarantee the convergence of Algorithm 1
within finite steps. ■

3.6 Highly Constrained TMP Problems
Algorithm and implementation details in the sampling step of PET-
LON (x ∈ f (s)) can influence the motion-level completeness. In
particular, it presents a challenge on kinematically or dynamically
constrained platforms that are relatively more common in TMP-M
problems [10, 23, 33]. We do not specify this sampling process in
PETLON, as it can be independently developed; for this purpose, we
refer to existing research on efficiently sampling in the configuration
space of highly confined domains [31, 32].

In highly constrained TMP domains, existing research has pro-
duced methods focusing on the motion-level feasibility of task-level
actions, where approaches such as efficient re-sampling [6, 33] or
backtracking task actions for resampling [23, 34] are commonly
used. For instance, action backtracking methods enable reconsider-
ing the end poses of previous task actions, in order to sample new
initial poses for the currently infeasible action. These methods can
be leveraged to make PETLON applicable to kinematically more
challenging domains, though most TMP-N domains do not fall into
this category.

Theoretically, if action backtracking is triggered to re-sample a
pose for symbolic state s′, we need to reevaluate the motion costs
of related task-level actions, i.e., costs of all ⟨s,a,s′⟩ tuples in Aevld ,
so as to ensure the task-level optimality suggested in Proposition 1
(Section 3.5). This process ensures that the costs of navigation ac-
tions in Aevld are up to date. As for our test domains, the resampling
process (Line 14 in Algorithm 1) is seldom reached, therefore action
backtracking is rarely a concern.

4 ALGORITHM INSTANTIATION
Our task planner has been implemented using two declarative lan-
guages: Answer Set Programming (ASP) [12, 27] and Planning
Domain Definition Language (PDDL) [28]. ASP is a popular gen-
eral knowledge representation and reasoning (KRR) language, and
has been used for solving task planning problems [26]. PDDL was
developed for the International Planning Competition (IPC) and has
been maintained by the IPC community. A recent empirical compari-
son has shown that PDDL-based planners perform better when tasks
require long solutions, and ASP-based planners perform better when
tasks require complex reasoning [17]. The goal of implementing
both ASP-based and PDDL-based planners is to provide evidence
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Figure 3: Left: Robot platform used in this research. Right:
Occupancy-grid map (inflated) and a motion trajectory, indi-
cated by a sequence of green planned for navigating through an
office door.

for our hypothesis that PETLON is not sensitive to task planner
selection.

At the task level, static predicates such as has_door and inside
describe the spacial constraints on room accessibility and person
locations respectively. We model three actions (moveto, fetch, and
deliver), and represent the task states through non-static predi-
cates (delivered, loaded, at). To map the task state to continu-
ous space, we include a set of geometric instances using predicate
beside, to describe task states in a small spacial area. For instance,
beside(fridge) can be realized through function f as a pose within
small area of the target fridge.

We use PRM∗ [20] to implement our motion planner. Compared
to planners using a tree structure, such as RRT [25], the graph
structure of PRM∗ is preferable due to the fact that we reuse the
graph for multiple path evaluations with different starting points.
Further, its asymptotic optimality, meaning almost-sure convergence
to the optimal solution, ensures higher-quality motion plans, at least
when using high sampling density. Here, we average two sample
configurations per square meter, and the resultant plan quality has
small variations (mostly within one meter) among trials. It should
be noted that PETLON is not restricted to specific task or motion
planning algorithms. The higher complexity the motion planner has,
the greater the potential advantage PETLON can bring by saving
computation for motion evaluation.

We implemented our ASP-based and PDDL-based task planners
using award-winning solvers of Clingo [11] and FastDownward
(FD) [15] respectively. Since IPC penalizes solvers that output sub-
optimal solutions, IPC solvers (including FD) do not output any
plan until the optimal is found. As a result, we can only evaluate the
OptOne configuration of PETLON using the FD solver. We use a
laptop equipped with 2.2GHz i7 processor and 16GB RAM on OS
X for all reported results.

5 EXPERIMENTS
PETLON has been implemented on a real robot as shown in Fig-
ure 3 (Left). The right of the figure shows the occupancy-grid map

and the robot planning to navigate through an office door. The ro-
bot uses an RMP 110 mobile platform, onboard auxiliary battery,
desktop computer (with touchscreen), and Velodyne VLP-16 for
perception [21].

