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ABSTRACT
Participatory budgeting is one of the exciting developments in

deliberative grassroots democracy. We concentrate on approval

elections and propose proportional representation axioms in par-

ticipatory budgeting, by generalizing relevant axioms for approval-

based multi-winner elections. We observe a rich landscape with

respect to the computational complexity of identifying proportional

budgets and computing such, and present budgeting methods that

satisfy these axioms by identifying budgets that are representative

to the demands of vast segments of the voters.
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1 INTRODUCTION
“Participatory budgeting (PB) has become a central

topic of discussion and significant field of innovation

for those involved in democracy and local development”—

Cabannes [8].

“Whatever the best approach to participatory bud-

geting is, now is the time to identify it, before vari-

ous heuristics become hopelessly ingrained”— Benade

et al. [5].

Participatory budgeting (PB), used in hundreds of cities across

several continents (especially South America)
1
, is a grass-root de-

liberative approach where common people make public budgeting

decisions. One of its primary advantages is “the more transpar-

ent management and more accessible municipal process that it al-

lows” [8]. Although PB is very successful, most methods currently

used do not take into account a formal approach to proportionality.

The lack of sufficient representation of key groups in participatory

budgeting can be a critical shortcoming as has been witnessed in

a participatory budgeting program in Porto Alegre, Brazil [6]. We

undertake a formal approach to representative participatory bud-

geting in which we propose both representation axioms and rules

for achieving representative budgets. As it has been observed that

the exact way PB is implemented is critical to its success
2
, such

1
PB is used in several cities in the USA [14]. Paris is organizing one of the largest

citywide participatory budgets (https://budgetparticipatif.paris.fr/bp).

2
https://www.thersa.org/discover/publications-and-articles/rsa-blogs/2016/11/

participatory-budgeting-its-not-what-you-do---its-how-you-do-it.
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a principled axiomatic and rule-based approach may especially

be useful. The problem of finding the right approach to solve PB

has been mentioned as a “grand challenge for computational social
choice, especially at a point in the field’s evolution where it is gaining
real-world relevance by helping people make decisions in practice” [5].

Formally, we view participatory budgeting as a generalization of

multi-winner elections, as in multi-winner elections usually we aim

at selecting k candidates out of a given set ofm candidates, while

in participatory budgeting each of the given candidates (usually

referred to as projects or items) does not come at unit cost, but has

its own cost. The task is then to find a satisfactory set of projects

(notice, not specifically k of them) whose total cost does not go

beyond some prespecified budget limit L. The task is achieved while
taking into account the preferences expressed by the electorate.

Most methods (see Section 1.1) of participatory budgeting do

not take into account aspects of proportionality; for example, one

popular method uses k-Approval, by letting each voter specify a set

of k projects of her liking, then ordering the projects by decreasing

number of (sum of) approvals, and greedily going over the list, and

taking (as a “committee member”) each project which does not

cause the proposed expenditure to go over the given limit.

In certain situations, however, it is desirable to find budgets

which are more proportional. For example, if deciding on building,

say, schools or recreational parks in a city, the number of schools

per neighborhood shall be roughly proportional to the population;

specifically, building schools only in the city center–where many

residents live–is usually not an accepted outcome.

Fortunately, in the study of multi-winner election (i.e., in liter-

ature on committee selection) there are several ideas on how to

achieve such proportionality; specifically, several axioms of pro-

portionality have been devised, together with several voting rules

satisfying these axioms. Our approach for formalizing and achiev-

ing proportionality in PB is thus to explore ways of generalizing the

axioms formulating proportionality in multi-winner elections; in ef-

fect, “lifting” the knowledge from committee voting / multi-winner

voting to participatory budgeting (where the latter generalizes the

former, by considering various costs for the candidates).

Contributions. We initiate a formal axiomatic approach to partic-

ipatory budgeting in which each project is either selected or not

selected, each voter approves a subset of the available projects, and

the goal is to identify a proportionally representative budget.

We present a series of proportional representation axioms which

generalize the JR (justified representation) and PJR (proportional
justified representation) axioms considered in approval-based multi-

winner voting [2, 20] . Our quest for the ‘right’ axioms is motivated
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by the following main factors: (1) they should have normative justi-

fication in representing large-enough and cohesive groups of voters;

(2) they should be strong enough to identify particularly represen-

tative outcomes but not too strong so that for some instances no

satisfying outcomes exist; and (3) they should be computationally

amenable, ideally admitting a polynomial-time algorithm.

We perform a detailed examination of promising proportional

representation axioms, present computational results on finding

and testing representative budgets, and identify logical relations be-

tween the axioms. We propose several algorithms that find suitable

budgets with axiomatic guarantees of proportionality. One of the

most compelling algorithms we present is a careful generalization

of Phragmen’s unordered rule (also referred to as Phragmen’s se-

quential rule [7, 16]). Most of our results are summarized in Table 1.

1.1 Related Work
PB [8] is concerned with letting citizens decide upon the way their

collective funds are being used. We discuss some methods by which

this is done. Knapsack voting, which is similar to k-Approval, but
where each voter approves a set of projects whose total cost does

not go over the given limit, is considered by Goel et al. [15]. In an

earlier paper, Klamler et al. [17] presented algorithms for commit-

tee selection with knapsack constraints. Both these works have

utilitarian concerns and do not capture proportional representation.

Further preference elicitation methods are studied by Benade et

al. [5], that allow voters to either rank the candidates by their value

(Value voting) or value-for-money (Value-for-money voting), and
so-called Threshold voting, where each voter specifies the subset of

projects whose value is perceived to be above a predefined thresh-

old. Shapiro and Talmon [21] generalize Condorcet’s principle to PB

and devise a polynomial-time budgeting method to compute such

budgets; these budgets are majoritarian in nature, while here we

are concerned with budgets satisfying proportional representation.

