
Gerrymandering Over Graphs
Amittai Cohen-Zemach

School of Computer Science and

Engineering, The Hebrew University

of Jerusalem, Israel

amittai.cohen-zemac@mail.huji.ac.il

Yoad Lewenberg

School of Computer Science and

Engineering, The Hebrew University

of Jerusalem, Israel

yoadlew@cs.huji.ac.il

Jeffrey S. Rosenschein

School of Computer Science and

Engineering, The Hebrew University

of Jerusalem, Israel

jeff@cs.huji.ac.il

ABSTRACT
In many real-life scenarios, voting problems consist of several

phases: an overall set of voters is partitioned into subgroups, each

subgroup chooses a preferred candidate, and the final winner is

selected from among those candidates. The attempt to skew the out-

come of such a voting system through strategic partitioning of the

overall set of voters into subgroups is known as “gerrymandering”.

We investigate the problem of gerrymandering over a network

structure; the voters are embedded in a social network, and the

task is to divide the network into connected components such that

a target candidate will win in a plurality of the components. We

first show that the problem is NP-complete in the worst case. We

then perform a series of simulations, using random graph models

incorporating a homophily factor. In these simulations, we show

that a simple greedy algorithm can be quite successful in finding a

partition in favor of a specific candidate.

KEYWORDS
Voting; Social Choice; Gerrymandering; Districts; Social Networks

ACM Reference Format:
Amittai Cohen-Zemach, Yoad Lewenberg, and Jeffrey S. Rosenschein. 2018.

Gerrymandering Over Graphs. In Proc. of the 17th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm,
Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Collective decision-making often arises when agents interact with

one another. In these situations, any individual in the group may

have a preference over the possible choices that can be made, yet

a single choice may need to be made for the entire group. It is

thus necessary to aggregate the opinions or preferences of multiple

agents to achieve a unified decision. The rules that define how to

reach a group decision are often called social choice functions.

We can frame these group choices as elections, where each agent

is a voter with a personal preference over available candidates.

Voters report their preferences to a center that applies some social

choice function (i.e., voting rule) to aggregate the preferences and

output a collective decision. A key topic of interest is manipulation,
that is, strategic exploitation of the protocol by an agent, aimed at

improving the final outcome from that agent’s perspective.

Most commonly, manipulation refers to strategic voting, i.e.,

misreporting true preferences. The most fundamental theorems

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

in social choice theory, Arrow’s theorem [1] and the Gibbard-

Satterthwaite theorem [11, 17], are closely-related impossibility

results regarding the existence of social choice functions that meet

some basic criteria.

However, it is not only the voter that can influence outcomes

via strategic behavior; the center, or “election chair”, may change

aspects of the election to affect the result. This class of manipulative

actions is known as strategic control.
In this paper, we focus on hierarchical voting systems such as

those that are district-based. These systems consist of two phases:

(1) Each voter reports their preferences, and these are aggre-

gated locally with other voters in the same group or district

(using some predefined voting rule);

(2) The results from phase one are aggregated globally, using a

second voting rule (potentially different from the first).

Hierarchical voting systems are common; one example is the

U.S. presidential election system. In hierarchical voting and district-

based elections, manipulating the borders between districts in order

to skew the final outcome in favor of a preferred candidate is known

as “gerrymandering". This technique has been used by political

parties in the U.S. for many years [9, 12].

In this paper we present a model where voters are embedded

in a social network. Each voter is represented as a vertex, and a

connection between voters is represented as an edge. Such scenarios

arise, for example, in a company divided into divisions. In this case,

a link between twoworkers (vertices) could represent a professional

connection between the two. The company is split into divisions,

where each division is a cluster of workers in the graph. In this

example, every division might reach an internal decision, and then

based on the outcome from the first stage, the final decision for the

entire organization is made.

We study gerrymandering as a control problem. We first show

that given a graph with voter preferences, finding a partition into

connected components that helps a specific candidate win is a com-

putationally hard problem. Turning to simulations, we present a

greedy algorithm that tries to find the best partition for a given

candidate, and test its performance on graphs with various proper-

ties. Specifically, we are interested in examining how the homophily
level of the graph affects the algorithm’s performance; in graphs

with a high level of homophily, voters with similar preferences are

more likely to have a link between them. Our simulations show that

if we wish to divide the graph into a small number of components

then it is easier as the homophily level decreases. However, for

graphs with a high level of homophily, it is easier to find parti-

tions that help a specific candidate as the number of components

increases.

 Session 8: Social Choice on Networks AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

274

2 RELATEDWORK
The effect of districts on election outcomes has been widely stud-

ied; mostly, however, it has been examined within political sci-

ence, where data analysis from past elections is used to determine

whether gerrymandering has occurred (see, e.g., [9]). In the compu-

tational social choice community, the problem of voter manipula-

tion has been extensively studied [5, 10]. For example, Xia et al. [20]

and Zuckerman et al. [21] studied coalitional manipulation, where

a coalition of manipulators collude in order to make their favorite

candidate win. Control problems that emerge in voting scenarios

have been studied in the context of non-hierarchical voting systems,

where, for example, Procaccia et al. [16] studied the complexity of

control problems both in the worst case (by proving a hardness

result) and in the average case (using simulations rather than an-

alyzing real world data). Other work dealt with control problems

in the context of hierarchical voting systems, where the task is to

divide the voters into groups [3, 8, 14]. Those models, however, do

not assume a network structure of the voters.

