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ABSTRACT
We consider an allocation problem of multiple types objects to

agents, where each type of an object has multiple copies (e.g., mul-

tiple seats of a school), each agent is endowed with an object, and

some distributional constraints are imposed on the allocation (e.g.,

minimum/maximum quotas). We develop amechanism that is based

on the Top Trading Cycles mechanism, which is strategy-proof,

feasible (always satisfies distributional constraints), Pareto efficient,

and individually rational, assuming the distributional constraints

are represented as an M-convex set. The class of distributional con-

straints we consider contains many situations raised from realistic

matching problems, including individual minimum/maximum quo-

tas, regional maximum quotas, type-specific quotas, and distance

constraints. To the best of our knowledge, we are the first to develop

a mechanism with these desirable properties.
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1 INTRODUCTION
The objective of this paper is to develop a mechanism for allocating

indivisible objects to agents without monetary transfers, where

each individual has a prior claim to some object, each type of an

object has multiple copies, and some distributional constraints

are imposed on the allocation. Our motivation is to apply this

mechanism to school choice for public schools, i.e., deciding the

allocation of students to schools when a school district offers them

the opportunity to attend public schools other than the one closest

to where they live (where each school has multiple identical seats)

under distributional constraints (e.g., the capacity limits of schools).

Our mechanism is general enough to be applied to any reallo-

cation problem of indivisible objects with multiple supplies. For

example, assume a student-laboratory assignment problem. It is

often the case that the knowledge of a student is limited and she

fails to choose an appropriate laboratory. One possible remedy is to

apply the following three-step procedure: (i) students are assigned
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to laboratories using some mechanism, (ii) students experience a

certain trial period, and (iii) each student has a chance to apply to

another laboratory if her interest changes or her current laboratory

fails to meet her expectations. Our new mechanism can be used in

Step (iii). It is natural to require that no student is reallocated to a

laboratory that is worse than her current assignment.

Following a seminal work by Abdulkadiroğlu and Sönmez [4],

which formalizes a school choice problem in the context of the

mechanism design approach, a wide range of theoretical analysis

has been conducted on the existing mechanisms used in practice.
1

As the theory has been developed and applied to diverse types of

environments, mechanism designers have faced a variety of forms

of distributional constraints that are not considered in the standard

model. For example, the work of Biró et al. [6] is motivated by the

Hungarian education system where higher education institutions

can declare minimum quotas for their study areas that should be

satisfied to open courses. Another example is regional maximum

quotas introduced by the Japanese government to control the geo-

graphical distributions of medical residents to hospitals across the

country [24].

It is well-known that in the presence of distributional constraints,

a stable matching may not exist. Stability of a matching is firstly

defined by Gale and Shapley [16] for two-sided, one-to-one, and

one-to-many matching problems. In the setting of a school choice

problem, it is defined as the combination of individual rationality

(IR), fairness, and nonwastefulness [5]. IR is a basic requirement

that guarantees a student
2
to obtain a seat in a school that is at

least as good as her initial endowment. Fairness is defined when

schools also have priorities over students (in addition to students’

preferences over schools). It ensures that when student s is not
accepted to school c (which she considers better than her assigned

school), then s is ranked lower than any student accepted to c
according to c’s priority. Nonwastefulness is an efficiency notion

that rules out the incidents where a student can move unilater-

ally to her more preferred school without violating the underlying

distributional constraints. Given the incompatibility of stability

with distributional constraints, mechanism designers encounter a

trade-off between fairness and efficiency. In the recent literature on

distributional constraints [10, 11, 18, 19, 25, 28], a common approach

is to modify the definition of stability and to maintain the balance

between efficiency and fairness to some extent. Our approach is

to investigate whether efficiency is achievable under distributional

constraints. More specifically, we study Pareto efficiency (PE), a

1
See for example Sönmez and Ünver [43] for a survey on the theoretical analysis of

existing school choice mechanisms.

2
For the sake of presentation, the rest of this paper is described in the context of a

school-student allocation problem, but the obtained results in this paper are applicable

to allocation problems in general.
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stronger welfare notion than nonwastefulness, that rules out the

incidents where students’ welfare can be improved without making

others worse off, while observing the distributional constraints. It

has been mostly an open question whether a PE mechanism (i.e.,

a mechanism that is guaranteed to obtain a PE matching) can be

obtained under distributional constraints. Kamada and Kojima [24]

is one of a few studies that investigates efficiency under distribu-

tional constraints, which shows that PE is achievable under regional

maximum quotas. Another study by Hamada et al. [21] develops a

PE mechanism when minimum (and standard maximum) quotas

are imposed for each school. As described later, the class of distri-

butional constraints we study in this work is a strict generalization

of these classes.

We restrict our attention to strategy-proof (SP) mechanisms, in

which no student has an incentive to misreport her preference over

schools. In theory, we can restrict our attention to SP mechanisms

without loss of generality due to the well-known revelation prin-

ciple [17], i.e., if a certain property is achieved by a mechanism

(more specifically, the property is satisfied in a dominant strategy

equilibrium when using the mechanism), it can be achieved by an

SP mechanism. An SP mechanism is also useful in practice since

a student does not need to speculate about the actions of other

students to obtain a good outcome; she only needs to truthfully

report her preference.

Our paper is at the intersection of discrete mathematics and

economics. In particular, we consider a class of distributional con-

straints that can be represented by an M-convex set (M stands for

Matroid), a concept introduced by Murota [30, 31] in the field of

discrete mathematics, which is a discrete counterpart of the frame-

work of convex analysis. The insight from discrete mathematics,

and discrete convex analysis in particular, has been used in a broad

range of applications on discrete optimization such as scheduling,

facility location, and structural analysis of engineering systems

among others [27, 29, 40]. Recently, discrete convex analysis has

been recognized as a powerful tool for analyzing economic or game

theoretic applications, including exchange economies with indivisi-

ble objects [8, 32, 35, 44], systems analysis [32], inventory manage-

ment [23, 47] and auction [34] (see Murota [33] for an extensive

survey on recent developments). As this long, and yet partial, list

of success stories suggests, techniques from this literature can be

applied to a variety of economic problems. In this paper, we add

allocation problems (including school choice problems) to this list.