The test domain is our office environment, with the map pre-
scanned and constructed by running the SLAM algorithm [35]
(loaded before robot planning). Part of the domain is shown in
Figure 3 on the right, containing seven rooms, four people, and four
types of items (accordingly four types of containers). Each type
of container has two to three instances. This test domain is later
referred to as the base domain, on which we create variant domains
for evaluating PETLON in different categories.

5.1 Baseline Methods
The goal of PETLON is to significantly reduce overall planning
time while guaranteeing task-level optimality. Therefore, we evalu-
ate PETLON based on both computational time and resulting plan
quality by comparing PETLON (two configurations) to baselines
with the following action cost formulations:

• Constant cost: Task actions are assumed to share the same
unit cost. As a result, task planners generate plans with the
fewest actions (Cost = 1). Our hypothesis was that this base-
line would perform the worst in plan quality and the best in
efficiency (due to the absence of a motion planner).
• Heuristic cost: Task actions are assumed to have cost equiva-

lent to the Euclidean distance traveled (the motion planner is
never called, and Cost=h all the time).
• Brute force: Costs of all task actions are evaluated by the

motion planner beforehand (Cost=Ĉ). Our hypothesis was
that this baseline would produce task-level-optimal solutions,
but does not perform as well as PETLON in efficiency.

All three baselines use optimal task planners. However, depend-
ing on the motion cost evaluation strategy, these baselines produce
trajectories of dramatically different quality. Only the brute-force
baseline and PETLON (both configurations) generate task-level-
optimal plans. Their computational times are then compared to
demonstrate the improvement in planning efficiency introduced by
PETLON. The other two baselines produce task-level-suboptimal
plans.

5.2 Illustrative Example
A plan quality comparison between the output from PETLON and
the output from the heuristic cost baseline is shown in Figure 4.
In this example, the robot needs to deliver a bottle of juice (5 in-
stances marked as blue downward triangles) and a newspaper (4
instances marked as magenta upward triangles) to a target person
(solid green circle). The initial state is specified using at(corridor)
and beside(init_pos), and the goal state is specified using the fol-
lowing four literals:

delivered(alice,n). newspaper(n).
delivered(alice,j). juice(j).

where n,j are available locations of newspapers and juices.
While considering an environment with low visibility from one

location to another, such as an office domain, heuristic cost functions
(such as suggested in Equation 4) may greatly underestimate the true
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(a) Heuristic cost baseline (b) PETLON

Figure 4: The heuristic cost baseline uses only the Euclidean dis-
tance for plan cost value estimate (28.4m) and results in the sub-
optimal solution with actual length as 50m. The optimal solution
by PETLON has higher heuristic cost value estimate (31.3m)
but shorter actual length as 37m, compared to the heuristic-cost
baseline.
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Figure 5: Plan quality (path length) vs. overall planning time.
We compare six different planning algorithms using the base do-
main. PETLON (three versions) significantly reduces the over-
all planning time, while ensuring task-level optimality.

motion cost value, resulting in suboptimal plans (50m vs. 37m in
travel length in this case). In this example, the geometric instances
in the task planning domain are of four types: fridge, newsstand,
door, and person. The task planner decides the order of the subtasks
(such as fetch(newspaper)), and which instance to fulfill the action
preconditions (such as beside(newsstand1)).

This pairwise example illustrates the necessity of cost evaluations
using a motion planner (the baseline does not do so) and the im-
portance of task-level optimality (the suboptimal solution causes a
significant delay of task completion).

5.3 Experimental Results
Our central hypothesis is that PETLON is more efficient than plan-
ning approaches that pre-compute motion costs of all possible nav-
igation actions, while still producing task-level-optimal solutions.
Accordingly, we conducted the following four sets of experiments
focusing on evaluating the performance of PETLON in efficiency
and plan quality under different conditions.

Overall Performance of Six Planning Strategies. The two PET-
LON configurations with Clingo and FD implementations are com-
pared with the baselines, on the task of delivering two specified
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Figure 6: Overall planning time given different domain scale-
up. PETLON (three versions) is more efficient than the baseline
in every implementation.

kinds of items to a target person. As explained in Section 4, FD
does not output suboptimal solutions, so we can only evaluate the
OptOne configuration of PETLON using the FD solver. Each data
point corresponds to an average over eight trials, and there are six
strategies in total in this set of experiments.