A relatively small number of papers deal with district-based elec-

tions within the computational social choice community. Pegden

et al. [15] designed a protocol for dividing a state into districts, and

showed that the protocol has provable guarantees for both the num-

ber of districts in which each party has a majority of supporters and

the extent to which either party has the power to pack a specific

population into a single district.

Taking a somewhat similar point of view, Bachrach et al. [2]

define a ratio that indicates how unrepresentative a district election

is, under some voting rule f . That ratio is computed compared to

the outcome when applying f to the entire population, without

districts; they show some bounds on this ratio, for various known

voting rules.

In a later study, Lewenberg et al. [13] show that gerrymandering

in a geographical setting, in which voters have to vote at the closest

polling place, is NP-complete. They demonstrate, using both sim-

ulations and real data from elections in Israel and the UK, that in

practice gerrymandering may not be so hard, and that it is possible

to gerrymander reasonably well in favor of multiple candidates

using a simple greedy algorithm. This paper can be seen as a direct

extension of their research, with one major difference, namely, that

here we renounce the geographical setting in favor of a graphical

setting, substituting physical distances between voters with more

abstract links of a network, that could have various interpretations

(such as organizational structure, friendship, or any other shared

property).

Clough [4] studies strategic voting in social networks, using

a 13 × 13 grid-based undirected graph. In their model, voters are

grouped according to ideology, and therefore voters are connected

primarily with those of similar political perspectives. They show

how the degree of homogeneity of a political discussion network

affects voter coordination on two parties in a single-member plu-

rality system. Homogeneity is somewhat equivalent to the use of

homophily in our work.

Coombs and Avrunin [6] study the emergence of single-peaked

preferences in various domains and the psychological factors that

shape it. They show that single-peakedness is psychologically in-

evitable if there is only one domain over which there exists a pref-

erence order, as is the case in our work.

Our work also has similarities to Tsang and Larson [19]. Tsang

and Larson model voters as vertices in a network. They model the

voting process as an iterative game, and study the effects of strategic

behavior of the voters on the convergence of the iterative process.

The graph modeling in this paper is similar to their modeling,

featuring two simple random graph models, as well as a homophily

factor.

Talmon [18] also models voters as vertices in a network. The

paper considers multi-winner elections and studies the computa-

tional complexity of dividing the voters into districts that satisfy

certain structural properties.

3 THE VOTING SETTING
We start with some general definitions needed for our theoretical

analysis. An election is comprised of a set V of n voters (possibly

weighted) and a set of candidates C . Let π (C) be the set of orders
over the elements of C . Each voter v ∈ V has a preference order

≻v∈ π (C). A voting rule is a function f : π (C)n → π (C) that
returns a ranking, given the profile of n voters.

In a hierarchical voting system, voters are divided into disjoint

sets V1, . . . ,Vs such that ∪si=1Vi = V . These sets define a set of s
elections, where in each one of them a voting rule f1 determines the

winning candidate. Next, another voting rule f2 is applied to the

outcome of the first-stage elections, and selects the final winner of

the election (note that f2 is selected from the subclass of voting rules

that use as input just the top-rated candidate in each preference

order). It is common to set f1 to be the plurality voting rule, in

which the winner is simply the candidate with the most supporters

(not to be confused with “majority”, where a candidate is required

to be chosen by a majority of the voters in order to win). Using

plurality is both common in real-world scenarios and convenient

for theoretical analysis. In particular, plurality can be thought of

as the simplest voting rule possible, as it considers only the top-

ranked candidate for every voter and not the full ranking. When

showing theoretical hardness for plurality, it may be suggestive of

the general hardness of the problem for other voting rules as well.

As for f2, we slightly abuse the notation, and require that the

target candidate would win in as many districts as possible (either

directly, as done in the simulations, or indirectly, as done in the

theoretical analysis, by casting the problem as a decision problem,

asking whether it is possible to make the target candidate win in at

least l out of k districts). We can therefore think of f2 as also being

the plurality rule; however, any other voting rule may be applied.

4 GERRYMANDERING OVER GRAPHS
Although it classically refers to manipulation of borders between

districts over a geographic layout such as a plane, gerrymandering

can also be interesting in non-geographic settings. Instead of as-

sociating a point on the plane with each voter, one could think of

voters as vertices in a graph, such that edges represent some sort

of connection between them (e.g., a social network, or a structural

network of a company). We can ask whether it is possible (and how)

to gerrymander such structures.

 Session 8: Social Choice on Networks AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

275

A graphical representation, for example, could be appropriate in

a group selecting its president, assuming that the group members

are divided into committees. Every committee first recommends

a candidate, and based on those recommendations the president

is selected. In this example, the members of the group might be

embedded in a social network, where a link between two vertices

(members) might indicate that they are friends. The control problem

in this case is to find a partition into committees, based on their

links, such that a target candidate will win.

The graphical representation can also be seen as an abstraction

of an underlying geographical structure. In this case, a link between

two vertices could indicate that the underlying distance between

them is bounded by some constant. We thus obtain a gerryman-

dering problem in which the connected components of the graph

translate into underlying territorial continuity.

5 THE COMPLEXITY OF GERRYMANDERING
OVER GRAPHS

We begin with a formal description of the problem.