This paper is not the first to apply discrete convex analysis to

allocation problems. Fujishige and Tamura [13, 14] and Murota

and Yokoi [36] apply discrete convex analysis to study two-sided

matching problems. More specifically, these works deal with a

many-to-many matching problem, in which a doctor/worker can

work at multiple hospitals/firms. Fujishige and Tamura [13, 14]

consider side payments as well.
3
Kojima et al. [26] apply the concept

to two-sided matching problems with distributional constraints

and show that if the preferences of schools can be represented as

an M-concave function
4
then the generalized deferred acceptance

3
See also an earlier contribution by Fleiner [9] who applies matroid theory to matching.

His analysis is a special case of a more recent contribution by Fujishige and Tamura

[14].

4
More precisely, they use a concept called M

♮
-convexity, an essentially equivalent

variant of M-convexity.

mechanism [22] achieves a desirable outcome. Our motivation is

different from these works, i.e., our goal is to develop an IR, PE, and

SP mechanism.

We show that the M-convexity of the underlying distributional

constraints is sufficient to guarantee the existence of a mechanism

that satisfies IR
5
, PE, and SP. We require one additional assumption:

if every student is assigned to her initial endowment school, then

the underlying distributional constraints are satisfied. This is an

innocent requirement in the context of school choice since every

student would go to her local school if there were no school choice

program; assuming this default allocation satisfies distributional

constraints is reasonable. We also show by a counterexample that

the three properties easily become incompatible if the underlying

distributional constraints are not M-convex.

Our developed mechanism is based on Top Trading Cycles (TTC)
mechanism of Shapley and Scarf [41], due to David Gale, which im-

proves students’ welfare by trading their initial endowments. They

introduce a housing market problem, where objects are initially

owned by agents, who have strict preferences over them, and there

are no copies of an object in the market. TTC is further generalized

to the Hierarchical Exchange mechanism [37] and to the Trading

Cycles mechanism
6
by Pycia and Ünver [39]. TTC has been applied

to a school choice problem [1], as well as assigning teachers to

schools [7, 46]. Recently, TTC has attracted increasing attention

from AI researchers [15, 42, 45].

Abdulkadiroğlu and Sönmez [3] and Guillen and Kesten [20]

consider a housing market problem with existing tenants, where

some agents may not initially own a house and some houses are not

initially owned by agents.
7
The differences between their setting

and ours are that we consider multiple copies of an object and

impose distributional constraints. Our work is a strict extension

of Hamada et al. [21], who only consider individual minimum and

maximum quotas.

When TTC is applied to a housing market problem, agents se-

quentially form trading cycles to exchange their initial endowments.

In the allocation problem we consider, some school seats may be

vacant, i.e., they are not initially owned by any students, and distri-

butional constraints are imposed on the final allocation. The main

difficulty in this setting is how to utilize such vacant seats to im-

prove students’ welfare without violating distributional constraints.

For example, let us assume the following complex distributional

constraints (regional maximum quotas) are imposed; schools are

partitioned into regions, and the total number of students allocated

within a region must not exceed the maximum quota of the re-

gion. Then, even if a school has a vacant seat, allocating it to a

student may violate the maximum quota of the region to which the

school belongs. By utilizing a common priority order over students,

our TTC-based mechanism, which we call TTC with M-convex set

constraints (TTC-M), can allocate vacant seats efficiently without

5
In the later section, we call a mechanism feasible if it always gives an IR outcome

that does not violate distributional constraints.

6
Pycia and Ünver [38] present an extension of the Trading Cycles mechanism such

that each object has multiple copies. Our work is different from Pycia and Ünver

[38]; they consider only standard maximum quotas, while we deal with more general

distributional constraints that can be represented as an M-convex set.

7
We can easily modify our model to describe a situation where some students do not

initially own a school seat; we can assume such a student initially owns the seat of

null school c∅ , and for each student s , where ω(s) , c∅ , ω(s) ≻s c∅ holds.
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violating the underlying distributional constraints. To the best of

our knowledge, no mechanism with these desirable properties has

ever been found in this setting.

This paper is organized as follows. In Section 2, we introduce a

general model of an allocation problem with initial endowments

and distributional constraints and define the desirable properties.

In Section 3, the notion of an M-convex set is described to specify

the domain of the distributional constraints we focus on, together

with an impossibility result for the general model. In Section 4,

some properties on an M-convex set are provided that are used in

the proof of our main theorems. In Section 5, TTC-M is introduced

and shown to satisfy the desirable properties in our setting. Finally,

Section 6 concludes this paper.

2 MODEL
In this section, we introduce our model and several desirable prop-

erties. A market is a tuple (S,C,ω,≻S , F ), where
• S = {s1, . . . , sn } is the set of n students,

• C = {c1, . . . , cm } is the set ofm schools,

• ω : S → C is an initial endowment function; ω(s) = c is the
initial endowment school of s ,
• ≻S= (≻s )s ∈S is a profile of students’ strict preferences over

C , and
• F ⊆ Zm+ is a set of school feasible vectors that reflects distri-

butional constraints.

Given a market, µ ⊆ {(s, c) | s ∈ S, c ∈ C} is a matching, where
µs ∈ C denotes the school to which s is matched and µc = {s |
(s, c) ∈ µ} is the set of students matched to c . We denote c ⪰s c ′ if
either c ≻s c ′ or c = c ′.

Let µ̃ denote the initial endowment matching, that is, µ̃s = ω(s)
for all s ∈ S . We say µ is individually rational (IR) if µs ⪰s ω(s)
holds for all s , that is, each student is matched to a school that is at

least as good as her initial endowment school.

Givenmatching µ, let ν (µ) denote them-dimensional distribution

vector of µ, where its i-th element νi (µ) is |µci |. We sometimes write

νci (µ) instead of νi (µ). We say µ is school-feasible if ν (µ) ∈ F . We

require µ is school-feasible only if

∑m
i=1 |µci | = n, i.e., each student

must be matched to some school. We assume ν (µ̃) ∈ F and thus

µ̃ is school-feasible. We say matching µ is feasible if it is IR and

school-feasible, and therefore µ̃ is a feasible matching.