Fain et al. [11] study proportional representation in participatory

budgeting, thus their work is closely related to ours. In their model,

however, the task is to decide the amount of funds to spend on each

project, while our model is more discrete, as we aim at deciding

which projects to fund. Indeed, some projects are inherently indi-

visible or discrete in nature. E.g., one can decide to fund one road or

two roads, say, but not a road and a half. Aziz et al. [1] discuss how

a probabilistic approach to voting can be used to address PB. Just

like the work of Fain et al. [11], the approach applies to projects

that are ‘divisible’ in nature. Another related paper is by Conitzer

et al. [10], who consider proportionality issues in fair division prob-

lems. There, however, proportionality is considered at the level of

individuals and cohesive groups of voters are not considered.

The study of multi-winner elections [12] is a thriving sub-field

of computational social choice [19], and is concerned mainly with

aggregation method for committee selection in which each can-

didate has a unit cost. Some papers exist which study election

scenarios with different costs for different candidates, such as the

paper of Lu and Boutilier [18], who consider a generalization of the

Chamberlin–Courant rule [9]. There are quite a number of papers

within the sub-field of multi-winner elections which concentrate

on issues of proportionality, some of which are mentioned next.

Aziz et al. [2] consider proportionality axioms for approval-based

multi-winner elections. Here, we generalize this line of work to

PB. There are several follow up papers on approval-based multi-

winner (see e.g., [4, 7, 20]). The paper of Aziz et al. [3] considers

multi-winner rules extending (in certain ways) Condorcet’s princi-

ple, and demonstrates that some of them satisfy certain axiomatic

properties aiming at proportionality.

2 PRELIMINARIES
Let C be a set of items and let w : C → N, c 7→ w(c), be the

associated cost function. We normalize the cost function such that

minc ∈C w(c) = 1. This assumption is without loss of generality and

assists in keeping our axioms invariant to scalings of the currency.

Abusing notation slightly, given a subset of itemsC ′ ⊆ C , we define
w(C ′) = ∑

c ∈C ′ w(c). A budget limit will be denoted by L ∈ N; a
budgetW ⊆ C is said to be feasible ifw(W ) ≤ L.

Let V be a set of voters, where each voter i ∈ V submits an

approval ballot Ai ⊆ C , which is an unranked ballot of items in C
which they approve of. The vector of approval ballots, called a ballot
profile, is denoted by A = (A1, . . . ,An ). A set of voters V ′ ⊆ V is

said to be cohesive if ∩i ∈V ′Ai , ∅, that is, if they unanimously

agree/support some item(s) c ∈ ∩i ∈V ′Ai .
The goal of a budgeting method is to take as an input a ballot

profile A and produce an output/budgetW ⊆ C which is feasible

and satisfies some desirable axioms. First, we would like our budgets

to not ‘leave money on the table’; we formalize it as follows.

Definition 2.1 (Exhaustiveness). Given a budget limit L and budget
W , the budget is said to be exhaustive if for all c <W it holds that

w(W ∪ {c}) = w(W ) +w(c) > L.

If this is not the case, then we say that the budget W is non-
exhaustive.

The second class of axioms, discussed in Section 3, relate to

justified representation in the budget outcomeW with respect to

the ballot profile A. Next, we point out how the setting we consider

generalizes approval-based committee voting.

Committee Voting / Multi-winner Voting. In approval-based multi-

winner election we have a set of candidatesC and a set of votersV ,

where each voter V corresponds to a subset of C , consisting of her

approved candidates. The task is to select a committee S ⊆ C of k
candidates. Observe that, if L = k andw(c) = 1 for each c ∈ C , then
our setting coincides with approval-based committee voting / multi-

winner voting. We recall two known axioms of representation for

multi-winner elections.

Definition 2.2 (JR [2]). A committee S satisfies JR if there exists

no set of voters V ′ ⊆ V with |V ′ | ≥ n/k , such that |(∩i ∈V ′Ai )| ≥ 1

and |((∪i ∈V ′Ai ) ∩ S)| = 0.

Definition 2.3 (PJR [20]). A committee S satisfies PJR if for all

integers ℓ ∈ {1, 2, . . . ,k}, there does not exists a set of voters V ′ ⊆
V with |V ′ | ≥ ℓ n/k such that |

(
∩i ∈V ′ Ai

)
| ≥ ℓ but |

(
(∪i ∈V ′Ai ) ∩

S
)
| < ℓ.
The intuition for JR is that a group of at least n/k voters which

agree on at least one candidate shall not be completely ignored

when forming the committee. PJR generalizes JR by considering

groups of ℓn/k which agree on at least ℓ candidates and requires

such groups to be represented in a proportional manner.
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3 PROPORTIONALITY AXIOMS FOR PB
In this main section, we present a series of proportionality axioms

that are inspired by justified representation axioms in approval-

based multi-winner voting. The relations between these axioms are

discussed in Section 3.4 and are pictorially represented in Figure 1.

For each axiom, we study whether a budget satisfying it is guaran-

teed to exist, the complexity of testing whether a specific budget

satisfies it, and the complexity of computing a budget satisfying it.

Informally, the general principle of our generalization of justified
representation (JR) to PB is that a cohesive group of size ≥ n/L
should control at least one unit of the budget while our generaliza-

tion of PJR require that, for every ℓ ∈ [1,L], a cohesive group of

size ≥ ℓ · n/L should control at least ℓ units of the budget.

3.1 Strong-BJR and Strong-BPJR
Our first formal extensions of JR and PJR to PB, termed Strong-BJR

and Strong-BPJR, are given next.

Definition 3.1 (Strong-BJR-L). For a budget limit L, a budgetW
satisfies Strong-BJR-L if there exists no set of voters V ′ ⊆ V with

|V ′ | ≥ n/L, such thatw
(
∩i ∈V ′ Ai

)
≥ 1 butw

(
(∪i ∈V ′Ai ) ∩W

)
= 0.

Definition 3.2 (Strong-BPJR-L). For a budget limit L, a budgetW
satisfies Strong-BPJR-L if for all ℓ ∈ [1,L] there does not exist a set
of votersV ′ ⊆ V with |V ′ | ≥ ℓ n/L, such thatw

(
∩i ∈V ′ Ai

)
≥ ℓ but

w
(
(∪i ∈V ′Ai ) ∩W

)
< ℓ.