Definition 5.1. The input of the Gerrymandering Over Graphs

problem, AGM , is ⟨G,w,C,p,k, l ,≻⟩, where:

• G = (V ,E) is an undirected connected graph over |V | voters
(vertices),

• w : V → R+ is a weight function on voters (w (v) = r can
be thought of as creating r duplicates of voter v),
• C is the set of candidates,

• p ∈ C is the target candidate,

• l ,k ∈ N are integers such that 1 ≤ l ≤ k ≤ |V |; and
• in addition, for each voter v ∈ V we have a preference order

≻v∈ π (C).

We are asked whether it is possible to remove edges from G such

that we get a new graph G ′ with k connected components, such

that the candidate p wins (according to the plurality rule) in l of the
k “district elections” (defined by the connected components in G ′).

To ease specification of the proof, there is no need to set a specific

voting rule f2. However, the problem can be easilymodified, without

changing its complexity, such that the second voting rule will be

plurality.

We add a further restriction to the problem’s definition: we do

not allow connected components of size 1. This has an intuitive

interpretation of avoiding components in which a single voter has

all the power. This also has a crucial role in the correctness part of

the reduction.

Theorem 5.2. AGM is NP-complete.

Proof. To show that AGM is NP-complete, we reduce the Exact

Cover by 3-Sets (X3C) problem, a known NP-complete problem,

to our gerrymandering over graph problem. The input of X3C is

X = (x1, . . . ,x3n) a set of 3n elements and S = (S1, . . . , Sm) a
collection of m subsets of X , where for every S ∈ S : |S | = 3.

We can represent an instance of the problem as a bipartite graph

G = (X ∪ S,E), where there is an undirected edge between x ∈ X
and S ∈ S if and only if x ∈ S . We are asked whether there is a

subset S ⊂ S of n subsets such that for every element x ∈ X there

is exactly one subset S ∈ S such that x ∈ S .

(a)

𝑝

𝑝 𝑝

𝑏𝑐

𝑎

(b)

Figure 1: (a) An X3C gadget; the circles are the elements and
the square is the set. (b) AGerrymanderingOverGraphs gad-
get; p’s supporters are the circles, the squares are supporters
of the other candidates. The weights of p’s supporters are
1 + ε , the weights of the other voters are 3.

We reduce an arbitrary X3C instance to the following AGM
instance. First, for every S ∈ S we denote S = {xSa ,x

S
b ,x

S
c }, that is,

we enumerate the elements in S arbitrarily. In the reduced AGM
instance, given as a graph G ′ = (V ′,E ′), there are 3n + 3m voters

and 4 candidates, a, b, c and p. For every element x ∈ X there will

be a voter vx ∈ V with weight 1 + ε that supports candidate p.
For every collection S = {xSa ,x

S
b ,x

S
c } there will be three voters

vSa ,v
S
b ,v

S
c ∈ V with weight 3, and edges among them. Voter vSa

supports candidate a, voter vSb supports candidate b and voter vSc
supports candidate c . For every element x ∈ X and collection S ∈ S
such that x ∈ S : if x is labeled as xSa then there will be an edge

between vx to vSa ; if x is labeled as xSb then there will be an edge

between vx to vSb ; and if x is labeled as xSc then there will be an

edge between vc to vSc . We are asked whether we can divide G ′

intom connected components such that p will win n of them. A

graphical illustration of the reduction is given in Figure 1.

Now, assume there is a subset S ⊂ S such that for every element

x ∈ X :

���{S ∈ S : x ∈ S
}��� = 1. If S ∈ S then the voters {vx : x ∈ S}∪{

vSa ,v
S
b ,v

S
c

}
will form a district; and if S < S then the voters{

vSa ,v
S
b ,v

S
c

}
will form a district. Since S is an exact cover, for every

x ∈ X voter vx belongs to exactly one district. If S ∈ S then p
will win in the corresponding district with 3 + 3ε votes comparing

to 3 for every other candidate. If S < S then p will not win in

the corresponding district. Therefore, we can divide G ′ into m
connected components such that p will win n of them.

Now, assume that we can divideG ′ intom connected components

such that p will win n of them. Note that in every district that p
is winning we must have at least three voters that support p. This
holds because the size of a district must be at least two, and every

two p’s supporters are connected via an opponent supported with

weight 3. Sincep is winning inn districts and there are exactly 3n p’s
supporters, it holds that in every district where p is winning there

are exactly three voters that support p, and at most one voter that

supports a, one voter that supports b, and one voter that supports

c . Therefore, every district in which p is winning must consist of

the voters {vx : x ∈ S} ∪
{
vSa ,v

S
b ,v

S
c

}
for some S ∈ S. Let S be the

 Session 8: Social Choice on Networks AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

276

collection such that S ∈ S if and only if {vx : x ∈ S}∪
{
vSa ,v

S
b ,v

S
c

}
form a district. Since vx belongs to exactly one district it holds that

x belongs to exactly one set in S, and thus there is a subset S ⊂ S

such that for

���{S ∈ S : x ∈ S
}��� = 1. �

We formulated the problem as trying to find a partition of the

graph into k components such that p wins in exactly l compo-

nents. However, given an AGM instance, one can ask whether it

is possible to make p win in at least l components. Denote the “at

least" version of the problem by A≤GM . Formally, A≤GM is the set

of all instances ⟨G,w,C,p,k, l ,≻⟩ such that ∃l ≤ θ ≤ k such that

⟨G,w,C,p,k,θ ,≻⟩ is a “yes" instance. Clearly, if we had an oracle

for AGM , we could use it to find the answer to A≤GM by simply

querying the oracle for all l ≤ θ ≤ k . In this sense, AGM is at least

as hard as A≤GM . The next theorem states that A≤GM is still a hard

problem.