We say µ Pareto dominates µ ′ if µs ⪰s µ ′s holds for all s and
there exists s with µs ≻s µ ′s . We say school-feasible matching µ
is Pareto efficient (PE) if no other school-feasible matching Pareto

dominates it.
8

For s ∈ S , let (≻s ,≻−s ) denote the preference profile of all the
students, where the preference of student s is ≻s and the profile of

the preferences of the other students is ≻−s= (≻s ′)s ′∈S\{s } .
Mechanism φ is a function that takes a profile of the preferences

of students ≻S and returns matching φ(≻S ). Let φs (≻S ) denote the
school to which s is matched, and φc (≻S ) denote the set of students
matched to c .

The goal of this paper is to find a mechanism equipped with

the following desirable properties. We say φ is feasible if φ(≻S ) is
feasible for all ≻S . We say φ is strategy-proof (SP) if for all s , ≻s , ≻′s ,
8
Sometimes this property is referred to as constrained Pareto efficient, since the set of

matchings considered is restricted to the set of school-feasible ones.

and ≻−s , φs (≻s ,≻−s ) ⪰s φs (≻′s ,≻−s ) holds. In words, this property
requires that a student cannot be allocated to a strictly better school

by misreporting her preference. We say φ is PE if φ(≻S ) is PE for

all ≻S .
Finally, let us introduce some notions that are used to describe

our mechanism. A directed graph is a pair (V ,E), where V is a set

of vertices and E ⊆ {(i, j) | i, j ∈ V } is a collection of directed edges.

A directed edge, e = (i, j) ∈ E, is an ordered pair of vertices. A

sequence of distinct vertices, (i1, . . . , ik ), k ≥ 2, is a directed path in

(V ,E) from i1 to ik if (ih , ih+1) ∈ E for h = 1, . . . ,k − 1. A sequence

of vertices, (i1, . . . , ik , i1) is a cycle, if (i1, . . . , ik ) is a directed path

and (ik , i1) ∈ E.

3 M-CONVEX SET AS A CLASS OF
DISTRIBUTIONAL CONSTRAINTS

In this section we describe the class of distributional constraints

that is considered in our model. Let χi denote anm-element unit

vector, whose i-th element is 1 and all other elements are 0. We

sometimes write χci instead of χi .

Definition 3.1. Set ofm-element vectors F is an M-convex set if
for all ν ,ν ′ ∈ F and i with νi < ν ′i , there exists j with νj > ν ′j such
that ν + χi − χj ∈ F and ν ′ − χi + χj ∈ F hold.

This property characterizes an M-convex set and is called (si-
multaneous) exchange property [30]. The notion of an M-convex

set is analogous to that of maximum elements of a convex set in a

continuous domain, i.e., there is no hollow in a set. Next, we show

that several distributional constraints introduced in the literature

can be represented by an M-convex set.

Individual minimum/maximum quotas [10, 21]: Consider a mar-

ket
9
where, for each school c ∈ C , there is maximum quota qc and

minimum quota pc . The distributional constraints of this market

can be expressed as F where

F = {ν ∈ Zm+ |
∑
c ∈C

νc = n and pc ≤ νc ≤ qc ∀c ∈ C},

and it can be verified that F is M-convex.

Regional maximum quotas [18, 24]: In addition to the individual

minimum/maximum quotas, capacity constraints are imposed on

regions. Set of regions R ⊆ 2
C \ {∅} partitions set of schools C into

regions, and for each r ∈ R, there is a regional minimum quota of

pr and a maximum quota of qr . The distributional constraints of
this market can be expressed as F where

F = {ν ∈ Zm+ |
∑
c ∈C

νc = n, pc ≤ νc ≤ qc

and pr ≤
∑
c ∈r

νc ≤ qr ∀c ∈ C,∀r ∈ R},

and it can be verified that F is M-convex.

9
The standard model where there are only maximum quotas, e.g., Abdulkadiroğlu and

Sönmez [4], can be seen as pc = 0 for all c ∈ C .
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Type-specific quotas [2, 11]: In addition to the individual max-

imum quotas, there are additional type-specific quotas for each

type of students. A type of a student may represent race, gender,

or any socioeconomic status. There is a set of types T ⊆ 2
S \ {∅}

that partitions the set of students S into types, and for each c ∈ C
and t ∈ T , there is a type-specific minimum quota of pc,t and the

maximum quota of qc,t . We represent a distribution vector ν as

m × |T | matrix, where νc,t denotes the number of type t students
allocated to school c . Distributional constraints of this market can

be expressed as F where

F = {ν ∈ Zm×|T |+ |
∑
c ∈C

νc = n,
∑
t ∈T

νc,t ≤ qc

and pc,t ≤ νc,t ≤ qc,t ∀c ∈ C, ∀t ∈ T },
and it can be checked that F is M-convex.

Distance constraints [26]: When allocating n students amongm
schools, suppose there exists an ideal distribution vector from the

viewpoint of the mechanism designer and he considers a distribu-

tion vector feasible if it is ‘close enough’ to the ideal vector. The

distance constraints is defined by ideal vector ν∗ and distance k
describing what is close enough from the ideal distribution. The set

of feasible vectors under such constraints is expressed as F where

F = {ν ∈ Zm+ |
∑
c ∈C

νc = n and δ (ν ,ν∗) ≤ k},

and it can be verified that F is M-convex assuming distance func-

tion δ is given by either (i) the Manhattan distance (or L1 dis-

tance), which is defined as δ (ν ,ν ′) = ∑
c ∈C |νc − ν ′c |, or (ii) the

Chebyshev distance (or L∞ distance), which is defined as δ (ν ,ν ′) =
maxc ∈C |νc − ν ′c |.

In the next theorem, we show that three basic properties (fea-

sibility, PE, and SP) can be incompatible when the set of feasible

vectors is not an M-convex set.

