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ABSTRACT
Efficient allocation of tasks to workers is a central problem in crowd-

sourcing. In this paper, we consider a special setting inspired from

spatial crowdsourcing platforms where both workers and tasks

arrive dynamically. Additionally, we assume all tasks are heteroge-

neous and each worker-task assignment brings a distinct reward.

The natural challenge lies in how to incorporate the uncertainty in

the arrivals from both workers and tasks into our online allocation

policy such that the total expected rewards are maximized. To at-

tack this challenge, we assume the arrival patterns of worker “types”

and task “types” are not erratic and can be predicted from historical

data. To be more specific, we consider a finite time horizon T and

assume in each time-step, a single worker and task are sampled

(i.e., “arrive”) from two respective distributions independently, and

this sampling process repeats identically and independently for the

entire T online time-steps.

Our model, called Online Task Assignment with Two-Sided Arrival
(OTA-TSA), is a significant generalization of the classical online

task assignment where the set of tasks is assumed to be available

offline. For the general version of OTA-TSA, we present an optimal

non-adaptive algorithm which achieves an online competitive ratio

of 0.295. For the special case of OTA-TSA where the reward is a

function of just the worker type, we present an improved algorithm

(which is adaptive) and achieves a competitive ratio of at least 0.343.

On the hardness side, along with showing that the ratio obtained

by our non-adaptive algorithm is the best possible among all non-

adaptive algorithms, we further show that no (adaptive) algorithm

can achieve a ratio better than 0.581 (unconditionally), even for the

special case of OTA-TSA with homogenous tasks (i.e., all rewards

are same). At the heart of our analysis lies a new technical tool

(which is a refined notion of the birth-death process), called the

two-stage birth-death process, which may be of independent inter-

est. Finally, we perform numerical experiments on two real-world

datasets obtained from crowdsourcing platforms to complement

our theoretical results.
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1 INTRODUCTION
Assigning workers to tasks is a central challenge in various crowd-

sourcing platforms. For example, in mobile crowd-sensing [29, 30],

a central platform allocates mobile users to complex data collection

and analysis tasks; in joint crowdsourcing [5, 16], workers answer

small questions with varying difficulties; and in spatial crowdsourc-

ing [26, 27], workers and tasks are matched in the context of a

metric space.

More recently, a special class of the worker-task assignment ,

called the online task assignment (OTA), has attracted lots of at-

tention. The basic setting is as follows: the set of tasks are known

beforehand while the set of workers is revealed sequentially in an

online manner; once a worker arrives, they have to be instanta-

neously and irrevocably assigned to a task. Each assignment gives a

known profit (uniform or non-uniform) and the goal is to design an

allocation policy such to maximize the (expected) total profit, while

satisfying various practical constraints such as the total budget

for payments for workers, deadlines of tasks, etc (e.g., Assadi et al.
[3]). There are three common arrival assumptions for the online

workers: adversarial order (AO, the arrival sequence is unknown

and can be arbitrarily fixed by an adversary), random arrival order

(RAO, the arrival sequence is sampled from the set of all permu-

tations over the workers) and known independent and identical

distribution (KIID, a worker is sampled, with replacement, from a

known distribution each time). Ho and Vaughan [14] considered

OTA under RAO where they assume the profit for each assignment

has to be learnt. Assadi et al. [3] studied a budgeted version of OTA

under AO and RAO; in the budgeted version we have a global total

budget and each assignment incurs a cost, which is the amount

we need to pay the worker (this is equal to the bid they submitted

for the task after arrival). The budgeted version of OTA and its

generalizations have been vastly studied in the context of truthful

mechanism design, where the goal is to elicit truthful bids from the

online workers (e.g., see [10, 11, 22–24, 31, 32]). In particular, Singer
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and Mittal [23], Singla and Krause [24] considered the KIID setting

while Zhao et al. [32] and Subramanian et al. [25] considered the

RAO setting.

In OTA, the main limiting assumption is that tasks are static

(known in advance). This fails to capture various applications where

the tasks are not all available at once and come in an online manner

similar to the workers. This is a common scenario in spatial crowd-

sourcing platforms. Hassan and Curry [13] considered a practical

worker-task assignment under a converse setting to theOTA, where

the spatial tasks come dynamically while the workers are static.

The worker has to travel to the specific location of the task to finish

it. [27] studied a generalized setting where both workers and tasks

come online which was motivated from a spatial crowdsourcing

platform on university campus, where anyone on campus can both

post micro-tasks, (e.g., buying drinks or collecting a package), and

perform tasks as a worker. They assumed that the arrivals is sam-

pled from the distribution over all permutations of both workers

and tasks together and is unknown to the algorithm. They tested

their algorithms on two real-world crowdsourcing datasets, namely

gMission [7] and EverySender.

Inspired by the above work (Hassan and Curry [13], Tong et al.

[27]), we propose the online task assignment with two-sided arrival

(OTA-TSA) where both workers and tasks come online but under

the arrival setting of KIID. We first briefly review the setting in the

OTA under KIID — a known bipartite graph G = (U ,V ,E) is given
as input (this graph is also called the compatibility graph throughout

this paper), where U and V represent the respective set of worker-

types and task-types; we have a finite time horizon of T in which

vertices in U are revealed step-by-step in each time-step (while all

vertices in V are already given). In every time-step a worker of a

particular type is sampled from a known distribution over U and

the samples are independent across all theT rounds. We generalize

the KIID setting from one-sided arrival to two-sided arrival in the

following natural way — in each round (for a total of T rounds)

a worker of type u is sampled from a known distribution over U ,

while simultaneously a task of type v is sampled from another

known distribution over V independently. We now motivate the

key assumptions in OTA-TSA.