Figure 5 reports their overall performance. We can see that PET-
LON (all three versions) significantly reduces the planning time
(x-axis) to less than 20 seconds, in comparison to the brute-force
baseline that took more than 30 seconds, while ensuring the best-
quality solution (y-axis). It should be noted that, our domain is not
very knowledge-intensive in the sense of the numbers of objects and
their properties. Real-world applications are frequently much more
knowledge-intensive than the brute-force baseline is able to handle;
in domains with many objects that are irrelevant to the tested task
request, the brute-force runtime grows exponentially (in the number
of objects), and hence is not applicable for relatively large domains.
The outputs of the other two baselines, Constant cost and Heuristic
cost, are much worse in terms of quality due to their ignorance of
true action costs.

Efficiency (Planning Time) in Domains of Different Sizes. In this
experiment, with the same task specification, we scale up the domain
size in terms of both the number of objects (adding complexity
for 𝒫t ), and map size (adding complexity for 𝒫m) by appending N
copies of the base map to one another (left to right, then top to down),
following its same structure. The initial positions of the robot are
randomly selected in the three domains, to increase the likelihood
that the robot will traverse newly-appended map areas.

The overall planning time includes the time consumed by both
the task planner (Clingo-based or FD-based) and the motion planner.
The task planners and motion planner are sensitive to the increasing
number of objects and map size respectively. It should be noted that
we add more objects and increase domain sizes, but the delivery
task, as delivering a juice and a newspaper, does not change. Cor-
respondingly, the length of the generated symbolic plan does not
change.

Figure 6 shows the results of overall planning time given differ-
ent levels of domain scale-up (N = 2 and N = 3). We see PETLON
performs significantly better than the brute-force baseline, because
brute-force has to evaluate costs of a combinatorially growing num-
ber of actions. Table 1 shows the number of motion cost evaluations
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Table 1: The average number of cost evaluations conducted in
the motion planner, in different domain scales.

Domain scale

1 2 3

OptOne-Clingo 10.75 9.00 11.00
OptOne-FD 13.60 11.00 12.00
OptAll-Clingo 16.00 17.50 25.75
brute-force baseline 325.00 1295.00 2850.00
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Figure 7: Overall planning time given tasks of different num-
bers of object to deliver. PETLON (OptOne configuration) that
uses the FD-based task planner performs the best.

in different domain scales. From the last row, we can see that in the
domain setting of 3x scale-up, brute-force conducts 2850 motion
cost evaluations, whereas PETLON evaluates fewer than 26.

Planning Time Given Different Tasks. In this set of experiments,
we vary the tasks by increasing the number of objects that need to
be delivered using the base domain setup. The goal is to evaluate
how sensitive the planning algorithms are given more complex tasks,
i.e., tasks that require more task-level actions. PETLON may take
substantially many iterations to converge given a task that requires
many actions, so the computational expense of task planning can
become a concern. We used both Clingo and FD task planners in
our experiment. Intuitively, Clingo can be relatively more sensitive
to plan length as it is a general-purpose reasoner not fine-tuned for
planning tasks, whereas the FD planner is developed specifically for
efficiently computing plans that include many actions.

The results are shown in Figure 7. As plan length increases (x-
axis), OptOne-FD begins outperforming all other implementations,
whereas the Clingo task planner is very sensitive to plan length. In
such scenarios, making more calls to the task planner may not trade
off favorably against motion evaluation; for that case, we introduce
the “Anytime” implementation of PETLON, which trades off the
optimality guarantee with superior efficiency without much loss of
plan quality.

Anytime Property of PETLON, an Illustrative Example. In situa-
tions with strict time bounds, it can be useful for a planner to have an
“anytime” property, meaning that the algorithm can terminate early
while outputting monotonically improved solutions over time. In

1 2 3 4 5 6 7 8 9

Iteration number

25

30

35

40

45

P
a
th

 l
e
n
g
th

 (
m

)

Figure 8: PETLON is an anytime algorithm that can return a
valid solution even if it is interrupted before termination.

our case, we would like to see that PETLON produces good-quality
plans (sequence of actions) given an early termination.

Figure 8 shows how the so-far-best cost Cs f b and the cost of p̂∗

computed using Cost evolve over nine iterations until convergence.
Note that Cs f b reaches the optimal value of PETLON (OptOne on
the base domain) by iteration 4, while PETLON continues evaluating
other potential satisfiable plans and finally, at iteration 9, it reports
that the plan found at iteration 4 is optimal. This illustrative trial
demonstrates PETLON’s good anytime performance. We collected
the time lengths of PETLON finding the optimal solution (after that,
PETLON continues to evaluate other plans to ensure the optimality).
The computational results are reported along with other implementa-
tions in Figure 7, where we can see Anytime-Clingo performs the
best in comparison to all other planning strategies.