The definitions above capture the idea that cohesive groups of

at least n/L voters should control (at least) one unit of budget. The

Strong-BJR-L definition is ‘extreme’ in the sense that a group of

n/L voters and a group of 2 · n/L voters are treated the same; that

is, they are only guaranteed a non-zero amount of budget spent on

representing them. Put differently, if voters simply desire some item

from their approval ballot Ai to be included inW but do not care

about the amount of budget spent on it, then Strong-BJR-L might be

sufficient – however, a more natural approach is to scale the amount

of budget spent according to the size of the voter groups. Indeed,

Strong-BPJR-L captures this more natural idea that a group of n/L
voters should not be treated the same as a group of 2 · n/L voters –

the larger group should control (at least) twice as much budget than

the smaller group; in other words, the amount of budget controlled

by a group of cohesive voters is proportional to their size.

Remark 1. Strong-BJR-L (Strong-BPJR-L) indeed generalizes the
definitions of JR (PJR) for multi-winner voting: Strong-BJR-L (Strong-
BPJR-L) implies JR (PJR) when all items costwi ≡ 1.

Strong-BJR-L and Strong-BPJR-L are appealing axioms in terms

of their proportionality requirement. Unfortunately, even Strong-

BJR-L budgets are not guaranteed to exist (notice that Strong-BPJR-

L implies Strong-BJR-L; to see this, take ℓ = 1).

Example 3.3. Consider a PB scenario with items C = {c1, c2, c3},
costs w(c1) = w(c2) = 2 and w(c3) = 1, budget limit L = 3, and

voters V = {1, . . . , 4} with the following ballots.

A1 = A2 = {c1} A3 = A4 = {c2}.
Then, to satisfy Strong-PJR-L, the group of voters V ′ = {1, 2},

being of size 2 ≥ n/L = 4/3, deserves at least one unit of budget;
similarly for the group of voters V ′′ = {3, 4}. Then, to satisfy the

groupV1 (V2) we shall include c1 (c2) in the budget. The problem is,

however, thatw(c1) +w(c2) = 4 > L = 3; in other words, with the

given budget limit, we cannot afford it. This means that no budget

satisfying Strong-BJR-L exists (and thus also Strong-BPJR-L).

The key issue illustrated in the example above is that each set

of cohesive voters, namely V ′ = {A1,A2} and V ′′ = {A3,A4}, sup-
ports only expensive items relative to their size: V ′ (V ′′) supports
c1 (c2) whose cost is 2 (2). Intuitively, since both groups constitute

exactly 1/2 of the electorate but at the same time each ‘demands’ an

item of cost 2, no feasible budget can satisfy the ‘demands’ of both

groups. In Section 3.2 we describe weaker versions of Strong-BJR-L

and Strong-BPJR-L which do not suffer from this issue.

We end this section by considering the complexity of computing

Strong-BJR-L and Strong-BPJR-L budgets.

Proposition 3.4. Computing Strong-BJR-L and Strong-BPJR-L
budgets is NP-hard.

Proof. We reduce from theNP-hard Restricted-X3C problem [13]

in which, given sets S1, . . . , S3m over a universe x1, . . . ,x3m , where

each set Sj contains 3 elements and each element is contained in 3

sets, the task is to exactly cover the universe withm sets.

Given an instance of Restricted-X3C we construct a PB scenario

as follows: For each set Sj (j ∈ [3m]) we construct an item c j of
cost 3; for normalization, we add a dummy item d of cost 1. For

each element xi (i ∈ [3m]) we have a voter vi approving all items

c j which correspond to sets Sj which contain xi (i.e., vi = {c j ∈
C : xi ∈ Sj }). We set the budget limit L to 3m. This finishes the

construction.

Givenm sets which cover the universe, we select exactly those

items (each cost 3 so we respect the budget limit). Then, each voter

gets some representative item, and Strong-BJR-L is satisfied. Strong-

BPJR-L is also satisfied, as each group of ℓn/L = ℓ voters is covered
by at least ⌈ℓ/3⌉ items (as each of them is covered by at least one,

and each one covers at most three), of total cost at least ℓ.

For the other direction, notice that, since L = n, it follows that
even a Strong-BJR-L budget shall make sure that each voter gets

represented by at least one item. Recalling the budget limit, it means

that a Strong-BJR-L budget shall correspond to an exact cover. □

3.2 BJR and BPJR
To remedy the possible non-existence of Strong-BJR-L and Strong-

BPJR-L budgets described above, below we introduce a weakening

of these axioms which address this issue; informally speaking, this

is done by requiring each cohesive group of voters to (unanimously)

support some item which is sufficiently cheap.

Definition 3.5 (BJR-L). A budgetW satisfies BJR-L if there exists

no set of votersV ′ ⊆ V with |V ′ | ≥ n/L such thatw
(
∩i ∈V ′Ai

)
≥ 1,

w
(
(∪i ∈V ′Ai ) ∩W

)
= 0, and there exists some c ∈ ∩i ∈V ′Ai with

w(c) = 1.

Remark 2. The additional requirement for cohesive groups of vot-
ers in the BJR definition is very restrictive. For example, if there is only
one item of cost one, then any budgetW containing this item will sat-
isfy JR. Thus, the definition of BJR is only meaningful when there are
multiple items of cost one. This observation suggests that the JR bud-
get definition is useful as a ‘minimal’ requirement of representation
but leaves a lot to be desired in terms of representation.
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Existence guaranteed? Computational complexity of testing Computational complexity of computing

W W+EX L W L W W+EX L

BJR yes yes yes P (Prop. 3.10) P (Prop. 3.10) P (W = ∅) P (Prop. 3.9) P (Prop. 3.9)

Strong-BJR yes no no P (Prop. 3.10) P (Prop. 3.10) P (W = ∅) NP-h (Prop. 3.4) NP-h (Prop. 3.4)

Local-BPJR yes yes yes Co-NP-c Co-NP-c P (W = ∅) P (Prop. 3.13; GPseq) P (Prop. 3.13; GPseq)

BPJR yes yes yes Co-NP-c Co-NP-c P (W = ∅) Open NP-h (Prop. 3.8)

Strong-BPJR yes no no Co-NP-c Co-NP-c P (W = ∅) NP-h (Prop. 3.4) NP-h (Prop. 3.4)

Table 1: Summary of our results. We consider two versions of proportionality axioms, the standard one respect to L (the given
budget limit), and the other variant with respect to W (the budget actually used) that is discussed in Section 3.4. We also
consider some axioms when additionally imposing exhaustiveness (+EX). For each proportionality axiom PA we state (1)
whether a budget satisfying PA is guaranteed to exist; (2) what is the computational complexity of testing whether a specific
budget satisfies PA; and (3) what is the computational complexity of computing a budget satisfying PA. (NP-h denotes NP-
hardness, Co-NP-c denotes Co-NP-completeness, EX denotes exhaustiveness, and GPseq denotes that our generalization of
Phragmen’s sequential rule satisfies the axiom. The co-NP-c results follow from the fact that testing PJR is co-NP-complete
in approval-based multi-winner voting [4].)