Known independent and identical arrival distributions (KIID).
In many crowdsourcing platforms, one collects meta-data about

the tasks and workers. This data is used to predict both the perfor-

mance and the arrival times of various workers and tasks in future

(e.g., [8], [21]). Hence allowing the underlying compatibility graph

G and the arrival sequence of tasks and workers to be arranged by

an adversary seems strong. We can exploit the rich historical data

to predict both the compatibility graph and the arrival distributions

of workers and tasks. This motivates us to consider the KIID model,

which is assumed by many previous work (e.g., [23, 24]).

The number of types: workers versus tasks. The majority of

previous work in the OTA assumes that the number of task-types

is far lesser than that of worker-types. This assumption is true in

crowdsourcing platforms such as Amazon Mechanical Turk where

individuals or organizations have a certain number of offline tasks

and try to “crowdsource” the workers from Internet. In many spa-

tial crowdsourcing platforms where both tasks and workers come

online, as studied in this paper, the opposite is true: the number of

task-types is far larger than that of worker-types. Hassan and Curry

[13] run experiments on a real-world dataset of a location-based

social network, called Gowalla, where the number of task-types is

nearly 50 times that of worker-types. Moreover, in the two datasets

considered by Tong et al. [27], namely gMission [7] and Every-

Sender, the task-types are more than worker-types. We use the

same in our experiments in Section 9.

Retention in the system:workers versus tasks. In theOTA-TSA
model, we assume that (a) once a task arrives, it has to be instanta-

neously and irrevocably assigned to one of the workers who has

arrived so far or reject the task; (b) once a worker arrives, they

will stay in the system until being assigned. The assumption (2)

here differs significantly fromOTA since the motivating application

is vastly different. OTA is primarily motivated by applications in

crowdsourcing platforms such as Amazon Mechanical Turk where

the tasks are offline while the number of available workers are

plenty. In this context, once a worker comes into the system they

expect to be allocated a task immediately; they have very little

incentive to stay since they need to compete with a large pool of

other workers for a limited set of tasks. However OTA-TSA is in-

spired from applications in spatial crowdsourcing platforms where

worker-types are outnumbered by task-types. Any time a worker

arrives but doesn’t get a task assigned, they still have an incentive

to stay since eventually they would be assured of an assignment.

In OTA-TSA, we consider a similar objective as that of OTA—

every assignment e = (u,v ) fetches a non-uniform profit we and

our goal is to design an allocation policy such that the expected

total profit is maximized.

1.1 Our Contributions
Before detailing our contributions, we first review briefly some

basic terminologies used in online algorithms.

Adaptive versus non-adaptive algorithms. Suppose we have a
finite time horizon T . An algorithm ALG is called non-adaptive if
the strategy for assigning a task v , when v comes for the kth time

for any k = 1, 2, . . . ,T is specified before the start of the algorithm.

In other words, the strategy does not depend on the realization of

the arrival process thus far. If not, ALG is called adaptive.

Competitive ratio. LetALG(I,Pu ,Qv ) denote the expected value
obtained by an algorithm ALG on an input I with arrival distri-

butions being Pu and Qv respectively for workers and tasks. Let

OPT(I) denote the expected offline optimal, which refers to the op-

timal value when we are allowed to make decisions after observing

the entire sequence of online workers and tasks. The competitive

ratio for a maximization program as studied in this paper, is defined

as usual [4], infI,Pu ,Qv
E[ALG(I,Pu ,Qv )
E[OPT(I)] . Thus when we say ALG

achieves a ratio at least α ∈ (0, 1), it means that for any instance

of the problem, the expected profit obtained by ALG is at least α
fraction of the offline optimal.

Our contributions. First we propose a novel theoretical model,

called Online Task Assignment with Two-Sided Arrival (OTA-TSA),

where both workers and tasks arrive in an online manner. We
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consider the arrival setting of KIID and assume that the distributions

can be learned from historical data.

Second we present a non-adaptive algorithm (NADAP) for the

OTA-TSA, which is optimal among all possible non-adaptive algo-

rithms (see Section 6). We show that NADAP achieves a ratio of

almost 0.3, which is larger than that of 1/4 achieved by an adaptive

algorithm shown in Tong et al. [27] for the same problem but under

the arrival setting of RAO. This is a theoretical evidence showing

the advantage of using historical data to predict the arrival distribu-

tions. Our main approach is to construct and solve an appropriate

linear program (abbreviated as LP) and use that LP solution to guide

the online actions.

Third we propose two adaptive algorithms for two special cases

(see Section 7). The first one is a warmup algorithm, which is greedy

(GREEDY), for the simple unweighted case. We show that it is as

good as the best non-adaptive algorithm NADAP even when us-

ing a loose analysis. In fact there might exist a tighter analysis for

GREEDY which shows that its performance is much better than

NADAP. Our experimental analysis in Section 9 confirms this intu-

ition. The second is an adaptive (ADAP) algorithm for theOTA-TSA

when all the edges incident to each worker—representing the set

of all acceptable tasks for that worker—have the same weight. We

show that ADAP achieves an improved ratio of nearly 0.34. To

accomplish this, we construct and solve a stronger LP than the one

used for the non-adaptive algorithm and combine this with other

ideas previously used for other online matching problems.

