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ABSTRACT
Human technical support agents spend significant time interacting
with customers via various channels of voice, email and chat. There
is a massive incentive to automate support with autonomous agents
with the goal of reducing manual effort and time taken for problem
resolution. As technical support questions are complex and diverse,
building a generic agent capable of solving multiple domains is
implausible. In this paper, we describe a scalable conversational
framework that automates the process of guided troubleshooting
called COBOTS (COgnitive BOts for Technical Support). Our under-
lying premise is that scalability in such frameworks can be achieved
by control and co-ordination across multiple domain expert bots.
These bots co-ordinate to (a) understand user problems from nat-
ural language queries (b) engage in conversation and (c) provide
assistance with troubleshooting. All of the above is done with min-
imum human assistance. COBOTS framework comprises of User
Bots that monitor customer infrastructure for issues, the Orchestra-
tor bot which co-ordinates and controls various request-response
pairs and Domain Expert bots which handle issues pertaining to
their domains, respectively. In a real environment, we have de-
ployed an implementation of our COBOTS framework which can
co-ordinate and control user queries across 11 different technical
support domains. When evaluated by two different teams of expert
support users, it was observed that more than 75% of the time our
application was able to provide relevant solutions for their queries.
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Figure 1: Conversation framework

1 INTRODUCTION
Guided troubleshooting in technical support is the process of assist-
ing customers with step-by-step troubleshooting of their problems.
Questions in this domain tend to be complex. Consider a sample
query in this domain: SRC 2b4c8009 failed cache battery. On dc01 dc03
will fail in 123 days. Please replace both. It contains the attributes
of symptom:"failed cache battery", error code:"2b4c8008" and in-
tent:"please replace both". The solution to this problem comprises
of multiple steps of validating the error, finding the root cause and
executing a fix. Guided troubleshooting through a conversational
interface entails automated understanding of the question and its
attributes, deciding the next course of action and creating automatic
responses for them.

Companies have found conversation as a new and engaging
means to connect to their users [4, 25].Most of the existing bot
frameworks [8, 10, 26] contain natural language interfaces that can
be plugged in with existing applications enabling them to be conver-
sational. Even in the guided troubleshooting space, conversational
bot frameworks like Amelia [7] and Robotic automation [13] have
been around for a few years now. Each one of these conversational
systems at a high level comprises of the main components of natural
language understanding, personalization and retrieval mechanisms
from one or more knowledge repositories as shown in Figure 1

However for technical support, seamless scaling of conversa-
tional systems across multiple domains becomes a very important
need. A significant amount of manual work is needed in creating
conversation flows in these solutions and repeating the manual
work for multiple domains does not scale. Hence, automatically
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extracting domain knowledge and representing them in a suitable
way to create conversational flows automatically is an interesting
research problem.In this paper we present COBOTS, a multi-bot
framework for technical support that leverages interactions and co-
ordination among several bots to achieve complex tasks in guided
troubleshooting. The main contribution of our work is to create
this as a scalable and repeatable architecture across thousands of
technical support products and services.

The rest of the paper is organized as follows: Section 2 presents
some related work and a brief background of the various conversa-
tional frameworks. Section 3 describes our system architecture. In
Section 4, 5, and 6, we discuss our three bots i.e User Bot, Orches-
trator bot, and Domain Expert bot in detail. Section 7, we briefly
describe the way COBOTS framework is implemented. Section 8
shows the experiments done to test the COBOTS framework with
help of expert agents. Section 9 concludes the work done in the
paper and highlights the scope for future work.

2 BACKGROUND AND RELATEDWORK
Conversational bots have their origin dated back to the 1960’s with
the famous ELIZA bot [29] built by Joseph Weizenbaum, gener-
ated responses based on simple keyword matching rules. Following
decades saw several attempts to build chat bots with more sophisti-
cated bot architectures like MegaHAL [10] (Using Hidden Markov
Models), CONVERSE system [3], ELIZABETH [24]. The A.L.I.C.E
(Artificial Linguistic Internet Computer Entity) or Alice bot [26]
is another famous patterns-based system by Wallace that involves
building intelligent bots using rules defined using the Artificial
Intelligence Mark-up Language (AIML).