In a similar manner to the definition of BJR-L, below we intro-

duce the axiom of BPJR-L. Here, however, our requirement allows

for greater flexibility in the additional requirement of cohesive vot-

ers supporting a ‘sufficiently cheap’ item. In particular, we allow

for bundles of items and let the ‘sufficiently cheap’ criteria grow

proportionally with the size of the voters group.

Definition 3.6 (BPJR-L). A budgetW satisfies BPJR-L if for all

ℓ ∈ [1,L] there exists no set of voters V ′ ⊆ V with |V ′ | ≥ ℓ n/L
such thatw

(
∩i ∈V ′ Ai

)
≥ ℓ andw

(
(∪i ∈V ′Ai ) ∩W

)
< max

{
w(C ′) :

C ′ ⊆ ∩i ∈V ′Ai and w(C ′) ≤ |V ′ |L/n
}
.

The idea of the definition above is that every group of (at least) ℓ ·
n/L voters should control (at least) ℓ units of the budget. Technically,
however, for this to be satisfied we need a bundle of items with ‘low

enough’ cost ≤ ℓ. We then require that at least the cost of the most

expensive bundle which is also ‘low enough’ is used in representing

this group of ℓ · n/L voters. Note that indeed BPJR-L generalizes

BJR-L; specifically, BPJR-L boils down to BJR-L when ℓ = 1.

It turns out that exhaustive BPJR-L budgets always exist. (While

the procedure described in the next proof is super-polynomial,

afterwards we show that this is not a coincidence, by showing the

problem of computing a budget satisfying BPJR-L is NP-hard.)

Proposition 3.7. For any given budget limit L there always exists
a feasible budgetW which is exhaustive and satisfies BPJR-L.

Proof. We describe an algorithm which produces feasible, ex-

haustive budgets, which satisfy BPJR-L. The algorithm proceeds as

follows. We iterate over ℓ′, where initially ℓ′ = L and ℓ′ can only

decrease, until ℓ′ = 1. Let A′ = V (initially, considering all voters;

during the course of the algorithm, we will “discard” voters as we

take care for them), and letW = ∅ (initially, no item is budgeted).

The overall idea is greedy, where we decrease the total cost ℓ′

of the sets we greedily consider. Formally, in each iteration, first

check whetherw(W ) + ℓ′ ≤ L; if this is not the case, then decrease

ℓ′ by one and continue to the next iteration. Otherwise, let

C∗ := {C ′ ⊆ C : w(C) = ℓ′}.

IfC∗ = ∅, then decrease ℓ′ by one and continue to the next iteration.
Otherwise, for each C ′ ∈ C∗, let

A(C ′) = {i ∈ A′ : C ′ ⊆ Ai }
denote the voters from A′ which approve all items ofC ′. Select any
C ′ ∈ C∗ with maximal size of |A(C ′)| and check whether |A(C ′)| ≥
ℓ′ ·n/L; If this is not the case, then decrease ℓ′ by one and continue

to the next iteration. Otherwise, setW 7→ W ∪ C ′ and redefine

A′ 7→ A′ \A(C ′). Leave ℓ′ as is and continue to the next iteration.

The algorithm halts whenever ℓ′ = 0, in which case, ifW is non-

exhaustive, then we arbitrarily add items to it until it does, while

keeping it feasible.

Next we prove the algorithm’s correctness. LetW be the output

from the above algorithm and for the purpose of a contradiction

suppose that BPJR-L is not satisfied. That is, there exists an ℓ ∈ [1,L]
and a set of voters V ′ with |V ′ | ≥ ℓn/L andw(∩i ∈V ′Ai ) ≥ ℓ such
that there exists C ′ ⊆ ∩i ∈V ′Ai withw(C ′) ≤ ℓ such that

w
(
(∪i ∈V ′Ai ) ∩W

)
<W (C ′).

Furthermore, let ℓ be the smallest number such that the above holds.

Now suppose thatw(W ) = L. Then every unit spent in the budget
represents at least n/L additional voters, and so the total number

of adequately represented voters is at least

w(W ) · n/L = n,
thus, there cannot be a group of |V ′ | voters which are not repre-

sented by at least |V ′ |/(nL ) ≥ ℓ units of budget; thus, a contradiction.
Now suppose that w(W ) < L. Then, every unit spent in the

budget represents at least n/L additional voters, and so the total

number of adequately represented voters is at least

w(W ) · n/L < n.

Denote this set of voters by R ⊆ V and note that any subsetV ′′ ⊆ R
is adequately represented in the budget with at least |V ′′ |/(nL )
units of expenditure. Noting that there exists a group V ′ of size
|V ′ | ≥ ℓn/L who are inadequately represented – recalling that ℓ

is the smallest number such that this holds — it must be that the

group was not represented due to the budget limit and thus

w(W ) + ℓ > L.
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Now if there exists a (smallest) groupV ′ of inadequately represented
voters it must be that

V ′ ⊆ V \R
and so |V ′ | ≤ n − |R | ≤ n − w (W )n

L = n
L

(
L −w(W )

)
< ℓ nL ≤ |V

′ |
(the strict inequality follows sincew(W ) + ℓ > L), thus no such set

V ′ can exist and we have derived a contradiction. We conclude that

BPJR-L must be satisfied. □

The next result explains why the algorithm presented in the

proof above is not polynomial-time. Notice that there is some gap

in our complexity analysis, as the next proposition only shows

weak NP-hardness.