Fourthwe show an unconditional hardness result for theOTA-TSA:

no adaptive algorithm can achieve a ratio better than 0.58 even for

the unweighted case (Section 8). Note that Brubach et al. [6] gave

an adaptive algorithm, which yields a ratio of 0.729 for the classical

online matching on an unweighted bipartite graph under KIID but

with only one-sided arrival. This formally corroborates our intu-

ition that the complexity significantly increases from one-sided

arrival to the two-sided arrival.

Finally, we run numerical experiments on two real-world crowd-

sourcing datasets, namely gMission [7] and EverySender [27]. In

particular, we find that despite having provable guarantees, we are

able to obtain much better performance by using GREEDY algo-

rithm. Our experimental analysis also generalizes this model, where

we assume that at each time-step a batch of workers and batch of

tasks arrive. We discuss intuitions and scenarios on when greedy

is the right choice and when the LP based algorithms are the better

option.

While building the theory in this paper, we construct a novel

technical tool, called two-stage birth-death process, to attack the

challenges arising in the competitive ratio analysis and derivation

of hardness results. This technical tool might be of independent

interest to prove competitive ratios in other settings.

2 OTHER RELATEDWORK
We now briefly overview related research in the classical online

matching; for a more in-depth review, we direct the readers to a

recent review article by Mehta [19].

Modern online matching research is primarily motivated by

Internet advertising applications. In this model, we are given a

bipartite graphG = (U ,V ,E) whereU andV represent respectively

the offline advertisers and online keywords (impressions). Each

time, once a vertex v ∈ V arrives, we have to make an instant and

irrevocable decision: either reject v or assign v to an unmatched

neighbor u ∈ U and obtain a profitwe for the match e = (u,v ). The
central question is to design an online allocation policy such that the

expected profit is maximized under different arrival assumptions

such as AO, RAO, and KIID (see e.g., [1, 2, 6, 9, 12, 15, 17, 18, 20]).
Departing from the traditional online matching, Wang andWong

[28] introduced a theoretical model of online matching (and online

vertex cover) on a general graph G admitting the online arrival

from all vertices. Their setting is as follows: each time a single

vertex comes ( in an adversarial order) and all its incident edges to

previously arrived vertices are revealed.We are required tomaintain

a fractional matching (or vertex cover) on the revealed subgraph

so far at all times and the goal is to maximize the size of the final

matching (or minimize the size of the final vertex cover).

3 PROBLEM STATEMENT
Before we describe our OTA-TSA model, we define the following

terminology. We group a set of similar tasks and call them “task

types”. Similarly, we group similar workers and call them “worker

types”. For example, in the context of spatial crowdsourcing, all

workers present at a particular location belong to a single worker

type.

Our model is as follows: suppose we have a bipartite graph

(known to the algorithm) G = (U ,V ,E) whereU and V represent

the set of worker-types and task-types respectively and E represents

the set of worker-task pairs that are “compatible”, i.e., (u,v ) ∈ E
iff any worker of type u can work on tasks of type v . We have

a finite time horizon T (known beforehand) and for each time

t ∈ [T ], a worker u from U and a task v from V is sampled (we

also say u or v arrives or comes interchangeably) independently
from known probability distributions Pu = {pu } and Qv = {qv }
respectively (i.e.,

∑
u pu = 1 and

∑
v qv = 1). The sampling process

is independent across the different time-steps.

At each time t ∈ [T ], we first observe the online arrivals fromU
andV (in that order). Letu andv be the respective arrivals. We then

need to make an instantaneous and irrevocable decision to either

reject v or assign v to one of its available compatible workers in U .

For each u ∈ U , once it arrives, it will stay in the system until being

assigned to some task.
1
As discussed in introduction, we have that

|U | ≪ |V |. In our model, we additionally assume that each u has

an integral arrival rate, i.e., T ∗ pu is an integral for every u, and
thus w.l.o.g. we can assume this integer to be 1 (by splitting each u
into T ∗ pu copies). Hence, we assume that |U | = T and pu = 1/T
for all u.2

With each assignment f = (u,v ) we associate a non-negative
profit wf . Let rv = T ∗ qv (referred to as the arrival rate of v)
be the expected number of arrivals of v during the T rounds. We

assume this rate to be any number between [0, 1] (upper bounding

it by 1 is again w.l.o.g. via simple scaling). Our goal is to design

an online assignment policy such that the total expected profits

1
Here w.l.o.g. we assume that each worker has the capacity to perform only one task.

In case, some worker type u can perform multiple tasks, we can split u into multiple

copies. This forms the matching constraint for a worker.
2
The assumption of integral arrival rate is a standard assumption in the classical online

bipartite matching under known distributions, see e.g., [9].
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of all assignments made is maximized. Throughout this paper, we

use edge f = (u,v ) and the assignment of v to u interchangeably.

Additionally, when we say at time t ∈ [T ], we mean we are at the
beginning of time t either before or after observing the arrivals from
U and/or V (clarified in the context) but before the algorithm has

made an online action.