Though building conversational systems for technical support
can be highly advantageous, it consists of some challenging prob-
lems like multitude of problem categories, identifying actual root
cause from vague user inputs, technical complexity of the inher-
ent issues and limited knowledge of customers on those issues [1].
There have been a plethora of conversational platforms and systems
like IPSoft’s Amelia [7], Api.ai , Microsoft’s Language Understand-
ing Intelligent Service (LUIS) , Wit.ai etc., in the recent years but
none of them is known to comprise or discuss a similar scalable,
multi-bot framework for technical support as discussed in the cur-
rent work.

The spoken language research community refer these conversa-
tional bots as Dialog Systems and the early research dates back to
late 1990s when Dialog Systems [16] and Dialog modules [2] were
introduced to generalize conversational flows and re-usability of
dialog components. The current research in Dialog systems can be
broadly categorized into three main streams - Natural Language
Understanding (NLU), Dialog Management (DM) and Natural Lan-
guage Generation (NLG) [20].

Natural Language Understanding refers to analyzing user in-
put and producing a representation of its meaning which can be
used by the Dialog Management module. NLU includes identify-
ing the domain of the utterance and categorizing the user intent.
There have been earlier work on categorizing intents as Topics in
Customer Service Domain[23].In addition to intent categorization,
systems use several approaches to obtain the semantic represen-
tation of the input. Some of the techniques involve Syntax-driven

Figure 2: System Architecture

methods which are language-specific e.g. The Phoenix System[27],
Statistical and Machine Learning based methods including the re-
cent Deep Learning based ones [9],[15],[17],[6],[21]. Our proposed
architecture has capabilities to extract relevant entities such as
symptom, intent etc. using Watson Deep parsing [19]. Dialog man-
agement is achieved using state-less, context-based traversals over
the Knowledge Graphs and the dialog authoring capabilities serve
in automatic response generation.

3 SYSTEM ARCHITECTURE
In this section, we explain the overall architecture of our conver-
sational framework. The three main actors of our framework are
User Bots, the Orchestrator Bot, and Domain Expert Bots. User Bots
are deployed at customer sites for monitoring one or more user
services. A conversation in COBOTS could be triggered by either
a user coming to the platform with a problem or a User Bot when
it encounters some error event. The Orchestrator bot acts as the
front-end to User Bots or to users for understanding their queries,
specified in natural language, and provide a relevant answer. The
Domain Expert bot handles domain specific user queries using its
Knowledge Graph (KG), passed to it by the Orchestrator bot, to
provide a relevant solution. Figure 2 shows the sequence of actions
that gets triggered in case of a problem resolution.

(1) User Authentication/Registration: On receiving a user query,
the Orchestrator bot at first authenticates the user and asks
for a new sign-in if not already registered. Once authen-
ticated, question analysis is performed to: (a) identify the
domain which the question belongs to and (b) understand
the problem being faced by the user.

(2) Domain Identification: The Orchestrator bot identifies the
domain either from the user query or from the past interac-
tions saved in the user database, making the service truly
personalized. Further details are explained in the Section 5.

(3) Entity and Problem Extraction: The next step of the Orches-
trator bot is to determine what the user is asking for i.e
intent and what are the key entities being talked about in
the user query as shown in the Table 1 . We consider these
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entities and intent as enriched data along with the original
user query.

(4) Query Routing: Based on the query and the extracted at-
tributes, the Orchestrator bot routes the query either to its
own Information Retrieval (IR) engine or to a domain spe-
cific bot if the query is generic troubleshooting or specific to
a domain respectively. Generic Troubleshooting query:
Queries with low classification scores across all domains are
considered as generic troubleshooting queries. The Orches-
trator bot handles these queries by passing them to its own IR
engine and depending upon the attributes and user query, it
provides with relevant solution URLs. Redirect to Domain
Expert: For the domain specific queries, the Orchestrator
bot initiates the conversation with the corresponding Do-
main Expert bot by forwarding the user query along with
the enriched data.

(5) Answer ExtractionWhen a Domain Expert bot receives the
user query from the Orchestrator bot, its corresponding
knowledge graph is traversed, using the query and the en-
riched data, and a particular node (nodeMatch) matching
the user query is highlighted. The Domain Expert bot asks
the next question based on the child nodes of the node
nodeMatch as show in the Figure 4. Conversation between
the Orchestrator bot and the Domain Expert bot is reasoned
around its domain-specific knowledge graph. User or the
User Bot shares the necessary details, with the Domain Ex-
pert bot, through the Orchestrator bot. The Domain Expert
bot either answers using its knowledge graph or in some
cases uses its IR engine to provide the relevant response.