Theorem 3.2. There exists a market where the set of feasible vec-
tors does not form an M-convex set such that no mechanism simulta-
neously satisfies feasibility, PE, and SP. This is true even for a market
with two students, three schools, and the set of feasible vectors becomes
an M-convex set by just adding one vector.

Proof. Consider the following market.

• S = {s1, s2},
• C = {c1, c2, c3},
• ω(s1) = ω(s2) = c1,
• c3 ≻s1 c2 ≻s1 c1 and c3 ≻s2 c2 ≻s2 c1, and
• F = {(2, 0, 0), (1, 1, 0), (0, 1, 1)}.

This market can be interpreted as follows: within the school

district, there are three schools c1, c2, and c3, where c1 has a larger
capacity than the others. Due to logistic constraints on resource

of the district, two schools can operate at the same time only if

they are close to each other. Note that F is not an M-convex set.

For ν = (2, 0, 0) and ν ′ = (0, 1, 1), where ν3 < ν ′
3
, νj > ν ′j holds only

for j = 1. However, ν + χ3 − χ1 = (1, 0, 1) is not in F . On the other

hand, F ∪ {(1, 0, 1)} is an M-convex set.

In this market, there are two feasible and PE matchings, {(s1, c3),
(s2, c2)} and {(s1, c2), (s2, c3)}. Suppose feasible and PE mechanism

φ chooses φ(≻S ) = {(s1, c3), (s2, c2)}. Then s2 can misreport ≻′s2

where c3 ≻′s2 c1 ≻′s2 c2. With this misreport, the only feasible

and PE matching is φ(≻s1 ,≻′s2 ) = {(s1, c2), (s2, c3)} and φs2 (≻s1 ,
≻′s2 ) ≻s2 φs2 (≻s1 , ≻s2 ). Similarly, s1 has an incentive to misreport if

φ(≻S ) = {(s1, c2), (s2, c3)} holds. In both cases, since a student can

benefit by misreporting, φ cannot satisfy SP. □

This theorem implies that violation of M-convexity easily leads

to the nonexistence of any fruitful mechanism. In the rest of this

paper, we show that if the distributional constraints of a market can

be represented as an M-convex set, there exists a mechanism that

satisfies the three properties. Therefore, in a sense, M-convexity is

the most general class of distributional constraints under which we

can still have a mechanism with these desirable properties.

4 PROPERTIES OF M-CONVEX SET
In this section, we present several properties related to M-convexity

that are used in later sections. These properties are either already

known in the literature or proving them is rather straightforward.

To be self-contained, however, we provide proofs.

Lemma 4.1 (Murota [32, Lemma 9.23], Fujishige [12, Lemma

4.5]). Let F be anM-convex set onM = {1, . . . ,m}. Suppose for some
ν ∈ F , there exist i1, j1, . . . , ir , jr , all are inM and distinct, such that{

ν + χih − χjk ∈ F if h = k
ν + χih − χjk < F if h > k

(h,k ∈ {1, . . . , r }). (1)

Then it holds that ν +
∑r
k=1(χik − χjk ) ∈ F .

Proof. The proof is done by induction on r . When r = 1, it

obviously holds. Assume the supposition is true up to r = ℓ and
consider a case where r = ℓ+1. Take two vectors a := ν + (χi1 − χj1 )
and b := ν +

∑r
k=2(χik − χjk ). It holds that a ∈ F by assumption.

It also holds that b ∈ F from the induction argument, because

i2, j2, . . . , ir , jr are 2ℓ distinct elements inM , which satisfy (1). Since

i1, j1, . . . , ir , jr are distinct, it holds that ai1 > bi1 . It also holds that

{k ∈ M | ak < bk } = {j1, i2, i3, . . . , ir }. From the M-convexity

of F , there must exist j ∈ {j1, i2, i3, . . . , ir } such that a + (χj −
χi1 ) = ν + (χj − χj1 ) ∈ F . It follows that j1 is the only candidate,

since ν + χih − χj1 < F for any ih , h > 1. It then follows that

b − (χj1 − χi1 ) = b + (χi1 − χj1 ) = ν +
∑r
k=1(χik − χjk ) ∈ F . □

In words, Lemma 4.1 means that we can apply unilaterally feasi-

ble moves simultaneously if they are sorted properly in some sense.

Lemma 4.2. Let F be an M-convex set on M = {1, . . . ,m}, ν ∈ F
and J = {1, . . . , r }. For a fixed q ∈ J , if we are given elements
i1, j1, . . . , ir , jr ∈ M such that {i1, . . . , ir } ∩ {j1, . . . , jr } = ∅ and

ν + χih − χjk ∈ F if h = k , q
ν + χih − χjk < F if h = k = q
ν + χih − χjk < F if h > k

(h,k ∈ {1, . . . , r }) (2)

hold, then we have

ν +
∑
ℓ∈J
(χiℓ − χjℓ ) < F .

Proof. Assume to the contrary that ν ′ = ν +
∑

ℓ∈J (χiℓ − χjℓ )
is in F . If r > q, by the exchange property for ν ′, ν and ir with
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ν ′ir > νir , by {i1, . . . , ir } ∩ {j1, . . . , jr } = ∅, there exists k such that

ν ′jk < νjk and

ν ′ − χir + χjk , ν + χir − χjk ∈ F .
Furthermore, from (2), k must be equal to r . Then, we have ν +∑

ℓ∈J \{r }(χiℓ − χjℓ ) ∈ F . By repeating the same argument, we can

assume that q = r . Since ν ′iq > νiq holds, by the exchange property

for ν ′, ν and iq , there exists k such that ν ′jk < νjk and

ν ′ − χiq + χjk , ν + χiq − χjk ∈ F .
However, all of the elements of J are less than or equal to q, which
contradicts (2). □

In words, Lemma 4.2 means that if a move is infeasible, it remains

infeasible after applying a set of feasible moves.