4 TWO STAGE BIRTH-DEATH PROCESS
We propose a new stochastic process, called two-stage birth-death
process (TS-BDP), and use it as a main tool to analyze our algorithms

and derive hardness results. This technical tool seems more general

and could be of independent interest. The process (described on

random variables {Xt ,Yt } and parameterized by values p and q)
is described as follows. Consider a stochastic process with time

horizon T such that, (1) the process starts at t = 1 with X1 = 0;

(2) at every round t , first there is a birth event followed by an
independent death event. For the birth event, we have Yt = Xt + 1
with probability p/T and Yt = Xt with probability 1 − p/T . For
the death event, it has a left boundary point of 0; i.e., if Yt = 0,

then Xt+1 = Yt , else when Yt ≥ 1, we have Xt+1 = Yt − 1 with

probability q/T and Xt+1 = Yt with probability 1−q/T . We refer to

p and q as the birth and death rate of TS-BDP respectively. TS-BDP

differs from the classical birth-death process (BDP) in that, BDP

is described as a process where in every round, birth and death

occur each with a respective probability. On the other hand, in

TS-BDP the two events occur independently in a sequential manner

(the birth event is followed by the death event). Thus, TS-BDP is a

special case of BDP. (TS-BDP is a BDP with time-horizon 2T where

every odd step is a birth event and even step is a death event).

Definition 4.1. A two-stage birth-death process parameterized

by (T ,p,q) (time horizon, birth rate, death rate) refers to a sequence

of random variables {Xt ,Yt |t ∈ [T ]} ∪ {XT+1} which satisfies (1)

X1 = 0 with probability 1; (2) For every t ∈ [T ], Yt = Xt + 1

with probability p/T and Yt = Xt otherwise; (3) For every t ∈ [T ],
if Yt = 0, then Xt+1 = Yt with probability 1; if Yt ≥ 1, then

Xt+1 = Yt − 1 with probability q/T and Xt+1 = Yt otherwise.

In this paper, we are particularly interested in the case when

p = 1, q ≥ 0 is a constant for a sufficiently large T (T → ∞). We

denote this specialization with TS-BDP(1,q) (or TS-BDP(q) when
the context is clear). For every t ∈ [T ], let ∆(t ,T ) := Yt − Xt+1
and ∆(T ) :=

∑
t ∈[T ] ∆(t ,T ), which can be interpreted as the total

number of death events in which Yt is decreased by 1. Let κ (q) :=
limT→∞ E[∆(T )]. We now state some useful lemmas which we use

later.

Lemma 4.2. (1) κ (0) = 0, (2) κ ′(0) = 1/e , where κ ′(0) is the first
derivative of κ (q) at q = 0.

Lemma 4.3. (1) 0.295 ≤ κ (1) ≤ 0.302 and (2) κ
(
1 + 1

e (e−1)

)
≥

0.343.

Lemma 4.4. κ (q) is non-decreasing and concave over q ∈ [0,∞].

Parts of the proof for the above lemmas require rigorous as well

as computer-based analysis. To perform these numerical computa-

tions we use Mathematica 10. All numerical results are precise up

to the third decimal place.

5 LINEAR PROGRAMS (LP)
As is common in this line of work, our algorithms use optimal

solutions to linear programs (LP) constructed on the offline graph

as a guide to the online algorithm. Additionally, this benchmark LP

is used to upper bound the expected value of the optimal solution

on a particular (offline) instance. Hence, to compute a lower bound

on the competitive ratio, it suffices to compute the ratio of the

value obtained by the algorithm to the optimal solution of this

benchmark LP. We now describe the benchmark LP we use for our

non-adaptive algorithm. Later, we show that this can further be

strengthened based on some observations, which is used in our

adaptive algorithm.

We associate a variable with every edge f in the graph. For each

edge f , xf denotes the expected number of matches in any offline

optimal matching. For each u (resp. v), let Eu (resp Ev ) be the set
of its neighboring edges. Consider the following LP:

maximize

∑
f ∈E wf xf (1)

subject to

∑
f ∈Ev xf ≤ rv ∀v ∈ V (2)∑
f ∈Eu xf ≤ 1 ∀u ∈ U (3)

xf ≥ 0 ∀f ∈ E (4)

The constraints (2) represent the fact that the expected total

number of matches incident to a task v is no more than the ex-

pected number of arrivals of v . The same reasoning applies to

constraints (3) but for workers. The constraint (4) represents the

fact that the expected number of matches is non-negative. The

objective function computes the expected reward obtained in the

optimal offline solution. Thus we claim that for any offline optimal,

{xf } should be feasible to the above LP. This suggests that LP-(1) is
a valid benchmark LP (i.e., the optimal value is an upper bound on

the offline optimal). Throughout the paper we assume that {x∗f } is

an optimal solution to this LP (or the stronger LP we define later,

as appropriate). We now formally state the following lemma 5.1

showing the correctness of the benchmark LP.

Lemma 5.1. The optimal value to LP-(1) is a valid upper bound
for the offline optimal.

6 NADAP: AN OPTIMAL NON-ADAPTIVE
ALGORITHM

In this section, we present a non-adaptive algorithm, denoted by

NADAP, which is optimal among all possible non-adaptive algo-

rithms. Algorithm 1 describes our algorithm formally.

Algorithm 1: An optimal non-adaptive algorithm (NADAP)

1 Let vt be a task arriving at time t ∈ [T ].

2 Sample an edge f = (u,vt ) ∈ Evt with probability x∗f /rvt . If

worker u is available, then assign vt to u; otherwise, skip vt .

Constraint

∑
f ∈Ev x∗f /rv ≤ 1 in LP (2) justifies line 2 in NADAP.