Note that, Clingo is actually capable of outputting all feasible
plans, or all plans with costs lower than a certain value. With those
two implementations, PETLON guarantees optimality within two
calls of the task planner, by setting the second call to output all plans
lower than the so-far-best cost; or, to output all feasible plans in the
first iteration, and evaluate the rest without more calls of the task
planner. The experimental setup in Figure 7 is purely to demonstrate
potential issues to consider while using PETLON, given different
characteristics brought by the choices of different planners.

6 CONCLUSIONS
In this paper, we introduce a novel algorithm, PETLON, that fully
integrates task and motion planning for mobile robot service tasks.
PETLON stands for “Planning Efficiently for Task-Level-Optimal
Navigation" and is designed to produce task-level optimal plans
while maintaining efficient planning time. PETLON has been evalu-
ated using maps modeled after a real office environment, and has also
been implemented on a real robot. Results show that PETLON sig-
nificantly reduces the overall planning time compared to a baseline
that pre-computes motion costs of all actions, while still maintaining
task-level optimality.

This work opens a number of new research directions on task and
motion planning (TMP). In the future, we intend to extend the work
to dynamic environments, where cost estimates reflect plan quality
during real-world execution. We also intend to extend the work with
an exploration mechanism, where a robot can interact with the real
world to learn costs of navigation actions.

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

227



7 ACKNOWLEDGMENT
This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by
NSF (IIS-1637736, IIS-1651089, IIS-1724157), Intel, Raytheon,
and Lockheed Martin. Peter Stone serves on the Board of Directors
of Cogitai, Inc. The terms of this arrangement have been reviewed
and approved by the University of Texas at Austin in accordance
with its policy on objectivity in research.

REFERENCES
[1] Joydeep Biswas and Manuela Veloso. 2016. The 1,000-km challenge: Insights and

quantitative and qualitative results. IEEE Intelligent Systems 31, 3 (2016), 86–96.
[2] Stephane Cambon, Rachid Alami, and Fabien Gravot. 2009. A hybrid approach to

intricate motion, manipulation and task planning. The International Journal of
Robotics Research 28, 1 (2009), 104–126.

[3] Rohan Chitnis, Dylan Hadfield-Menell, Abhishek Gupta, Siddharth Srivastava,
Edward Groshev, Christopher Lin, and Pieter Abbeel. 2016. Guided search for task
and motion plans using learned heuristics. In Robotics and Automation (ICRA),
2016 IEEE International Conference on. IEEE, 447–454.

[4] Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Lydia E Kavraki.
2018. An incremental constraint-based framework for task and motion planning.
The International Journal of Robotics Research (2018).

[5] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo theories:
introduction and applications. Commun. ACM 54, 9 (2011), 69–77.

[6] Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkan Patoglu, and Tansel Uras.
2011. Combining high-level causal reasoning with low-level geometric reasoning
and motion planning for robotic manipulation. In International Conference on
Robotics and Automation (ICRA).

[7] Richard E Fikes and Nils J Nilsson. 1971. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial intelligence 2, 3-4
(1971), 189–208.

[8] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2017.
Sample-Based Methods for Factored Task and Motion Planning. In Robotics:
Science and Systems.

[9] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2017.
STRIPS Planning in Infinite Domains. arXiv preprint arXiv:1701.00287 (2017).

[10] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2018.
FFRob: Leveraging symbolic planning for efficient task and motion planning. The
International Journal of Robotics Research 37, 1 (2018), 104–136.

[11] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
2014. Clingo= ASP+ control: Preliminary report. arXiv preprint arXiv:1405.3694
(2014).

[12] Michael Gelfond and Yulia Kahl. 2014. Knowledge representation, reasoning,
and the design of intelligent agents: The answer-set programming approach.
Cambridge University Press.

[13] Fabien Gravot, Stephane Cambon, and Rachid Alami. 2005. aSyMov: a planner
that deals with intricate symbolic and geometric problems. In Robotics Research.
The Eleventh International Symposium. Springer, 100–110.

[14] N Hawes, C Burbridge, F Jovan, L Kunze, B Lacerda, L Mudrová, J Young, J
Wyatt, D Hebesberger, T Körtner, et al. 2016. The STRANDS Project: Long-Term
Autonomy in Everyday Environments. IEEE Robotics and Automation Magazine
(2016).