Lemma 4.3. Assume for ν ∈ F , there exist I , J ⊂ M , I ∩ J = ∅ such
that ∀i ∈ I , ∀j ∈ J , the following condition holds:

ν + χi − χj < F . (3)

Then there exists no ν ′ ∈ F such that the following condition holds:

∀i ∈ M \ J , ν ′i ≥ νi and ∃j ∈ I , ν ′j > νj . (4)

Proof. Assume to the contrary that there exists ν ′ satisfying
(4). Since F is an M-convex set, for ν ′,ν ∈ F and i ∈ I with ν ′i > νi ,
there exists j such that ν ′j < νj and

ν ′ − χi + χj , ν + χi − χj ∈ F .
By (4), j must belong to J . However, (3). □

In words, Lemma 4.3 means that if we cannot move one student

from J to I , then we cannot increase the number of students in I
without decreasing the number of students inM \ J .

5 PROPOSED MECHANISM (TTC-M)
In this section, we introduce an SP mechanism, which we call Top

Trading Cycles mechanism with M-convex set constraints (TTC-M),

that achieves a feasible and PE outcome in our settings.

Let us explain the outline of TTC-M. It repeats several rounds. At

the beginning of round k , let µk−1 denote the matching of students

who have already left the market, and let µ̃k−1 denote the initial
endowment matching of the remaining students. Let Sk denote

{s | (s, c) ∈ µ̃k−1}, i.e., the set of remaining students at round k .

Let µ̂k−1 := µk−1 ∪ µ̃k−1 denote the tentative matching at

the beginning of round k . We say student s ∈ Sk , whose initial

endowment school is c j , is acceptable for school ci at round k if

ν (µ̂k−1) + χi − χj ∈ F holds. If school c has no acceptable student

in Sk , it leaves the market at the beginning of round k . Let Ck

denote the set of remaining schools at round k . Note that from this

definition, if ω(s) = c , s is always acceptable for c at any round k

as long as ν (µ̂k−1) ∈ F holds.

The mechanism utilizes a common serial order over students
10

denoted ≻. Based on this order, the mechanism constructs ≻c , i.e.,
10
In some applications, schools (as well as students) can agree on such an order, e.g.,

using GPA. If no agreeable order exists, we can rely on a lottery to decide an order

randomly. Such an order is also used in a serial dictatorship mechanism [19], which is

school-feasible, SP and PE, but not IR. If no student has her initial endowment school,

our TTC-M becomes identical to a serial dictatorship mechanism.

the priority order of school c , which is basically identical to ≻ but

the initial endowment students of c are prioritized. More specifically,

s ≻c s ′ holds if and only if one of the following condition holds: (i)

ω(s) = ω(s ′) = c and s ≻ s ′, (ii) ω(s) , c , ω(s ′) , c , and s ≻ s ′, or
(iii) ω(s) = c and ω(s ′) , c . Without loss of generality, we assume

s1 ≻ s2 ≻ · · · ≻ sn holds.

Now we are ready to introduce TTC-M, which is described as

Mechanism 1. Intuitively, we can assume in TTC-M, at each round

k , each school chooses one student to give the right to use its

seat. Then, students with such rights can trade the seats among

themselves by constructing trading cycles in Gk
by the standard

TTC mechanism. Therefore, a student can join a trade only when

she is chosen by some school. By definition of ≻c , the priority right
of school c is first given to its initial endowment students, where

a tie is broken by common priority order ≻. When all of its initial

endowment students have left the market, school c gives the right
to a remaining student who is acceptable (meaning allocating that

student to c unilaterally from the current situation does not violate

the distributional constraints), where a tie is broken by ≻.
Since a student considers her initial endowment school accept-

able, and the school considers her acceptable at any round as long

as she remains in the market, she eventually gets the right to use

a seat of her initial endowment school. Thus, every student is in-

cluded in a cycle at some round before TTC-M terminates, since

she thinks her initial endowment school acceptable.

One particular feature of TTC-M is how it deals with the under-

lying distributional constraints. At round k of TTC-M, the right of

a school is given to a student according to ≻, ν (µ̂k−1), and F . If the
distributional constraints are on individual maximum quotas, then

a school gives its right to a student as far as the number of allocated

students is less than the quota. Under more complex distributional

constraints such as minimum quotas and/or regional quotas, just

looking at the current status and its own quota is insufficient for a

school to determine which student it should prioritize. For example,

accepting a student, who is initially owned by another school c ,

decreases the number of students allocated to c , i.e., νc (µ̂k ). It may

lead to the violation of distributional constraints. The next example

describes how TTC-M works with regional quotas.

Example 5.1. Consider the following market.

• S = {s1, s2, s3, s4, s5},
• C = {c1, c2, c3, c4},
• c2 ≻s1 c1 = ω(s1), c3 ≻s2 c2 = ω(s2), c2 ≻s3 c3 = ω(s3), c3 ≻s4
c4 = ω(s4), c2 ≻s5 c4 = ω(s5) (here, for each student s , we de-
scribe ≻s only for her acceptable schools, i.e., schools weakly
better than her initial endowment), and

• F =

ν ∈ Z4+
������
∑
i ∈M νi = 5,

0 ≤ νi ≤ 2 ∀i ∈ M,
2 ≤ ν3 + ν4 ≤ 3

 .
Set F represents a situation where the schools in the same region (c3
and c4) are jointly subject to the regional minimum and maximum

quotas, in addition to the individual maximum quota of 2.

First, µ̃0 is determined as follows: µ̃0 = µ̃ = {(s1, c1), (s2, c2), (s3, c3),
(s4, c4), (s5, c4)}. Note that ν (µ̃0) = (1, 1, 1, 2) ∈ F .

At Step 1 of Round 1, since every school still has its initial en-

dowment student in the market, all of the schools remain in the

market. Each school c points to a student according to ≻c , ν (µ̂0),
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Mechanism 1 (TTC-M)

Initialize µ̃0 ← µ̃, µ0 ← ∅,k ← 1.

Round k :

Step 1: Construct directed graph Gk
as follows.

• Each school c leaves the market if it has no acceptable student in Sk .

Otherwise, c points to the acceptable student who is highest according to ≻c in Sk .

• Each student in Sk points to her most preferred school in Ck .

• This creates directed graph Gk = (V k ,Ek ), where V k = Sk ∪Ck ,
(s, c) ∈ Ek represents the fact that student s points to school c ,

and (c, s) ∈ Ek represents the fact that school c points to student s .