Proposition 3.8. Computing a BPJR-L budget is NP-hard.

Proof. We describe a Turing reduction from the NP-hard prob-

lem Partition [13] which, given integers x1, . . . ,xm whose sum is

2B, asks to find a subset of them which sums to B.
Given an instance of Partition with integers x1, . . . ,xm of sum

2B, we construct a PB scenario for which, for a yes-instance of

Partition, a BPJR-L budget corresponds to a subset of those integers

whose sum equals to B. Specifically, we construct items c1, . . . , cm ,

where item c j (j ∈ [m]) costs x j and have 1 voter approving all of

them; we set the budget limit L to B. This finishes the construction.
Given a solution to the Partition instance, consisting of a subset

X ′ ⊆ X with

∑
x ′∈X ′ x

′ = B, we construct a budgetW = X ′ which
costs B = L and thus is exhaustive and satisfies BPJR-L. For the

other direction, notice that, according to BPJR-L, the single voter

deserves the whole budget, thus a budget satisfying BPJR-L shall

correspond to a solution to the Partition instance. □

Computing BJR-L budgets, however, can be done in polynomial

time. The proof of the next proposition is by a greedy algorithm,

somehow resembling Approval-based greedy Chamberlin–Courant.

Proposition 3.9. There is a polynomial-time algorithm which
computes an exhaustive budget satisfying BJR-L.

Proof. If L = 0, thenW = ∅ satisfies the proposition. Let L > 0

be a budget limit and define the set of cheapest items:

C∗ := {c ∈ C : w(c) = 1}.
If |C∗ | ≤ L, then any budgetW such that C∗ ⊆ W is feasible and

satisfies BJR-W. To satisfy the exhaustiveness property we add items

c <W to the budget until it is exhaustive.

If |C∗ | > L, then we continue according to the following pro-

cedure. Let A′ = A,W = ∅, and let s(c,A′) = |{i ∈ A′ : c ∈ Ai }|
denote the approval score of item c with respect to the ballot pro-

file A′. Select any c ∈ C∗ with maximal score s(c,A′); then, set
W 7→ W ∪ {c}, remove all approval ballots with c ∈ Ai from A′,
and redefineC∗ 7→ C∗ − {c}. Repeat this process untilw(W ) ≥ ⌊L⌋
or until C∗ = ∅.

Note that at each stage where an item c ∈ C∗ is added toW , a

group of s(c,A′) unrepresented voters become represented. Also

note that at each stage s(c,A′) is weakly decreasing; that is, we

remove voters who have been represented and so the approval

score of any item can never increase.

In the first case, the algorithm terminates with W such that

w(W ) ≥ ⌊L⌋, thus the exhaustiveness and feasibility properties

are satisfied. Now, for the purpose of a contradiction, suppose that

BJR-W-L is not satisfied. Thus, there exists an item c ∈ C∗ with
s(c,A′) ≥ n/L, for A′ at the algorithm’s termination. But since

s(c,A′) is weakly decreasing at each stage and the item c̃ ∈ C∗ with
maximal score is added each time, but c ∈ C∗ was never elected,
it must be that every one of the |W | = w(W ) items added toW
represented at least |W | · n/L distinct voters.

Notice, however, that as

|W | · n/L ≥ ⌊L⌋n/L > (L − 1)n/L = n − n/L,
it would mean that strictly more than n − n/L voters were repre-

sented – meaning that there can no exists a setV ′ of unrepresented
voters with |V ′ | ≥ n/L; this gives a contradiction.

For the second case, note that there is no cheapest item supported

by any voter – let alone a cohesive group of ≥ n/L voters. Thus,

the budgetW satisfies BJR-L. To ensure that the exhaustiveness

property is satisfied we (arbitrarily) add items c < W until the

budget is exhaustive (but still remains feasible). □

We end this section by considering the complexity of testing

whether a given budget satisfies BJR-L (and Strong-BJR-L).

Proposition 3.10. There is a polynomial-time algorithm to test
whether a given budget satisfies BJR-L and Strong-BJR-L.

Proof. Given a PB scenario with items C , voters V , and budget

limit L, and a budgetW , the task is to decide whetherW satisfies

BJR-L or Strong-BJR-L. We proceed by describing a procedure for

BJR-L and mention how it shall be modified for Strong-BJR-L.

First, we find all voters which are not represented at all; formally,

let V ′′ := {v ∈ V : V ∩W = ∅}. Next, for each c ∈ C (or, for

Strong-BJR-L, for each c ∈ {c ∈ C : w(c) = 1}), consider the voters
in V ′′ which approve c; formally, let V ′′C = {v

′′ ∈ V ′′ : c ∈ v ′}.
Then, if |V ′′c | ≥ n/L, reject. If the end is reached, then accept. □

3.3 Local-BPJR
As we are interested in efficient budgeting methods which output

budgets satisfying certain forms of proportional representation,

the computational hardness result of the last section is somewhat

disappointing, as it presumably rules out the possibility of efficient

methods which compute exhaustive BPJR-L budgets. Here we con-

sider weaker versions of these concepts and then we describe an

efficient budgeting method which computes budgets satisfying it.

Definition 3.11 (Local-BPJR-L). A budgetW satisfies Local-BPJR-
L if for all ℓ ∈ [1,L] there exists no set of voters V ′ ⊆ V such that

W ′ = (∪i ∈V ′Ai )∩W , |V ′ | ≥ ℓ n/L and there exists someW ′′ ⊃W ′
such that

W ′′ ∈ argmax

{
w(C ′) : C ′ ⊆ ∩i ∈V ′Ai and w(C ′) ≤ ℓ

}
.

Janson [16] reports on several interesting rules, developed by

Phragmen, which were designed to achieve proportionality axioms

in multi-winner voting. Brill et al. [7] proved that one of these rule,

which they referred to as Phragmen’s sequential rule, computes

a committee that satisfies PJR (this refers to the proportionality

axiom for multi-winner voting). Here, we generalize Phragmen’s

sequential rule [7, 16] to the case of PB.