Theorem 6.1. The non-adaptive algorithm NADAP achieves a
competitive ratio of κ (1) ≥ 0.295 for the OTA-TSA.
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Proof. Consider a given u. Let Xt and Yt be the number of

copies of u before and after the arrival process from U at time t ,
respectively. From the assumption that u arrives with probability

1/T in each round, we have Yt = Xt + 1 with probability 1/T and

Yt = Xt with probability 1−1/T . FromNADAP, we have that ifYt ≥

1, then it decreases by 1 with probability
x ∗u
T �

∑
f ∈Eu

x ∗f
rv

rv
T ≤

1

T
and it remains unchanged with the remaining probability (here

x∗u =
∑
f ∈Eu x

∗
f ). From the definition of TS-BDP in 4.1, we have

that {Xt ,Yt } is a TS-BDP(1,x
∗
u ) with time horizon of T .

Let Af be the (random) number of matches for f = (u,v ) in
NADAP over the T online rounds. Thus, we have:

E[Af ] =
∑
t ∈[T ]

rv
T

x ∗f
rv Pr[Yt ≥ 1] =

∑
t ∈[T ]

x ∗f
T Pr[Yt ≥ 1]

=
x ∗f
x ∗u

∑
t ∈[T ]

x ∗u
T Pr[Yt ≥ 1]

=
x ∗f
x ∗u

∑
t ∈[T ] E[∆t ] (by the definitions of ∆t )

= x∗f
κ (x ∗u )
x ∗u

(taking T → ∞ and by the definition of κ)

From Lemma 4.4, we have that κ is non-decreasing and concave

over [0, 1]. Thus
κ (x )−κ (0)

x−0 should be non-increasing over x ∈ [0, 1].
We also have that κ (0) = 0. Therefore,

κ (x ∗u )
x ∗u
=

κ (x ∗u )−κ (0)
x ∗u−0

≥
κ (1)−κ (0)

1−0
= κ (1)

Thus, we have thatE[Af ] ≥ x∗f ∗κ (1). Since LP (1) is a valid upper

bound on the optimal offline solution, by linearity of expectation,

we have that NADAP achieves a competitive ratio of κ (1). □

Hardness of non-adaptive algorithms. We will now show that

any algorithm that is non-adaptive, cannot achieve a ratio better

than κ (1). In particular, we prove the following lemma.

Lemma 6.2. No non-adaptive algorithm can achieve a competitive
ratio better than κ (1) even for the unweighted OTA-TSA.

7 TWO ADAPTIVE ALGORITHMS
7.1 Warmup: Greedy for the unweighted case
Consider a simple special case of OTA-TSA where all assignments

have uniform weights and all tasks have an integral arrival rate.

In other words, we assume |U | = |V | = T , pu = pv = 1/T for all

u ∈ U ,v ∈ V , and wf = 1 for all f ∈ E. We formally state our

greedy algorithm in Algorithm 2.

Algorithm 2: Greedy Algorithm (GREEDY)

1 Let vt be a task arriving at time t ∈ [T ].

2 Choose an edge f = (u,vt ) such that f has the largest weight

among all available assignments to vt at time t and assign vt
to u (break ties arbitrarily). Skip vt if none is available.

Notice that for the unweighted case, GREEDY will choose an

arbitrary available worker u whenever a task v arrives. We show

that for the unweight case, GREEDY has a performance at least as

good as that of the optimal non-adaptive algorithm NADAP.

Theorem 7.1. GREEDY achieves a competitive ratio of at least
κ (1) ≥ 0.295 for the unweighted OTA-TSA.

Proof. Consider an input graph G = (U ,V ,E) and suppose we

use LP-(1) as the benchmark. Since G is unweighted, we observe

that the optimal value to LP-(1) is exactly equal to the size of a

largest matching, sayM, on G. Let G ′ be the graph consisting of

a perfect matching induced byM. Note that the performance of

GREEDY on G is no worse than G ′. This can be seen as follows.

Recall that during the online process, both u and v will join the

system stochastically; each time when a v comes, GREEDY will

match it to an arbitrary available neighbor u at that time, in which

case we say u is shot down byv . The final performance of GREEDY

is exactly the expected number ofu which gets shot down. Consider

a given arrival sequence from U and V , say Su and Sv . Since the
set of neighbors of v on G includes that of v on G ′ as a subset, v
will always have more choice to shoot on G than G ′. This implies

that for any given Su and Sv , the number of u shot down onG will

be at least as much as that on G ′.
Now we analyze the performance of GREEDY onG ′. For a given

f ∈ M, we have that the expected number of matches of f is

equal to κ (1) (from the definition of κ). Thus we can claim that

GREEDY has a performance of κ (1) ∗ |M| onG ′. Therefore the ratio

of GREEDY is at least
κ (1)∗|M |
|M |

= κ (1). □

7.2 Adaptive algorithm for the node-weighted
case

In this section, we consider a relaxed version of the problem where

for any u ∈ U , all edges in Eu have the same weight wu ≥ 0. We

denote this relaxed problem as OTA-TSA with left-hand side (LHS)

vertex weighted. For this relaxation, one can strengthen the bench-

mark LP (1) by making the following observation; the probability

that an edge can be matched is at most the probability that both the

worker and the task is present at least once in the arrival sequence.

This boils down to computing the expected value of the minimum

of two i.i.d. Poisson random variables with mean upper bounded

by 1. We later show that this expected value is at most (1 − 1/e )rv
and hence adding this stronger constraint, we obtain the following

strong LP (5). As a side note, this constraint is also valid for the

general version of edge-weighted OTA-TSA, but the simpler LP

suffices for an optimal non-adaptive algorithm.

maximize

∑
u ∈U wu

∑
f ∈Eu xf (5)

subject to

∑
f ∈Ev xf ≤ rv ∀v ∈ V (6)∑
f ∈Eu xf ≤ 1 ∀u ∈ U (7)

0 ≤ xf ≤
(
1 − 1

e

)
rv ∀f ∈ E (8)

Lemma 7.2. The optimal value to LP (5) is an upper bound on the
offline optimal for the OTA-TSA with LHS vertex weighted.