Theorem 5.3. A≤GM is NP-complete.

The full proof is omitted as it is very similar to the proof of

Theorem 5.2 (it builds on the same reduction and adds another k − l
vertices supporting p so that p will now win in “at least" k out of k
components).

Graphs can model geographical settings where nodes are geo-

graphical voting units (e.g., voting precincts) and there is an edge

between units that share a border. In this case, the induced graphs

are planar. Therefore, it is natural to ask whether there is an efficient

algorithm for the Gerrymandering Over Planar Graphs problem.

The next theorem states that Planar-AGM is still a hard problem.

Theorem 5.4. Planar-AGM , the problem defined as AGM , only
for planar graphs, is NP-complete.

Proof. When applying the same reduction as in Theorem 5.2 to

a Planar-Exact Cover by 3-Set (Planar-X3C) instance, the obtained

graph is also planar. The Planar-X3C problem is known to be NP-

complete [7]. �

Remark 5.5. In Definition 5.1 we do not require that the size of
the districts be equal. Our theoretical results show that without this
constraint the problem is not tractable. Note that a wide family of
partition problems and graph partition problems are known to be
NP-complete. We thus chose to focus on the problem without any
additional constraints so that we could establish that the hardness
stemmed from the voting constraints, and not from other constraints.

Nevertheless, there are real-world situations where gerrymandering
occurs without the equal population constraint. For example, in the
UK the number of electors in a UK constituency can vary considerably,
with the smallest constituency currently having fewer than a fifth of
the electors of the largest.

6 EMPIRICAL FEASIBILITY
In this section we discuss the simulations we performed. These fo-

cus on whether certain instances of the problem may be susceptible

to gerrymandering, despite the worst-case hardness results shown

above.

6.1 Graphs with “Natural" Properties
For our simulations, we restrict ourselves to a particular family of

graphs, which we assume to have some “natural" properties (corre-

sponding to those of real-world structures, such as a social network

or an organization). The most basic notion we use is that vertices

in the graph that are connected represent voters that are close in

some social or structural sense, and therefore tend to have simi-

lar ideologies. This is a known phenomenon in the social science

literature, often referred to as “homophily". We use the common

and simple line model to generate candidates and voters. In the line

model, both candidates and voters are represented as points on a

line (we use the real interval [0, 1]), the voters rank the candidates

by their distance from them. This results in preference relations

that are called “single-peaked preferences".

Single-peaked preferences are widely used in social choice to

simulate real-life preferences. Note that we used the plurality vot-

ing rule and only the top ranked candidate is considered. In this

case using single-peaked preferences we may generate candidates

with different support levels, and we may ensure that voters with

the same top preference will be more likely to be connected (see

Subsection 6.2 below).

Single-peaked preferences have two properties:

(1) each voter has an ideal choice, and

(2) each voter ranks choices lower as they get farther from his

ideal choice.

For example, if we have three candidates defined by their locations

c1 = 0.2, c2 = 0.4, and c3 = 0.7, then a voter with location v =
0.5 will have the preferences c2 ≻ c3 ≻ c1. Following the model

proposed by Tsang and Larson, we use two random graph models

to generate the underlying network structure:

(1) the Erdös-Rényi (ER) random graph model (in which each

edge is realized independently with the same probability q),
and

(2) the Barabasi-Albert (BA) preferential attachment model (in

which we start with a small clique and then add vertices to it,

such that each new vertex we add is connected to d existing

vertices, which are chosen independently with probability

proportional to their current degree).

Additionally, we incorporate the homophily property by multi-

plying the probabilities to generate edges between pairs of voters

(vertices) by a factor h that depends on the distance between the

two voters. This can be done in various ways, creating different

kinds and strengths of homophily, and is discussed in the following

section.

The degree distribution in ER graphs is typically very peaked:

the probability of having a vertex with a certain degree deд decays

exponentially fast as deд grows. Most real-world social networks,

however, have a polynomial decay in these probabilities, meaning

that a few vertices with very high degree exist (such networks are

often called “scale-free networks"). Unlike the ER model, the BA

model is scale-free, and we wish to examine if this property affects

the ability to gerrymander.

 Session 8: Social Choice on Networks AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

277

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30
31

32

33

34
35

36
37 38

39

40

41

42

43
44

45

46

47

48

49

50

51

52
53

54

55

56

57
58

59

60

61

62
63

64

65

66

67

68

69 70

71

72

73

74

75
76

77
78 79 80

81 82
83

84

85

86

87
88

89

90

91

92

93

94

95

96
97

98

99

(a)
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

67
8

9

10

11

1213
14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 40
41

42

43

44

45

46

47

48
49

50

51
52

53

5455

56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79
80

81 82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98
99

(b)

Figure 2: A sample of ER graph generated with α = 0 (a) and α = 1 (b). When α is high, the probability of an edge (u,v) to be
realized is higher if u and v have similar preferences.