Our generalized rule is referred to as GPseq (Generalized Phrag-

men’s sequential rule) and proceeds as follows. Items are iteratively
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Input: (N ,C,w,L) % resp.: voters, items, cost function, limit

Output: W % budget

1 W ←− ∅
2 whileC ′′ = {c <W : w(W )+w(c) ≤ L∧∃i ∈ N : c ∈ Ai } , ∅
do

3 Let C∗ = {c ′ : c ′ ∈ argminc ′∈C ′′ sc ′} where: % argmin set

4 xc,i ≥ 0 (∀c ∈ C , ∀i ∈ N )

5 xc,i = 0 (∀c ∈ C , ∀i ∈ N such that c < Ai )
6

∑
i ∈N xc,i = w(c) (∀c ∈W ∪ {c ′})

7

∑
i ∈N xc,i = 0 (∀c <W ∪ {c ′})

8 xi =
∑
c ∈C xci (∀i ∈ N )

9 sc ′ ≥ xi (∀i ∈ N )

10 Let c∗ ∈ C∗ % break ties arbitrarily

11 W ←−W ∪ {c∗}
12 return W

Algorithm 1: Generalized Phragmen’s sequential rule for PB
(GPseq).

added until no item can be added without exceeding the budget

limit. An item that is added is required to spread its cost among

voters who approve it. When an item is considered to be added to

the set of selected items, we check what will be the maximum cost

received by a voter. We select the item that minimizes the maximum

cost received by voters (we discuss tie breaking later). The rule is

also shown in Algorithm 1.

Remark 3. When distributing the cost of the current item, we are
allowed to redistribute the cost of the already-chosen items; this can
be directly implemented using a linear program (as in Algorithm 1),
but also shown to be polynomial-time solvable using a combinatorial
argument, as shown by Brill et al. [7].

Remark 4. Currently, Line 2 in Algorithm 1 does not consider
items c which are not approved by any voter. As can be seen from the
proof of Proposition 3.13, leaving the algorithm as is still results in it
satisfying Local-BPJR. Perhaps unsatisfactory, however, the resulting
budgets might be non-exhaustive due to some items c which are not
approved by any voter (but fits within the budget limit). One possible
fix is by including a post-processing phase, specifically looking for
such items at the end of the algorithm and adding them exhaustively.

Before we prove that GPseq satisfies Local-BPJR-L, the next

example shows that, indeed, it does not satisfy BPJR-L.

Example 3.12. Consider the following instancewithC = {a,b, c,d}
andw(a) = 2,w(b) = w(c) = 1.5 andw(d) = 1. Let there be 6 voters

with approvals

A1 = . . . = A4 = {a,b} A5 = A6 = {c}.
If GPseq is run with L = 3, then in the first iterationW1 = {b}, and
in the second we add item c . Thus the computed budget is:

W = {b, c} and w(W ) = 3.

This budget does not satisfy BPJR-L since the group of voters V ′ =
{1, . . . , 4} is of size ≥ 2 · n/w(W ) = 4 and unanimously support a

bundle {a} with cost 2 but they were only represented by a bundle

of cost 1.5 (i.e., item b).

Proposition 3.13. GPseq satisfies Local-BPJR-L.

Proof. Assume, towards a contradiction, that there is a PB sce-

nario where GPseq outputs a budgetW which violates Local-BPJR-L.

By definition, this means that there is a number ℓ ∈ [1,L], a set of
voters |V ′ | ≥ ℓn/L, and someW ′′ ⊃ W ′ := (∪i ∈V ′Ai ) ∩W such

that

W ′′ ∈ max

{
w(C ′) : C ′ ⊆ ∩i ∈V ′Ai and w(C ′) ≤ ℓ

}
.

First, observe that it must be the case that w(W ′) < ℓ (since
otherwise no suchW ′′ could be feasible). AsW ′ ⊂W ′′, there must

be some c∗ ∈ W ′′ \W ′, and, asW ′ = (∪i ∈V ′Ai ) ∩W , it must be

that c∗ <W . Further, sinceW ′ ∪ {c∗} ⊆W ′′, the following holds:
w(W ′) +w(c∗) ≤ w(W ′′) ≤ ℓ. (1)

Recall that GPseq works in iterations, where in each iteration

another item is added to the intermediate budgetW . Further, before

the first iteration it is possible to add c∗ to the partial budget, since

the partial budget is empty; while after the last iteration it is surely

not possible anymore, as if it was so, then GPseq would not termi-

nate. The proof now follows by considering the iteration at which

the corresponding ‘switch’ occured, and will then show that the

maximum voter spread could have been smaller if c∗ were chosen
instead of the other item which was chosen; this then contradicts

the way by which GPseq works.

To be more formal, the following notation is helpful. Denote the

intermediate budget at the completion of the jth iteration of GPseq

byW j
; and by x

j
i and s

∗
j , the spread of voter i and the maximum

voter spread (respectively; specifically, s∗j = maxi ∈V x
j
i ) at the

completion of that iteration.

Supplied with the above notation, let j be the index of the first
iteration for which the following hold:

w(W j−1) +w(c∗) ≤ L, (2)

w(W j ) +w(c∗) > L. (3)

Recall that such j must exist as otherwise GPseq would not have

terminated.

Next we compute a lower bound on the maximum voter spread

inW j
. AsW ′ = (∪i ∈V ′Ai ) ∩W it follows that the total weight of

the items inWj \ (W ′ ∩W j ) is spread over at most n − |V ′ | voters
(those corresponding to voters not in V ′). Then, from averaging, if

follows that there must be at least one voter k ∈ V \V ′ for which
the following hold:

x
j
k ≥

w(W j ) −w(W ′ ∩W j )
n − |V ′ |

>
L −w(c∗) −w(W ′ ∩W j )

n − |V ′ | by (3)

≥ L − ℓ
n − |V ′ | by (1)

≥ L − ℓ
n
L (L − ℓ)

since |V ′ | ≥ ℓn
L
,

=
L

n
.

As s∗j = maxi ∈V x
j
i , it follows that s

∗
j >

L
n .