[15] Malte Helmert. 2006. The Fast Downward Planning System. J. Artif. Intell.
Res.(JAIR) 26 (2006), 191–246.

[16] Jörg Hoffmann and Bernhard Nebel. 2001. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence Research 14
(2001), 253–302.

[17] Yuqian Jiang, Shiqi Zhang, Piyush Khandelwal, and Peter Stone. 2018. An
Empirical Comparison of PDDL-based and ASP-based Task Planners. arXiv

(2018).
[18] Leslie Pack Kaelbling and Tomás Lozano-Pérez. 2011. Hierarchical task and

motion planning in the now. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, 1470–1477.

[19] Leslie Pack Kaelbling and Tomás Lozano-Pérez. 2013. Integrated task and motion
planning in belief space. International Journal of Robotics Research 32, 9-10
(2013), 1194–1227.

[20] Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research 30, 7 (2011),
846–894.

[21] Piyush Khandelwal, Shiqi Zhang, Jivko Sinapov, Matteo Leonetti, Jesse Thomason,
Fangkai Yang, Ilaria Gori, Maxwell Svetlik, Priyanka Khante, Vladimir Lifschitz,
et al. 2017. BWIBots: A platform for bridging the gap between ai and human–
robot interaction research. The International Journal of Robotics Research 36, 5-7
(2017), 635–659.

[22] Beomjoon Kim, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2017. Learning
to guide task and motion planning using score-space representation. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on. IEEE, 2810–
2817.

[23] Fabien Lagriffoul, Dimitar Dimitrov, Julien Bidot, Alessandro Saffiotti, and Lars
Karlsson. 2014. Efficiently combining task and motion planning using geometric
constraints. The International Journal of Robotics Research 33, 14 (2014), 1726–
1747.

[24] Jean-Claude Latombe. 2012. Robot motion planning. Springer Science & Business
Media.

[25] Steven M LaValle. 1998. Rapidly-Exploring Random Trees A New Tool for Path
Planning. (1998).

[26] Vladimir Lifschitz. 2002. Answer set programming and plan generation. Artificial
Intelligence 138, 1 (2002), 39–54.

[27] Vladimir Lifschitz. 2008. What is answer set programming?. In Proceedings of
the 23rd national conference on Artificial intelligence-Volume 3. AAAI Press,
1594–1597.

[28] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL-the planning
domain definition language. (1998).

[29] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan
Wu, and Fusun Yaman. 2003. SHOP2: An HTN Planning System. Journal of
Artificial Intelligence Research 20, 1 (2003), 379–404.

[30] Nils J Nilsson. 1984. Shakey the robot. Technical Report. DTIC Document.
[31] Erion Plaku and Gregory D Hager. 2010. Sampling-based motion and symbolic

action planning with geometric and differential constraints. In Robotics and Au-
tomation (ICRA), 2010 IEEE International Conference on. IEEE, 5002–5008.

[32] Erion Plaku, Lydia E Kavraki, and Moshe Y Vardi. 2010. Motion planning with
dynamics by a synergistic combination of layers of planning. IEEE Transactions
on Robotics 26, 3 (2010), 469–482.

[33] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell,
and Pieter Abbeel. 2014. Combined task and motion planning through an extensi-
ble planner-independent interface layer. In Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 639–646.

[34] Mike Stilman and James J Kuffner. 2005. Navigation among movable obstacles:
Real-time reasoning in complex environments. International Journal of Humanoid
Robotics 2, 04 (2005), 479–503.

[35] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. 2005. Probabilistic robotics.
MIT press.

[36] Marc Toussaint. 2015. Logic-geometric programming: An optimization-based
approach to combined task and motion planning. In International Joint Conference
on Artificial Intelligence.

[37] Jason Wolfe, Bhaskara Marthi, and Stuart Russell. 2010. Combined Task and
Motion Planning for Mobile Manipulation. In Proceedings of the Twentieth In-
ternational Conference on Automated Planning and Scheduling. AAAI Press,
254–257.

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

228


	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Planning at Task and Motion Levels
	3.2 Definition of Task-Level-Optimal TMP-N
	3.3 PETLON
	3.4 Two Configurations of PETLON
	3.5 Proof of Task-Level Optimality of PETLON
	3.6 Highly Constrained TMP Problems

	4 Algorithm Instantiation
	5 Experiments
	5.1 Baseline Methods
	5.2 Illustrative Example
	5.3 Experimental Results

	6 Conclusions
	7 Acknowledgment
	References