6.2 The Homophily Function
Wewant voters with similar preferences to be more likely to be con-

nected; we thus modify the graph models to incorporate homophily.

An edge between votersv,u may be realized with some initial prob-

ability (depending on the particular graph model). This probability

of realization is then modified, multiplying by a homophily factor

h = h (u,v) which is a function of the two voters. The homophily

functionh (u,v) is a function of the distance between the two voters
|u −v |. Intuitively, we would like the homophily function to output

a high value given two voters that are closer to each other (on

the line) and who thus have relatively similar opinions. Therefore,

the homophily function should be inversely correlated with the

distance between its input voters.

Moreover, we would like to examine the effect of the homophily

property, in addition to the graph model (ER or BA), on the ability

to gerrymander successfully. To do so, we introduce another pa-

rameter, α ∈ [0, 1] that governs the relative weight of homophily in

determining which links will be realized in the graph. As α grows,

the probability of a voter being connected to other voters with simi-

lar preferences increases. Specifically, we use the following formula

to compute the probability that an edge (v,u) will be realized:

P [(u,v)] = α · β · q · h (u,v) + (1 − α)q,

where q is the initial probability of connecting v and u; h (u,v) is
the homophily coefficient for the votersv andu; and β is a constant

that is added so that for any value of α , the expected edge density

of the generated graph will be the same.

Figure 2 shows two ER graphs, one with α = 0 and the other

with α = 1. These illustrate the effect of homophily on the edges

that are realized in the generated graph. Specifically, one can see

that in the graph that was generated with α = 1, there are relatively

more links between vertices with the same color (the color indicates

their preferred candidate), compared to the graph generated with

α = 0, in which the probability is not affected by the preferences, so

many edges link vertices with different colors. Note that the total

number of edges in the two graphs is roughly the same.

In order to quantify the effects of different α values on the gen-

erated graph, we define the following score: for every vertex v ,
let H (v) be the percentage of v’s neighbors that prefer the same

candidate as v . Let H (G) =
∑
v∈G H (v)
|G | . We expect that the H (·)

score of a graph generated with high α values will be higher than

a graph generated with low α values.

For our simulations, we used the following homophily function:

h (u,v) = min{1, λ
|u−v |+ϵ }. The reason for using that function is

because it allows a sufficient degree of modification via the param-

eter α ; the H value increases (almost linearly) as a function of α ,
from ∼0.25 to ∼0.75 for both graph types.

1
Taking the minimum

between
λ

|u−v |+ϵ and 1 prevents us from getting too-large values.

The purpose of ϵ is to avoid division by zero. λ serves to adjust the

effective range of h (u,v) to be “reasonably between 0 and 1".

In ER graphs the parameter q is often scaled as a function of the

number of vertices n, for example q = d
n or q = d lnn

n for some

constant d > 0. This is done to maintain a constant expected degree.

We here use q = d
n (for ER graphs) and set d = 4 (for BA graphs,

d is directly the number of vertices to which each new vertex is

connected). This means that the expected edge density in both

models is the same.

6.3 Gerrymandering in favor of different
candidates

Finally, we wish to examine the ability to gerrymander in favor

of candidates with different power levels (that is, candidates with

different fractions of supporting voters). In our simulations we used

|C | = 5, and tried to gerrymander in favor of all five candidates. An

empirical average of the power of the five candidates was computed

(over 100,000 instances). It shows that the strongest candidate has

an average power of ∼32%, that is, about 32% of the voters ranked

her first; the middle candidate has an average power of ∼19%; and

the weakest candidate has an average power of ∼10.5%. The two

1
We also experimented with other homophily functions; however, as they allow smaller

ranges of H values, and due to space constraints, we do not elaborate on this issue.

 Session 8: Social Choice on Networks AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

278

remaining candidates (called the “mid-strong" and the “mid-weak"

candidates) had roughly the same power distribution as the middle

candidate. This means that when sampling candidates and voters on

a line, the results tend to naturally create candidates with different

power levels, which is a good basis for investigating the effect of

candidate power on the ability to gerrymander.

6.4 A Greedy Algorithm
Until now we described the underlying models used for the simu-

lations. We now present a greedy algorithm for gerrymandering

over a graph G (called the “greedy graph GM" algorithm). Given

an input graph G = (V ,E), a candidate p, and a parameter k , the
algorithm maintains a graph G ′ = (V ,E ′), starting with E ′ = ∅
and iteratively adding edges from E to E ′, and thus reducing the

number of connected components in G ′ (denoted Ncc (G
′)), from

its initial value |V |, until it is k . It then returns G ′ as a suggestion
of a way to partition G into k connected components, while trying

to make candidate p win in as many components as possible.

The choice of which edge to add to E ′ at each step of the algo-

rithm is made greedily by picking an edge that maximizes the ratio

between the number of connected components in which p wins

and the maximum, over all candidates, of the number of connected

components in which this particular candidate wins. At each step

the greedy choice of which edge to add to E ′ is made while re-

quiring that a given cap on the ratio

maxc∈CC (G′) |c |
minc∈CC (G′) |c |

is maintained

(where CC (G ′) denotes the set of connected components of G ′,
and the size of a component c is simply the number of vertices

in it). The idea behind this constraint is that we do not want the

algorithm to find very lopsided graphs G ′, such as, in the extreme

case, a graph in which there is a single giant component, and all

k − 1 other components are very small. Lopsided graphs like these

are not desired as they typically cause misrepresentation of voters’

opinions: few voters in small components have much more power

than a large group of voters that resides in a single giant component.