Our adaptive algorithm is inspired from an idea used in [17].

Let {x∗f } be an optimal solution to LP (5). At a particular time-step,

when a task v arrives, we generate a random ordered list L of two

choices from Ev such that it satisfies properties (P1) and (P2).

(P1): Pr[L (1) = f ] =
x ∗f
rv for each f ∈ Ev .

(P2): Pr[L (2) = f ∧ L (1) , f ] ≥
x ∗f
rv

1

e−1 for each f ∈ Ev .

Here L (1) and L (2) denotes the first and second choice on this list

L, respectively.
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Later in this section, we will describe how to efficiently generate

a random list satisfying the above two properties. Property (P2)
relies critically on the stronger constraint (8) added into LP (5). On

constructing a random list L at time t , ADAP will make the online

decision as follows: try the first choice L (1) if it is available; then
go to the second choice L (2); skip vt if neither of the two choices

are available. Thus compared to NADAP, ADAP offers each edge f
a second chance to be tried. Property (P1) ensures that the marginal

distribution is maintained for the first choice; Property (P2) gives
a lower bound that each f can be tried as a second choice — this

is the exact source for the improvement on the final ratio over the

previous NADAP. Algorithm 3 formally describes ADAP.

Algorithm 3: An adaptive algorithm (ADAP)

1 Let vt be a task arriving at time t ∈ [T ].

2 Generate a random list L satisfying properties (P1) and (P2).
3 If first choice L (1) is available, assign vt to L (1); else if
second choice L (2) is available, assign vt to L (2); otherwise
skip vt .

Theorem 7.3. The adaptive algorithm ADAP achieves a compet-

itive ratio of at least κ
(
1 + 1

e (e−1)

)
≥ 0.343 for the OTA-TSA with

LHS vertex weighted.

Proof. Consider a worker u. Let Xt and Yt be the number of

copies of u at time t before and after observing the arrival from

U . Notice that from the assumption that u arrives with probability

1/T in each round, we have Yt = Xt + 1 with probability 1/T and

Yt = Xt with probability 1 − 1/T .
Consider the case when Yt ≥ 1 and one compatible task v of

u arrives at t . Let L be the random list that is generated for v at

t . From ADAP, we have that Yt decreases by 1 iff either (1) the

assignment f = (u,v ) is made as a first choice (L (1) = f ) or (2)
the assignment f = (u,v ) is made as a second choice (L (2) = f )
and the first choice L (1) is unavailable. Thus, we have:

Pr[Xt+1 = Yt − 1|v comes at t ]

= Pr[L (1) = f ]

+ Pr[L (2) = f ∧ L (1) , f ] Pr[L (1) is not available]

≥
x ∗f
rv +

x ∗f
rv

1

e−1 Pr[L (1) is not available]

≥
x ∗f
rv +

x ∗f
rv

1

e−1
1

e =
x ∗f
rv

(
1 + 1

e−1
1

e

)
The inequality on the second line directly follows from properties

(P1) and (P2). The inequality on the third line is due to the fact that

for each given L (1) = (u ′,v ), the probability that it is unavailable

is at least (1 − 1/T )t ≥ 1/e (this refers to the probability that u ′

never comes in the first t time-steps). Thus, after considering all

possible neighbors of u, we have

Pr[Xt+1 = Yt − 1] ≥
∑

f =(u,v )∈Eu

rv
T

x∗f

rv

(
1 +

1

e − 1

1

e

)
=

∑
f ∈Eu x ∗f
T

(
1 + 1

e−1
1

e

)

Note that, x∗u =
∑
f ∈Eu x

∗
f ≤ 1 due to the constraint on each u

in LP (5). We have that {Xt ,Yt } is a TS-BDP with death rate of

x∗u ∗ q � x∗u

(
1 + 1

e−1
1

e

)
. From the definition of the function κ, we

have that κ (x∗u ∗ q) is equal to the expected number of matches for

worker u. Note that x∗u is the expected number of matches for u
from the benchmark LP (5). Thus the resultant ratio is,

κ (x ∗u∗q )
x ∗u

= q ∗
κ (x ∗u∗q )−κ (0)

x ∗uq−0

≥ q ∗
κ (q )
q = κ (q) = κ

(
1 + 1

e−1
1

e

)
The inequality above is due to the fact that κ is a concave function

over [0,∞] and x∗u ≤ 1. □

Generating L satisfying properties (P1) and (P2).We can gen-

erate a random list L satisfying properties (P1) and (P2) as fol-
lows ([17] first use this idea). For every e ∈ Ev , let ye = x∗e/rv ;
we have that

∑
e ∈Ev ye ≤ 1. Add a dummy edge e ′ = (u ′,v )

with ye ′ = 1 −
∑
e ∈Ev ye (the edge e ′ = (u ′,v ) means we do

nothing when v comes). Create two unit intervals, I1 and I2 as

follows: (1) Sort {ye |e ∈ Ev } ∪ {ye ′ } in an increasing order; let

ye1 ≤ ye2 ≤ . . . ≤ yen be this order; (2) Let Si be a segment of

length yei with a label of ei for each i ∈ [n]. Let I1 be the unit inter-
val formed by {S1,S2,S3, . . . ,Sn } and let I2 be the unit interval

formed by {Sn ,S1,S2, . . . ,Sn−1}.