Step 2: Let C k
be the set of all directed edges that forms cycles in Gk

.

Since V k
is finite, there exists at least one cycle in Gk

and thus C k
is nonempty.

Step 3: µ̃k ← µ̃k−1 \ {(s,ω(s)) | (s, c) ∈ C k } and µk ← µk−1 ∪ {(s, c) | (s, c) ∈ C k }.
Each student s such that (s, c) ∈ C k

leaves the market.

Step 4: If µ̃k = ∅, then return µk . Otherwise, k ← k + 1 and go to the next round.

and F . In this round, each school points to its initial endowment

student who is highest according to ≻. Each student points to her

best school that remains in the market. This results inG1
, as shown

in Figure 1. There is one cycle: (c2, s2, c3, s3, c2). At Step 2, C 1
is

{(c2, s2), (s2, c3), (c3, s3), (s3, c2)}. At Step 3, (s2, c2) and (s3, c3) are
removed from µ̃0 and (s2, c3) and (s3, c2) are added to µ0. µ̃1 and µ1

are determined as follows:

µ̃1 = {(s1, c1), (s4, c4), (s5, c4)},
µ1 = {(s2, c3), (s3, c2)}.

Note that ν (µ̂1) = ν (µ̂0) = (1, 1, 1, 2), since at this round s2 and s3
‘exchange’ the seats of their initial endowment schools and thus

the distributional vector does not change. At Step 4, TTC-M goes

to Round 2 because µ̃1 , ∅.
At Step 1 of Round 2, schools c2 and c3 do not have their initial

endowment students. School c2 points to s1 because she is highest
according ≻c2 among the remaining students and allocating her to

c2 from her initial endowment school c1 does not violate distribu-
tional constraints ((1, 1, 1, 2) + χc2 − χc1 = (0, 2, 1, 2) ∈ F ), that is,
she is acceptable for c2 at Round 2. For school c3, however, s1 is not
acceptable because (1, 1, 1, 2)+ χc3 − χc1 = (0, 1, 2, 2) < F due to the

maximum quota of the region containing c3 and c4. On the other

hand, moving a student from c4 to c3 is feasible. Thus, c3 points
to s4 according to ≻c3 . Therefore, G2

is determined as shown in

Figure 1. There are two cycles: (c2, s1, c2) and (c3, s4, c3). At Step 2,

C 2
is {(c2, s1), (s1, c2), (c3, s4), (s4, c3)}. µ̃2 and µ2 are determined as

follows:

µ̃2 = {(s5, c4)},
µ2 = {(s2, c3), (s3, c2), (s1, c2), (s4, c3)}.

Observe that ν (µ̂2) = (0, 2, 2, 1) ∈ F . Note that c2’s decision to give

its right to student s1 is based on the fact that moving s1 from c1
to c2, i.e., (0, 2, 1, 2) is in F . Also, c3’s decision to give the right to

student s4 is based on the fact that moving s4 from c4 to c3, i.e.,
(1, 1, 2, 1) is in F . The fact that merging these moves still gives a

feasible vector is guaranteed by M-convexity, as we show in the

proof of Theorem 5.3. At Step 4, TTC-M goes to Round 3 because

µ̃2 , ∅.

At Step 1 of Round 3, G3
is determined as shown in Figure 1.

Since there is no student acceptable for c2 and c3, these schools
leave the market. There is one cycle: (c4, s5, c4). At Step 2, C 3

is

{(c4, s5), (s5, c4)}. Therefore, µ̃3 and µ3 are determined as follows:

µ̃3 = ∅,
µ3 = {(s2, c3), (s3, c2), (s1, c2), (s4, c3), (s5, c4)}.

At Step 4, TTC-M returns µ3 because µ̃3 = ∅.

We use the following property to prove that TTC-M is feasible.

Lemma 5.2. In TTC-M, for k ≥ 1, if ν (µ̂k ) , ν (µ̂k−1), there exist
some r ≥ 1 and {c̃1,ω(s̃1), . . . , c̃r ,ω(s̃r )} ⊆ Ck such that

ν (µ̂k ) = ν (µ̂k−1) +
r∑

ℓ=1

(χc̃ℓ − χω(s̃ℓ )), (5)

where s̃1, . . . , s̃r are ordered such that s̃1 ≻ · · · ≻ s̃r and c̃1, . . . , c̃r
are ordered such that (c̃ℓ , s̃ℓ) ∈ Ek for all ℓ = 1, . . . , r . Furthermore,
the schools in {c̃1,ω(s̃1), . . . , c̃r ,ω(s̃r )} are distinct, no schools in
{c̃1, . . . , c̃r } have initial endowment students in Sk , and{

ν (µ̂k−1) + χc̃h − χω(s̃ℓ ) ∈ F if h = ℓ
ν (µ̂k−1) + χc̃h − χω(s̃ℓ ) < F if h > ℓ

(h, ℓ ∈ {1, . . . , r }).

(6)

Proof. In TTC-M, the fact that (c, s) ∈ C k
means that “school

c accepts a student (who is pointing to c), while student s moves

from her initial endowment school ω(s) to a school (to which s is
pointing).” Therefore, ν (µ̂k ) can be expressed as:

ν (µ̂k ) = ν (µ̂k−1) +
∑

(c,s)∈C k

(χc − χω(s)).