Algorithm 1 Greedy Algorithm

1: procedure GreedyGraphGM (⟨G,w,C,p,k, l ,≺⟩ ,RatioCap)
2: initialize G ′ = (V (G) ,E ′ = ∅)
3: while NCC (G ′) > k do
4: for all e ∈ E\E ′ do
5: re ← ComputeRation (G ′ ∪ e)
6: end for
7: best ← argmaxe ∈E\E′{re |

maxc∈CC (G′∪{e }) |c |
minc∈CC (G′∪{e }) |c |

≤

RatioCap}
8: G ′ ← G ′ ∪ {best}
9: end while
10: return G ′

11: end procedure
12: procedure ComputeRatio(G ′)
13: np ← |{c ∈ CC (G

′) : p wins in c}|
14: no ← maxa∈C |{c ∈ CC (G

′) : a wins in c}|

15: return np
no

16: end procedure

In addition, when multiple edges maximize the aforementioned ra-

tio, the algorithm chooses the edge that, when added to the graph,

maximizes the harmonic mean of the components’ sizes. This is a

way to make the algorithm prefer evenly-distributed component

sizes over lopsided ones. This criterion is applied whenever more

than a single edge maximizes the ratio (which happens often), thus

providing another “soft" way to select edges, on top of the “hard"

cap on the ratio

maxc∈CC (G′) |c |
minc∈CC (G′) |c |

, given by the parameter RatioCap

(in the simulations we set RatioCap = 5). The pseudo-code for the

greedy algorithm is given in Algorithm 1.

6.5 Simulation Specifications
In this section we present and discuss the results of the simulations.

We start with a brief overview of the different parameters used.

6.5.1 Parameters. We used two random graph models: ER and

BA (as explained above). For each model, and each α value (deter-

mining the homophily strength in the generated graph) from the

set {0, 0.25, 0.5, 0.75, 1}, 2000 graph instances were generated. The

network size parameter was chosen such that the instances will be

small enough for practical purposes, and other parameters were

chosen accordingly. The hyperparameters in the homophily func-

tion were chosen according to the explanation in the homophily

function section. The ratio cap was set to the lowest value that did

not significantly impair overall performance. Specifically, we used

the following parameters:

• Number of voters: 100

• Number of candidates: 5

• Average degree: 4

• RatioCap: 5

• h function: h (u,v) = min

{
1, 1

200· |u−v |+10−4

}
For each such graph instance, the greedy algorithm was run with

the parameter k (target number of components) ranging from 1 to

30, for each one of the candidates as p (the target candidate).

It is worth noting that although using the exact parameter val-

ues mentioned above for the number of voters and average degree

throughout the simulations, we also carried out a short set of sim-

ulations with these parameters being set to other values (such as

200 voters, and average degree of 8). Notably, however, the results

seemed to be very similar to the results we will present in the Re-

sults section below; it is suggestive that these parameters have no

great impact on the greedy algorithm’s ability to gerrymander.

6.5.2 Performance Evaluation. To rate the algorithm’s perfor-

mance for different candidates, the following measure was used:

given the graph G ′ returned by the greedy algorithm, the success

rate of candidate p, for some fixed α and k values, is the fraction

of times (out of 2000 graphs) that p won in more components in

G ′ than any other candidate. We refer to the case of requiring that

p wins in strictly more components than any other candidate, as

“strong success rate" (as opposed to “weak success rate"). Since the

number of candidates and voters is fairly small in the simulations,

we evaluate the performance using the strong success rate.

 Session 8: Social Choice on Networks AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

279

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.0

0.2

0.4

0.6

0.8

1.0
 S

uc
ce

ss
 R

at
e

(s
tro

ng
)

weak
midweak
medium
midstrong
strong

(a)

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.0

0.2

0.4

0.6

0.8

1.0

 S
uc

ce
ss

 R
at

e
(s

tro
ng

)

weak
midweak
medium
midstrong
strong

(b)

Figure 3: The correlation of the homophily with the success rate of the algorithm. Figure (a) shows that α negatively correlates
with performance for low values of k (k = 3), and Figure (b) shows that α barely correlates with performance for high values
of k (k = 25)

6.6 Results
6.6.1 General success rate and non-linear gaps. Most generally,

the output graphs of the greedy algorithm indicated a reasonable

success rate, depending on the initial power of the candidates. For

example, when gerrymandering in favor of the strong candidate,

the algorithm succeeded in making her win in a strict plurality of

components ∼70%−80% of the time (depending on the other param-

eters, α and k). In addition, as expected, the results were correlated

with the candidate’s power level very consistently. Moreover, the

gap in performance between candidates seems to be non-linear: the

strong candidate had typically a far greater success rate than the

other candidates, in comparison to the gaps between the four other

candidates.

Note that the success rates of the algorithm may seem low; how-

ever, when summing the success rate of all five candidates, the

result is significantly higher than 1. This means that our algorithm

was able to improve the outcome for all candidates. This is sup-

portive of the conclusion that in the average case the problem is

tractable.