The random list L is obtained from (I1,I2) is as follows. Choose
a value x ∈ [0, 1] uniformly at random. Let I1 (x ) and I2 (x ) be the
respective label of the segment where x falls on, in the intervals I1

and I2. Set L (1) = I1 (x ) and L (2) = I2 (x ).

Lemma 7.4. The random list L generated by the procedure de-
scribed above satisfies properties (P1) and (P2).

Proof. To verify property (P1), notice that x is takes a value in

[0, 1] uniformly at random. Thus for each given f ∈ Ev , x falls in

the segment labelled by f in I1 with probability yf = x∗f /rv .

To verify property (P2), we use Observation 4.1 from [17]. From

this Observation, we have that Pr[L (1) = L (2) = f ] = 0, for every

f ∈ Ev with yf ≤ 1/2. Hence we have, Pr[L (2) = f ∧ L (1) ,
f ] = yf . Consider the harder case when yf > 1/2. The event that

L (2) = f ∧ L (1) , f occurs only when x falls in the segment

labelled by f in I2 and x does not fall in the segment labelled by f
in I1. Thus,

Pr[L (2) = f ∧ L (1) , f ] = yf − (2yf − 1) = yf

(
1

yf
− 1

)
≥ yf

(
1

1−1/e − 1
)
=

yf
e−1

The last inequality is because yf = x∗f /rv ≤ 1 − 1/e for every

f ∈ Ev (this follows from the constraint (8)). □

8 HARDNESS RESULTS
Wewill now prove a hardness result, which also holds for the special

case when there are no weights. (i.e., unweighted) This hardness
result does not depend on the choice of the benchmark LP and

hence is unconditional. This hardness result is obtained due to the

inherent nature of the online process and can be viewed as the
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online-offline stochastic gap. In particular, we have the following

theorem

Theorem 8.1. No algorithm can achieve a competitive ratio better
than κ′ (0)

1−1/e =
1

e−1 ∼ 0.581, even for the unweighted OTA-TSA.

Proof. Consider an unweight bipartite graph G = (U ,V ,E)
where |U | = |V | = T and |E | = T which consists of a perfect

matching. Let the arrival rates for every u be 1 with pu = 1/T
and let every v have an arrival rate of ϵ (where ϵ is very small)

with pv = ϵ/T . Here we can arrange a dummy node v ′ such that

pv ′ = 1 − ϵ and v ′ has no any neighbor of u.
Consider a given f = (u,v ). LetOPT-A andOPT-B be the respec-

tive offline and online optimal algorithms. Let Xf be the number

of matches of f in OPT-A after the T rounds. Let Xu and Xv be

the respective number of arrivals of u and v in an offline instance.

We have that Xf = min(Xu ,Xv ). Observe that Xu ∼ Pois(1) and
Xv ∼ Pois(ϵ ). Thus, we have:

E[min(Xu ,Xv )]

=
∑∞
k=1 Pr[Xu ≥ k] ∗ Pr[Xv ≥ k]

=
∑∞
k=1 Pr[Pois(1) ≥ k] ∗ Pr[Pois(ϵ ) ≥ k]

=

(
1 − 1

e

) (
1 − e−ϵ

)
+

(
1 − 2

e

) (
1 − e−ϵ − ϵe−ϵ

)
+ . . .

=

(
1 − 1

e

)
ϵ + o(ϵ )

Hence we have E[Xf ] =
(
1 − 1

e

)
ϵ + o(ϵ ). Let Yf be the number of

matches of f in OPT-B. Similar to the proof in Theorem 6.1, we

can verify that E[Yf ] = κ (ϵ ).Thus the online ratio on the above

instance should be

E[Yf ]
E[Xf ]

=
κ (ϵ )(

1− 1

e

)
ϵ+o (ϵ )

Taking ϵ → 0, we have that the above value is

limϵ→0

κ (ϵ )(
1− 1

e

)
ϵ+o (ϵ )

= limϵ→0

κ (ϵ )
ϵ

1

1−1/e =
κ′ (0)
1−1/e □

From Lemma 4.2, κ ′(0) = 1/e and thus we get our claim.

9 EXPERIMENTS
In this section, we describe the experimental results in this paper.

We consider two datasets from popular crowdsourcing platforms,

namely gMission [7] and EverySender [27]. We test our adaptive

and non-adaptive algorithms on these two datasets. Additionally,

we also consider a generalized version of our model and run experi-

ments to show that these algorithms are robust enough for practical

scenarios which might slightly vary from the actual model.

Dataset and preprocessing. Both the datasets have the following

information. With every worker there is an associated location

(x ,y) where the worker is present, range of the worker which

denotes the distance up to which they can perform a task, and a

success probability which denotes the chance that this worker will

complete any task. With every task there is an associated location

(x ,y) and a payoff value for completing the task. We group the

workers (likewise for tasks) into a “type” if they share the same

location in the sense that the first two decimal points in the x and

y coordinates are the same. For example, workers at (0.345, 3.546)
and (0.342, 3.549) are grouped as the same “type”. To construct

the compatibility graph between the tasks and workers (i.e., the
potential tasks a worker can perform), we consider every pair of

task and worker type and add an edge between a task and worker

type if the Euclidean distance between them is within the range

of the worker type. To construct the edge weight, we multiply the

payoff of the corresponding task type with the success probability

of the corresponding worker type. In the (LHS) vertex-weighted

version of the problem, we use the success probability as the edge-

weight for all the edges incident to this worker. Recall that in our

model all worker types have an uniform arrival probability 1/|U |.
We generate the task arrival probabilities by choosing a random

vector {pv } such that each pv is uniformly distributed over [0, 1]

conditioning on

∑
v pv = 1. We achieve this by running the file

randfixedsum.m due to Roger Stafford.
3
Finally to simulate large

batch sizes for workers and tasks, we derive a sparse version of

EverySender, called EverySenderSample, where each worker and

task is chosen with probability 0.25. Table 1 gives basic statistics

of the dataset, which corroborates some of our assumptions as

discussed in the introduction.