Next we compute an upper bound on the maximum voter spread

if, instead of adding the item added in the jth iteration, we would
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add c∗ at that iteration. Thus, the budget at the completion of the jth

iteration will beW j ′ =W j−1 ∪ {c∗}. Let us denote the alternative
values of x

j
i and s

∗
j by x

j
i
′
and s∗j

′
, respectively.

Recall that GPseq considers minimizing the maximum voter

spread, thus to compute an upper bound it is sufficient to consider

one way of spreading c∗’s weight; we will consider spreading it

evenly among the voters in V ′. That way, the spread of voters

k ∈ V \V ′ remains unchanged to the previous iteration j − 1; i.e.,
for k ∈ V \V ′ it holds that:

x
j
k
′
= x

j−1
k . (4)

Let

s̃∗j−1 = max

k<V ′
x
j−1
k = max

k<V ′
x
j
k
′
, (5)

this denotes the maximum spread among voters inV \V ′ at the (j −
1)th iteration (or equivalently the alternative maximum spread of

such voters in the jth iteration). Some weight of items inW ′∩W j−1

may be distributed to voters in V \V ′ at this (j − 1)th iteration.

Further, by redistributing the weight at the (j − 1)th iteration,∑
i ∈V ′ x

j−1
i ≤ w(W ′ ∩W j−1), evenly among voters in V ′ we can

maintain equality in (4). We then construct the alternative value of

spreads for voters inV ′ by evenly distributed the weight of item c∗

as well. Thus, for all i ∈ V ′

x
j
i
′
=

∑
i ∈V ′ x

j−1
i

|V ′ | +
w(c∗)
|V ′ | ≤

w(W ′ ∩W j−1)
|V ′ | +

w(c∗)
|V ′ |

≤ ℓ

|V ′ | by (1)

≤ L

n
.

Recall (5); it follows that under this spread,

s∗j
′
= max

(
s̃∗j−1,max

i ∈V ′
(x ji
′)
)
.

Next we consider two cases. First, if s̃∗j−1 ≤
L
n , then we are done

as this would imply that s∗j
′ ≤ L

n < s∗j , which contradicts the fact

the GPseq minimizes s∗j at each iteration.

For the second case, suppose that s̃∗j−1 >
L
n and so s∗j−1 >

L
n .

This would imply that at some earlier iteration, say t < j, we have

s∗t−1 ≤
L
n and s∗t >

L
n (as initially no weight is spread on the

voters). Further, as c∗ < W and W t−1 ⊆ W and W t ⊆ W , for

the intermediate budgetsW t−1
andW t

it holds that w(W t−1) <
w(W t ) ≤ w(W j−1) ≤ L −w(c∗). This means that adding the item

c∗ does not cause us to exceed the budget limit L since t < j and
j is the earliest stage such that (2) and (3) are satisfied. Thus, if at

stage t instead item c∗ was added to the intermediate budgetW t

then by spreading the additional weightw(c∗) among agents in V ′

we can attain the following alternative maximum voter spread:

s∗t
′ ≤ L

n
< s∗t .

This contradicts the fact that GPseq minimizes s∗j at each iteration.

Overall, we conclude that no such set V ′ can exist and thus

Local-BPJR-L is satisfied. □

Tie breaking. Notice that both Theorem 3.13 and Example 3.12

are oblivious to the tie breaking used by GPseq. Arguably, its tie-

breaking can result in some non-intuitive behavior, as the following

example shows. Let C = {c1, c2} withw(c1) = 1 andw(c2) = 2 and

let there be voters V = {1, . . . , 6} with the following ballots:

A1 = · · · = A4 = {c2} A5 = A6 = {c1}.

Then, if we have a budget limit L = 2, then the items to be chosen for

Phragmen-budget will be either c1 or c2. Now, if we favor cheaper
items, or simply choose c1 arbitrarily, then we will ‘satisfy’ only 2

voters; whilst, perhaps a more intuitive outcome would beW ′ =
{c2} which is of a cost w(W ) = L = 2 and satisfies 4 voters. Both

budgets, however, satisfy BPJR-L in this case.

3.4 W-variants and Relations between Axioms
So far our axioms of proportionality depended on an external bud-

get limit L. Indeed, being based on L, such definitions are easily

communicated, as usually L is known before hand; further, each

group of voters can easily compute and appreciate the fraction of L
which they can claim for themselves.

There is, however, some merit in being oblivious to L, by con-

sidering proportionality axioms which are oblivious to L, and are

properties of the budget itself (with respect to the electorate, of

course). This is possible through what we refer to as W-variants.

Specifically, instead of considering groups of voters of ℓ ·n/L (which,
as our definitions above state, deserve ℓ units of the budget), in our

W-variants we concentrate not on the external budget limit L but

on the actual total cost of the budgetw(W ), and consider groups of

voters of ℓ · n/w(W ), which deserve ℓ units of the budget. We feel

that these definitions, which are based onw(W ) are, mathematically

speaking, more elegant, as they are properties of the budget itself

and are oblivious to the externally-imposed budget limit. Formally,

we suggest the following definitions (which are analogous to their

L-variants described in the previous sections).

Definition 3.14 (Strong-BJR-W). A budgetW satisfies Strong-BJR-
W if there exists no set of votersV ′ ⊆ V with |V ′ | ≥ n/w(W ), such
thatw

(
∩i ∈V ′ Ai

)
≥ 1 butw

(
(∪i ∈V ′Ai ) ∩W

)
= 0.

Definition 3.15 (Strong-BPJR-W). A budgetW satisfies Strong-
BPJR-W if for all ℓ ∈ [1,w(W )] there does not exist a set of voters
V ′ ⊆ V with |V ′ | ≥ ℓ n/w(W ), such that w

(
∩i ∈V ′ Ai

)
≥ ℓ but

w
(
(∪i ∈V ′Ai ) ∩W

)
< ℓ.

Definition 3.16 (BJR-W). A budgetW satisfies BJR-W if there

exists no set of voters V ′ ⊆ V with |V ′ | ≥ n/w(W ) such that

w
(
∩i ∈V ′ Ai

)
≥ 1, w

(
(∪i ∈V ′Ai ) ∩W

)
= 0, and there exists some

c ∈ ∩i ∈V ′Ai withw(c) = 1.