6.6.2 Graph model effects. Generally, the graph model appeared

to have no impact on the performance of the algorithm. In other

words, the success rate of our greedy algorithm was the same for

ER and BA graphs. A possible explanation for this may be that our

algorithm does not utilize the difference in structure between ER

and BA graphs: in BA graphs there are few highly connected hubs,

and a polynomial degree distribution, while in ER graphs there are

no such hubs, and the degree distribution is exponential. It may

be the case that the existence of hubs only makes it more likely

that these hubs will be added to existing connected components in

relatively early iterations of the algorithm (since they have a lot of

incident edges), but does not affect the algorithm’s performance

any further, since it does not affect the maximization criterion.

Similarly, the degree distribution seems to have no major impact

on the algorithm. In what follows we discuss some other effects

that emerged, and use mainly the ER results to demonstrate them.

6.6.3 Effects ofα andk . The parameterα governs the homophily

strength when generating a graph instance, and ranges from 0 (no

homophily at all) to 1 (strong homophily). As α grows, the gener-

ated graphs tend to have a higher H score, indicating that more of

a vertex’s neighbors agree with his preferred candidate on average.

The parameter k is the target number of components in the graph

that the algorithm outputs (in range from 1 to 30). For k = 1 ob-

viously the strongest candidate always wins, so we are interested

in k ≥ 2. The two main effects found were interactions between α
and k :

For low k values, increasing α hurts performance. This effect is
most significant fork = 3. As can be seen in Figure 3a, as α increases

the performance drops from around 85% for the strong candidate

at α = 0 to around 60% at α = 1. The performance for the other

candidates drops as well (except for the two weakest candidates,

which have very low success rate for all values of α). In contrast,

for high k values, such as k = 25 for example (see Figure 3b),

α no longer negatively correlates with performance, and in fact

seems not to have any significant effect on performance. A possible

explanation for this may be the fact that high α values tend to create

clusters of vertices supporting the same candidate. Therefore, when

trying to disconnect the graph into a small number of components,

such as 3, it is hard for the algorithm to find a good solution since

it has a smaller operating space. This results from the inability to

disconnect these clusters while preserving a small total number of

clusters. However, when k is relatively large, the algorithm has a

larger operating space, that allows it to find solutions regardless of

how strongly clustered the graph initially was.

For high α , increasing k boosts performance (mainly of the strong
candidate). As can be seen in Figure 4a, as k increases, the perfor-

mance of the strong candidate rises from around 60% for the strong

 Session 8: Social Choice on Networks AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

280

5 10 15 20 25
k

0.0

0.2

0.4

0.6

0.8

1.0
 S

uc
ce

ss
 R

at
e

(s
tro

ng
)

weak
midweak
medium
midstrong
strong

(a)

5 10 15 20 25
k

0.0

0.2

0.4

0.6

0.8

1.0

 S
uc

ce
ss

 R
at

e
(s

tro
ng

)

weak
midweak
medium
midstrong
strong

(b)

Figure 4: The correlation of the target number of components with the success rate of the algorithm. Figure (a) shows that k
correlates with performance for high values of α (α = 1), and Figure (b) shows that k barely correlates with performance for
low values of α (α = 0)

candidate at k = 3 to around 80% at k = 25. The performance of the

mid-strong candidate stays roughly the same, whereas the three

other candidates also exhibit some improvement while k ≤ 15, after

which the performance drops again. In contrast, for low α values,

such as α = 0 (see Figure 4b), k now negatively correlates with

performance for the medium and mid-strong candidates, and has a

slight positive effect for the two weakest candidates (both effects

occur for k ≤ 15). A possible explanation for this may again result

from the fact that high α values tend to create clusters of vertices

supporting the same candidate. In this case, the more components,

the easier it is for the algorithm to find a partition into components

that utilizes the relatively large number of supporters the strong

candidate has. The rest of the candidates do not exhibit the same

improvement since they have fewer supporters to begin with. In

particular, the weakest candidates suffer both from low and from

high k values, since both low and high values require more flexi-

bility (i.e., a large space of possibilities) in order to be successful.

Regarding the effect in Figure 4b, one could postulate that when

there is no strong cluster structure, increasing the required number

of components makes it harder to find a partition that makes a

medium powered candidate win, since as there are more compo-

nents, p has to win in more components as well, using its initially

not so large number of supporters. As for the weakest candidates,

they hardly manage to find good partitions under any value of k .

7 CONCLUSION
In this work we studied the gerrymandering problem over a graph

structure representing voters with some type of links between them.

While the problem is theoretically hard in the worst case, simu-

lations suggest that there exist many instances in which it is not

that hard to gerrymander. We examined the effects of various mod-

els and parameters on the hardness of the problem, such as the

graph model, homophily strength, target candidate power, and tar-

get number of districts. We saw that success rates were reasonably

high, and in particular, homophily makes it harder to gerrymander,

especially when requiring a small number of districts.

There are several possible directions for future research. It would

be interesting to understand what instances of the problem are

harder and why, in a more general sense. Such a characterization

should not be restricted to the performance of a single algorithm

(like we did here with a simple greedy algorithm), or a specific graph

model (like the ER and BA models used here). In addition, it might

be interesting to check if and how certain parameters that we fixed

in this work would affect the ability to gerrymander. For example,

one could define another objective for the greedy algorithm to

maximize in each iteration, and see how the performance changes

and if we get similar effects.