Dataset #worker types #task types #edges

gMission 532 712 39758

EverySender 817 3994 340051

EverySenderSample 204 999 21247

Table 1: Properties of our datasets

Heuristics. Alongside our main algorithms NADAP and ADAP,

we adapt certain heuristics previously used for such problems

(e.g., [26]) and compare and contrast them with our algorithms

under various practical scenarios. In particular, we consider the fol-

lowing three heuristics– GREEDY, LP-SCALED and UR-ALG. Both

GREEDY andUR-ALG are agnostic to the underlying LP. The heuris-

tic GREEDY matches the incoming task to the available worker

where the weight of the assignment is the largest (breaking ties

arbitrarily) while UR-ALG chooses one of the available workers

uniformly at random. The heuristic LP-SCALED uses the optimal

solution x⃗ to LP (1) as a guide to its online actions. When a task

arrives, let w1,w2, . . . ,wk denote the set of compatible workers

who are available. Let xw1
,xw2
, . . . ,xwk denote the correspond-

ing LP optimal values. We choose the workerwi with probability

xwi /
∑k
j=1 xw j .

Methodology.Weparametrize themodel with a parameterηwhich
denotes the number of workers sampled (a.k.a. batch size of work-

ers) in each time-step. Let ∆ denote the ratio of total number of

task arrivals to that of worker arrivals. For each given integral η,
in each time-step we sample η workers and η ∗ ∆ tasks (by repeat-

ing the sampling process i.i.d., η times for workers and η ∗ ∆ for

tasks). We set ∆ = 2 in gMission and ∆ = 5 in EverySender and

EverySenderSample datasets. The values of ∆ are chosen based

on the ratios in the real arrival sequence for a snapshot when the

dataset was curated. Our experiments are as follows with each ex-

periment consisting of taking an average over 20 independent runs.

3
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-

with-fixed-sum/content/randfixedsum.m
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Figure 1: Edge-Weighted case on gMis-
sion dataset

Figure 2: Edge-Weighted case on Every-
Sender dataset

Figure 3: Vertex-Weighted case on gMis-
sion dataset

Figure 4: Vertex-Weighted case on Every-
Sender dataset

Figure 5: Average waiting times for
workers, gMission dataset

Figure 6: Average waiting times for
workers, EverySender dataset

First we consider the case where the batch size of workers is 1 and

the batch size of tasks is 1. For this case, we run GREEDY, ADAP

and NADAP on the datasets gMission and EverySender with the

node-weighted assumption and compute the average waiting time

for all worker types. In particular, for each run of the algorithm

and each worker in the system we measure the time until which

this worker stays in the system before getting matched to a task.

We then compute the average waiting time for every worker type

across all the runs (counting it multiple times in a single run if

a worker type arrives twice). Next we run our main experiments

as follows. For the edge-weighted case, we test NADAP against

the three heuristics GREEDY, LP-SCALED and UR-ALG, on the

datasets of gMission and EverySenderSample over the choices of

η ∈ {1, 5, 10, 15, 20, 25, 30, 35}. For the LHS vertex-weighted case,

we test ADAP against the three heuristics, on the datasets gMission

and EverySender over the choices of η ∈ {1, 2, 3, 4, 5, 6, 7}.

Results and discussion. For brevity, we only show the results

of NADAP, ADAP and GREEDY in the plots. The performance of

LP-SCALED and UR-ALG followed a similar pattern as GREEDY

with LP-SCALED performing slightly better on average andUR-ALG

performing slightly worse on average. The following are several

interesting observations. From Figures 1 and 2, we see that NADAP

performs better once the size of batch arrivals in each time in-

creases. This can be explained as follows. When the batch-arrival

size is small, each arriving task has a limited number of workers

to choose from, since the number of workers who have arrived

and are compatible is small. In this case, the advantage of greedily

matching an available worker outweighs the potential loss from

a mismatch. However, when batch-arrival size increases and each

arriving task has more options to choose from, the guidance from

the LP becomes effective, since it takes the future arrivals into con-

sideration (in expectation). For the vertex-weighted case we have

that GREEDY is near optimal. From Figures 3 and 4 we can see that

the ratio obtained by GREEDY is almost close to 1 in all cases. On

the other hand the performance of ADAP slowly increases as the

batch size increases. Our experiments show that GREEDY is the

best algorithm when there are no edge-weights or the weights are

only on the workers. Finally Figures 5 and 6 show the average wait-

ing time for each worker in the two datasets, in the run of the three

algorithms. Since, GREEDY makes a choice whenever a compatible

worker is available, it has the least waiting times. Similarly since

ADAP makes strictly more assignments than NADAP, the work-

ers in ADAP have the next least waiting time and in many cases

much lesser than NADAP. Note however that the difference in the

average of averages for GREEDY and NADAP is around 1.5-2.5%

with respect toT in both the datasets and hence, is not considerably

large.
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