From this expression, it is clear that having (c, s) ∈ C k
withω(s) = c

does not affect the resulting vector. When ν (µ̂k ) , ν (µ̂k−1), there
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Figure 1: G1, G2 and G3 obtained from Example 1.

exist some r ≥ 1 and {c̃1,ω(s̃1), . . . , c̃r ,ω(s̃r )} ⊆ Ck such that

ν (µ̂k ) =ν (µ̂k−1) +
∑

(c,s)∈C k

(χc − χω(s))

=ν (µ̂k−1) +
∑

(c,s)∈C k , ω(s),c
(χc − χω(s))

=ν (µ̂k−1) +
r∑

ℓ=1

(χc̃ℓ − χω(s̃ℓ )),

where s̃1, . . . , s̃r are ordered such that s̃1 ≻ · · · ≻ s̃r and c̃1, . . . , c̃r
are ordered such that (c̃ℓ , s̃ℓ) ∈ C k

for all ℓ = 1, . . . , r . Next,
we show that the elements in {c̃1,ω(s̃1), . . . , c̃r ,ω(s̃r )} are distinct.
Since each school may receive at most one student in a round, it is

clear that elements in {c̃1, . . . , c̃r } are distinct. Also, it is clear that
elements in {ω(s̃1), . . . ,ω(s̃r )} are distinct, since if ω(s̃i ) = ω(s̃h )
holds where i < h, c̃h should have pointed to s̃i (not s̃h ) according

to ≻c̃h . Furthermore, in Gk
, each school in {c̃1, . . . , c̃r } points to a

student who is not its initial endowment student, while each school

in set {ω(s̃1), . . . ,ω(s̃r )} points to its initial endowment student.

Therefore, all the schools in set {c̃1,ω(s̃1), . . . , c̃r ,ω(s̃r )} are distinct.
Besides, each school in set {c̃1, . . . , c̃r } points to its best acceptable

student according to the common order ≻. Thus (6) holds. □

Now, we are ready to prove TTC-M is feasible.

Theorem 5.3. TTC-M is feasible.

Proof. We show that TTC-M always obtains a school-feasible

and IR outcome. First, we show by induction that µ̂k is school-

feasible for any k . For k = 0, it is clear from the assumption that

µ̂0 = µ̃ is school-feasible. By assuming that ν (µ̂k−1) ∈ F is true

for some k ≥ 1, the induction is completed by showing ν (µ̂k ) ∈ F .
Since ν (µ̂k ) is represented as (5), by (6) and Lemma 4.1, ν (µ̂k ) =
ν (µ̂k−1) +∑r

ℓ=1
(χc̃ℓ − χω(s̃ℓ )) must be in F .

The outcome is IR since (i) each student belongs to a cycle pre-

cisely once, and (ii) a student never points to a school that she

reports to be worse than her initial endowment school. (i) follows

from the definition of TTC-M. (ii) holds because ν (µ̂k )+ χi − χj ∈ F
is satisfied for any k if j = i , that is, as long as a student is in the

market, her initial endowment school remains in the market and

considers her acceptable. □

Next, let us show a lemma related to the following property of

TTC-M, i.e., if student s is unacceptable for school c at round k ,

then s remains unacceptable for c at any round after k . This is a
key property to show SP and PE.

Lemma 5.4. Let s ′ be a student in Sk+1 and c ′ = ω(s ′). For c ∈ C
having no initial endowment students in Sk (c may not be in the
market at round k), if ν (µ̂k−1) + χc − χω(s) < F for all students
s ∈ Sk with s ⪰ s ′ then ν (µ̂k ) + χc − χc ′ < F .

Proof. If ν (µ̂k ) = ν (µ̂k−1) then the assertion obviously holds.

Let us assume that ν (µ̂k ) , ν (µ̂k−1). By Lemma 5.2, there exist some

r ≥ 1 and {c̃1,ω(s̃1), . . . , c̃r ,ω(s̃r )} ⊆ Ck satisfying (5) and (6). We

remark that s ′ ∈ Sk+1 and no student in {s̃1, . . . , s̃r } is included
in Sk+1. We can assume a strict order on {s̃1, . . . , s̃r , s ′} as s̃1 ≻
· · · ≻ s̃p ≻ s ′ ≻ s̃p+1 ≻ · · · ≻ s̃r . According to this order, we con-

sider orders on {c̃1, . . . , c̃r , c} and {ω(s̃1), . . . ,ω(s̃r ),ω(s ′)} as be-
low: c̃1, . . . , c̃p , c, c̃p+1, . . . , c̃r , and ω(s̃1), . . . ,ω(s̃p ),ω(s ′),ω(s̃p+1),
. . . ,ω(s̃r ).

We will apply Lemma 4.2 to the above schools in order to show

the assertion. We have the following properties:

• ν (µ̂k−1) ∈ F by Theorem 5.3,

• {c̃1, . . . , c̃r , c} ∩ {ω(s̃1), . . . ,ω(s̃r ),ω(s ′)} = ∅ by Lemma 5.2,

• {c̃1,ω(s̃1), . . . , c̃r ,ω(s̃r )} satisfies (6) by Lemma 5.2,

• ν (µ̂k−1) + χc − χω(s ′) < F by the hypothesis,

• ν (µ̂k−1)+χc−χω(s̃ℓ ) < F for ℓ ∈ {1, . . . ,p} by the hypothesis,
and

• ν (µ̂k−1) + χc̃h − χω(s ′) < F for h ∈ {p + 1, . . . , r }; since
otherwise, c̃h should have pointed to s ′ (not s̃h ).

From Lemma 4.2 and the above facts, ν (µ̂k ) + χc − χc ′ = ν (µ̂k−1) +∑r
ℓ=1
(χc̃ℓ − χω(s̃ℓ )) + (χc − χω(s ′)) is not contained in F . □

Next, we show TTC-M satisfies SP and PE.

Theorem 5.5. TTC-M is SP.

Proof. We first show the followings:

(i) (s, c) ∈ Ek and s, c ∈ V k+1
imply (s, c) ∈ Ek+1,

(ii) (c, s) ∈ Ek and s ∈ V k+1
imply c ∈ V k+1

and (c, s) ∈ Ek+1,
(iii) (s, c) ∈ Ek , (c, s ′) ∈ Ek , and s ′ ∈ V k+1

imply s ∈ V k+1
.