ACKNOWLEDGMENT
This research has been partially supported by the HUJI Cyber Secu-

rity Research Center in conjunction with the Israel National Cyber

Directorate (INCD) in the Prime Minister’s Office.

REFERENCES
[1] Kenneth J Arrow. 1950. A difficulty in the concept of social welfare. Journal of

political economy 58, 4 (1950), 328–346.

[2] Yoram Bachrach, Omer Lev, Yoad Lewenberg, and Yair Zick. 2016. Misrepresen-

tation in District Voting. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence (IJCAI 2016). New York, 81–87.

[3] John J Bartholdi, Craig A Tovey, and Michael A Trick. 1992. How hard is it to

control an election? Mathematical and Computer Modelling 16, 8-9 (1992), 27–40.

[4] Emily Clough. 2007. Talking Locally and Voting Globally: Duverger’s Law and

Homogeneous Discussion Networks. Political Research Quarterly 60, 3 (2007),

531–540.

[5] Vincent Conitzer and Toby Walsh. 2016. Barriers to Manipulation in Voting.

In Handbook of computational social choice, Felix Brandt, Ulle Endriss Vincent
Conitzer and, Jérôme Lang, and Ariel D. Procaccia (Eds.). Cambridge University

Press, Cambridge, Chapter 6, 127–145.

[6] Clyde H Coombs and George S Avrunin. 1977. Single-peaked functions and the

theory of preference. Psychological review 84, 2 (1977), 216.

[7] Martin E. Dyer and Alan M. Frieze. 1986. Planar 3DM is NP-complete. Journal of
Algorithms 7, 2 (1986), 174–184.

[8] Gábor Erdélyi, Edith Hemaspaandra, and Lane A Hemaspaandra. 2015. More

natural models of electoral control by partition. In International Conference on

 Session 8: Social Choice on Networks AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

281

Algorithmic DecisionTheory. Springer, 396–413.
[9] Robert S Erikson. 1972. Malapportionment, gerrymandering, and party fortunes

in congressional elections. American Political Science Review 66, 4 (1972), 1234–

1245.

[10] Piotr Faliszewski and Jörg Rothe. 2016. Control and Bribery in Voting. In

Handbook of computational social choice, Felix Brandt, Ulle Endriss Vincent

Conitzer and, Jérôme Lang, and Ariel D. Procaccia (Eds.). Cambridge University

Press, Cambridge, Chapter 7, 146–168.

[11] Allan Gibbard. 1973. Manipulation of voting schemes: a general result. Econo-
metrica: journal of the Econometric Society (1973), 587–601.

[12] Samuel Issacharoff. 2002. Gerrymandering and political cartels. Harvard Law
Review (2002), 593–648.

[13] Yoad Lewenberg, Omer Lev, and Jeffrey S Rosenschein. 2017. Divide and conquer:

Using geographic manipulation to win district-based elections. In Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 624–632.

[14] Cynthia Maushagen and Jörg Rothe. 2017. Complexity of Control by Partition of

Voters and of Voter Groups in Veto and Other Scoring Protocols. In Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 615–623.

[15] Wesley Pegden, Ariel D. Procaccia, and Dingli Yu. 2017. A partisan districting

protocol with provably nonpartisan outcomes. (2017). arXiv:arXiv:1710.08781

[16] Ariel D. Procaccia, Jeffrey S. Rosenschein, and Aviv Zohar. 2007. Multi-Winner

Elections: Complexity of Manipulation, Control and Winner-Determination. In

The Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007).
Hyderabad, India, 1476–1481.

[17] Mark Allen Satterthwaite. 1975. Strategy-proofness and Arrow’s conditions:

Existence and correspondence theorems for voting procedures and social welfare

functions. Journal of economic theory 10, 2 (1975), 187–217.

[18] Nimrod Talmon. 2018. Structured proportional representation. Theoretical Com-
puter Science 708 (2018), 58–74.

[19] Alan Tsang and Kate Larson. 2016. The echo chamber: Strategic voting and

homophily in social networks. In Proceedings of the 2016 International Confer-
ence on Autonomous Agents & Multiagent Systems. International Foundation for

Autonomous Agents and Multiagent Systems, 368–375.

[20] Lirong Xia, Michael Zuckerman, Ariel D. Procaccia, Vincent Conitzer, and Jef-

frey S. Rosenschein. 2009. Complexity of Unweighted Coalitional Manipulation

Under Some Common Voting Rules. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence. Pasadena, California, USA, 348–353.

[21] Michael Zuckerman, Ariel D. Procaccia, and Jeffrey S. Rosenschein. 2008. Algo-

rithms for the Coalitional Manipulation Problem. In Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’08). San Francisco,

California, 277–286.

 Session 8: Social Choice on Networks AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

282

http://arxiv.org/abs/arXiv:1710.08781

	Abstract
	1 Introduction
	2 Related Work
	3 The Voting Setting
	4 Gerrymandering Over Graphs
	5 The Complexity of Gerrymandering Over Graphs
	6 Empirical Feasibility
	6.1 Graphs with ``Natural" Properties
	6.2 The Homophily Function
	6.3 Gerrymandering in favor of different candidates
	6.4 A Greedy Algorithm
	6.5 Simulation Specifications
	6.6 Results

	7 Conclusion
	References