Definition 3.17 (BPJR-W). A budgetW satisfies BPJR-W if for

all ℓ ∈ [1,w(W )] there exists no set of voters V ′ ⊆ V with |V ′ | ≥
ℓ n/w(W ) such thatw

(
∩i ∈V ′ Ai

)
≥ ℓ and

w
(
(∪i ∈V ′Ai )∩W

)
< max

{
w(C ′) : C ′ ⊆ ∩i ∈V ′Ai and w(C ′) ≤ ℓ

}
.

Definition 3.18 (Local-BPJR-W). A budgetW satisfies Local-BPJR-
W if for all ℓ ∈ [1,L] there exists no set of voters V ′ ⊆ V such

thatW ′ = (∪i ∈V ′Ai ) ∩W , |V ′ | ≥ ℓ n/w(W ) and there exists some
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Strong-BPJR-L

BPJR-L

Local-BPJR-L

BJR-L

Strong-BJR-L

Strong-BPJR-W

BPJR-W

Local-BPJR-W

BJR-W

Strong-BJR-W

Figure 1: Logical relations between proportionality con-
cepts. An arrow from (A) to (B) denotes that concept (A) im-
plies concept (B).

W ′′ ⊃W ′ such that

W ′′ ∈ argmax

{
w(C ′) : C ′ ⊆ ∩i ∈V ′Ai and w(C ′) ≤ ℓ

}
.

Notice that each L-variant implies its corresponding W-variant.

Proposition 3.19. Any L-variant implies its W-variant.

Proof. In the L-variants ℓ ∈ [1,L] while in the W-variants

ℓ ∈ [1,w(W )], and w(W ) ≤ L always holds. Further, the sets V ′

considered in the L-variants satisfy |V ′ | ≥ ℓn/L while those in

the W-variants satisfy |V ′ | ≥ ℓn/w(W ); again,w(W ) ≤ L holds, it

follows that n/L ≤ n/w(W ). Therefore, each L-variant considers all

sets considered by its corresponding W-variant. □

Notice that W-variants always exist, as, for example, the empty

budget B = ∅ satisfies them (as our voter set is always finite).

Thus, it makes more sense to require also exhaustiveness from such

budgets; for example, considering the complexity of computing

exhaustive Local-BPJR-W budgets. Indeed, tractability of comput-

ing an L-variant implies tractability of computing an exhaustive

W-variant. On the other hand, exhaustive W-variants might be

computationally easier to compute than their corresponding L-

variants; while we know that computing exhaustive Strong-BJR-W

budgets and exhaustive Strong-BPJR-W budgets is NP-hard, we

could not modify the proof of hardness of computing BPJR-L bud-

gets (Theorem 3.8) to apply to exhaustive BPJR-W budgets as well.

We conjecture, however, that indeed computing exhaustive BPJR-W

is NP-hard as well.

We conclude the section by further discussing the logical rela-

tions between the axioms presented and discussed in the sections

above. These relations are also pictorially represented in Figure 1.

Proposition 3.20. Strong-BPJR-(W/L) implies BPJR-(W/L) which
implies Local-BPJR-(W/L) which implies BJR-(W/L).

Proof. The definition of BPJR-(W/L) includes a check on V ′

which is not present in the definition of Strong-BPJR-(W/L), and

thus is implied by it. The definition of Local-BPJR-(W/L) considers

specific setsW ′′ to represent certain groups, therefore is implied

by BPJR-(W/L) which consider more sets.

To show that Local-BPJR-(W/L) implies BJR-(W/L) we use the

contrapositive by assuming that BJR-(W/L) is not satisfied. This

implies that there exists a group of voters V ′ such that |V ′ | ≥
n/w(W ) (or ≥ n/L), w(∪i ∈V ′Ai ) ≥ 1, and some c ∈ ∩i ∈V ′Ai with
w(c) = 1 exists, but neverthelessw

(
(∪i ∈V ′Ai ) ∩W

)
= 0. Recalling

the definition of Local-BPJR-(W/L), this implies thatW ′ = ∅ and
so Local-BPJR-(W/L) is not satisfied if there exists any budgetW ′′

(since every budget contains the empty set) containing some subset

of items C ′ ⊆ ∩i ∈V ′Ai and w(C ′) ≤ ℓ such that w(W ′′) > w(W ′).
Such a budget always exists since a BJR-(W/L) budget always exists

(Proposition 3.7), and a budget satisfying BJR-(W/L) satisfies the

conditions forW ′′ to failW as a Local BPJR-(W/L) budget. □

4 CONCLUSIONS
Participatory budgeting is an interesting and widely applicable set-

ting, gaining growing attention from the research community and

being more extensively deployed. The axiomatic, normative study

of methods of participatory budgeting is still lacking, and issues of

proportionality and representation are currently not well under-

stood; this is especially unfortunate as many times it is desirable

to spend funds in a proportional way, taking into account issues

of representativeness, and not letting the majority control all the

available budget. Thus, in this paper, we proposed several new, pro-

portional representation axioms as well as efficient corresponding

algorithms. Many of our results are summarized in Table 1.

As we framed participatory budgeting as a generalization of

multi-winner voting, our axioms and rules can also be viewed as

interesting generalizations of work on multi-winner voting. Some

of the interesting insights include the following: Whereas both

PAV and Phragmen’s sequential rule are considered compelling

rules for approval-based multi-winner voting, the latter is more

suitable in being extended to more general settings such as PB.

Recalling our research motivation from Section 1, where we stated

our aim at finding the right axiom and corresponding rule for

PB, as a conclusion we can say that Local-BPJR-L appears to be a

compelling axiom for proportional representation of PB and GPseq

seems to be a particularly useful and desirable rule in this context.

We envisage further work on axiomatic and computational as-

pects of participatory budgeting. It will be interesting to explore the

trade-offs between the axioms we proposed and other axioms that

might be important to consider in these applications. It may also

be useful to, theoretically and empirically, compare how different

rules in the literature fare in terms of axiomatic properties.
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