(i) means that, if (s, c) ∈ Ek holds, i.e., c is the best remaining

school for s at round k , and s and c remain in the market at round

k + 1, then c is still the best one for s at this round. This is true
because the schools that left the market will never come back in a

later round in TTC-M.
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(ii) means that, if s is the highest-ranked acceptable student for c
at round k , then s remains so in the next round, given that s is still in

themarket. To show this, we first observe that ν (µ̂k )+χc−χω(s) ∈ F
holds, that is, s is acceptable for c at k + 1. If ω(s) = c , it obviously
holds. If ω(s) , c , then consider a hypothetical case where c is

the most preferred school of s at round k . This case could have

happened, since the preference of each student is arbitrary. In this

situation, exactly one cycle (c, s, c) is formed at round k in addition

to the cycles formed in the original situation. From Theorem 5.3, the

resulting vector at the end of k in this hypothetical setting should

be feasible, that is, ν (µ̂k ) + χc − χω(s) ∈ F . From this observation,

c has an acceptable student at k + 1 and therefore c ∈ V k+1
. Next,

we show that s remains the highest-ranked acceptable student for

c at k + 1. If ω(s) = c , then it clearly holds. Assume ω(s) , c and

let s ′ be a student in V k+1
with s ′ ≻ s . The fact that (c, s ′) < Ek

implies that ν (µ̂k−1) + χc − χω(s ′) < F . Then from Lemma 5.4 and

ν (µ̂k−1)+ χc − χω(s) ∈ F , it holds that ν (µ̂k )+ χc − χω(s ′) < F , and
thus s ′ is unacceptable for c at round k + 1. Therefore, we have

(c, s) ∈ Ek+1.
(iii) is an elementary property, which is inherited from the stan-

dard TTC mechanism. Assume (s, c) ∈ Ek , (c, s ′) ∈ Ek and student

s leaves the market at round k . Student s leaves the market only

when (s, c) is included in a cycle. If (s, c) is included in a cycle, then

(c, s ′) must be also included in the same cycle. Then, s ′ must leave

the market at round k . Thus, the fact that s ′ remains in the market

implies s also remains in the market.

From (i), (ii) and (iii), for any directed path (c, . . . , s), if (c, . . . , s)
is in Gk

and s ∈ V k+1
, then (c, . . . , s) is also in Gk+1

. This further

implies that once there is a directed path to a student in a round,

it stays in any later round as long as she is in the market. By

construction of TTC-M, a student can obtain a school seat only if

there is a directed path from it to her. Fix s and ≻−s . Let a school
be called obtainable at k if s can obtain its seat by pointing to it

at k , i.e., the schools that are on the directed paths to her in Gk
. It

is now clear that the set of obtainable schools is increasing in k ,
and how the set grows depends only on ≻−s . Since s can obtain

a school seat only from her obtainable schools at a round, what

she can do at best is to choose an obtainable school at the round

when it becomes her best school in the market. Reporting her true

preference ≻s will do the job, and therefore TTC-M is SP. □

Theorem 5.6. TTC-M is PE.

Proof. Suppose we run TTC-M and feasible matching µ is ob-

tained. Take a student who is matched at round r in TTC-M. We

show that she cannot be allocated to a school that is better than her

allocation in µ without making a student who is matched before r
worse off. The proof is done by induction on r .

When r = 1, the statement is trivially true because a matched

student at round 1 is allocated to her top choice.

Assume the supposition is true up to r = k − 1 with k ≥ 2.

Consider r = k and let us define the following notations.

Ik := C \Ck : schools that are not in the market at round k .
Jk := {c | µ̃k−1c , ∅}: a set of schools, each of which has at

least one remaining initial endowment student in the market.

Note that Jk ⊆ Ck holds.

Each ci ∈ C \ Jk is filled with νi (µ̂k−1) = νi (µk−1) students at the
beginning of round k . Without loss of generality, assume Ik , ∅ (if
Ik = ∅, every student matched at k goes to her top choice). Take

student, s , who is matched to school c at round k , and assume c is
not her top choice. Then all the schools that she prefers to c are in

Ik . From Lemma 5.4 and the definitions of Ik and Jk , ∀ci ∈ Ik and

∀c j ∈ Jk , ν (µ̂k−1)+ χi − χj < F holds. Lemma 4.3 then implies that

there is no feasible matching µ ′ such that

∀ci ∈ C \ Jk , νi (µ ′) ≥ νi (µk−1) and ∃ci ∈ Ik , νi (µ ′) > νi (µk−1).

Put differently, for any feasible matching µ ′ with µ ′s ∈ Ik (which

covers all the feasible matchings where the allocation of s is better
than c), at least one of either

∃ci ∈ C \ Jk , νi (µ ′) < νi (µk−1) or νµ′s (µ
′) ≤ νµ′s (µ

k−1)

holds. Whichever is the case, there exists a student who is matched

before k in µ and has a different allocation in µ ′. From the induction

argument, however, such a change necessarily makes someone who

is matched before k worse off. □

Finally, let us examine the time complexity of TTC-M.

Theorem 5.7. The time complexity of TTC-M isO(|S | · |C |) under
the assumption that we can check in O(1) time whether ν ∈ F for an
M-convex set F and a vector ν on C .

Proof. Since there exists at least one cycle in each round, at least

one student in S leaves the market with her allocation. Therefore,

the number of rounds required for TTC-M is at most |S |. Also, for
each round, there are at most |C | students who are able to be a part
of cycles, since each remaining school points to exactly one student,

and finding the cycles can be done inO(|C |). Furthermore, a school

needs to checkwhether a student is acceptable or not. By Lemma 5.4,

when a student becomes unacceptable, she remains unacceptable in

future rounds. Thus, for each school, the cost required for this check

(until the school leaves the market) isO(|S |). Thus, the overall time

complexity is O(|S | · |C |). □

6 CONCLUSIONS
In this paper, we considered an allocation problem of multiple types

objects to agents, where each type of an object has multiple copies,

each agent is endowed with an object, and some distributional

constraints are imposed on the allocation. A representative appli-

cation domain of this setting is a school choice problem, in which

each student has a right to attend her nearby school (and moves

to another school only if she prefers it over her default school),

while some distributional constraints, such as minimum/maximum

quotas in regions must be satisfied for schools to operate. We de-

veloped a mechanism called TTC-M, which is feasible, SP, and PE

when distributional constraints are represented as an M-convex set.

Our future works include developing mechanisms that can work

for class of constraints that is broader than M-convex sets (with

weaker efficiency conditions).
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