(6) Graceful Handing-off to a human agent: Due to dynamic na-
ture of the dialog, it is possible that neither the Orchestrator
bot’s IR engine nor the Domain Expert bot is able to resolve
the user query. In such cases, the Orchestrator bot redirects
the query to a human agent. The human agent takes over
from there and provide a solution to the user query. The chat
session between the user and the expert is saved and can be
used for future analysis.

(7) Forward the response to the user: Orchestrator bot collects
the response from its IR engine or the Domain Expert bot or
at times from the human agent and forwards it to the user
or her bot.

Note that one of themainmotivations of the COBOTS framework
is to abstract out all the bot-to-bot conversational complexities from
the user and to provide a seamless conversational experience. The
user is totally unaware of the presence of multiple bots behind and
the numerous back and forth messaging between the Orchestrator
and Domain Expert bots. Whether it is the interaction of a customer
with the Orchestrator bot or a conversation initiated by the Or-
chestrator bot with a Domain Expert bot, a seamless conversation
is provided across all channels by the COBOTS framework. The
co-ordinated control and hand-off between the Orchestrator and
the Domain Expert bots help COBOTS scale up to multiple domains
without affecting rest of the conversation flow. Using automatically
extracted knowledge graphs to drive the conversation helps reduce
manual work in creating these multi-domain solutions.

Next, we explain the functionality of each of the three actor bots
in detail.

4 USER BOT
With the large number of systems that are operational in today’s
top business organizations, problems may go unnoticed until multi-
ple issues arise. A combination of issues in a large environment can
result in either data loss or system downtime. In such scenarios,
Call Home [22] like continuous monitoring systems are designed
to increase system availability by providing round-the-clock moni-
toring of the underlying infrastructure. We model User Bots after
the Call Home capability, such that they pro-actively monitor users
infrastructure. On detecting issues in the system like slow perfor-
mance, disk failure etc., the user bot determines the problem sever-
ity, collects contextual information (like operating system details,
machine type, machine model, patch levels, memory and processor
foot prints, etc.), collects logs for all contextual information and
automatically triggers a chat session with the Orchestrator bot. It
share evidences for the errors observed, contextual details collected
and if required can also upload error logs. On receiving a resolution
from the Orchestrator bot, the User bot applies the recommended
solution, validates the success or failure of the solution, notifies
the Orchestrator bot on the outcome (for continuous learning if
the resolution was successful) or for the next course of action (if
failure occurred). The User Bot also notifies the customer via email
regarding the issue and the subsequent steps taken so far.

5 ORCHESTRATOR BOT
The Orchestrator bot has the capability of understanding the natu-
ral language user query and to provide a relevant response to user
either from a Domain Expert bot or from its own IR engine. Based
on the input query, it tries to identify the user’s intent, key entities
being talked about and the domain which the query belongs to.
The domain prediction is achieved using trained Machine Learning
models for each of the existing domains. Once an input query is
categorized to its most likely domain category, the Orchestrator
initiates a conversation with the corresponding Domain Expert bot.
For example the Domain Expert bot could also request for additional
details like log files, hardware details etc. In that case the Orchestra-
tor Bot sends back these requests to the User Bot/user, collects their
inputs and forwards them to the appropriate Domain Expert bot.
In cases where the initial domain gets wrongly categorized and the
corresponding Domain Expert bot declines to handles such queries,
the Orchestrator bot forwards the query to the next most likely
Domain Expert bot based on the domain prediction score. It is also
capable of handling generic troubleshooting questions for which
it uses its own IR engine to provide a relevant response. Two key
components of this bot are Question Analysis and Personalization.
Next, we explain each of these components in detail.

5.1 Question Analysis
The first stage of processing in the COBOTS framework is to per-
form a detailed analysis of the support question in order to deter-
mine the problem being faced by the user (symptom), what the user
is asking for intent and what are the key entities or words from
the user message such that the words describe the component of

Session 14: Industrial Applications AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

599



Table 1: Examples of Question Analysis

Original Query Entities Extracted Domain Intent

I am facing an issue with my tape drive. would like to know how can I get it replaced. Tape drive Power issue with tape drive. replace it
please ship a replacement part for a failed 600 gb sata disk drive (fru 00l4521). no CE is required Disk Drive STORWIZE failed disk drive. ship a replacement

how do i fix windows memory utilization issues windows, memory utilization Generic memory utilization issues
add 2GB of memory to the server id3434 2GB, memory, server id3434 Transaction memory update

Figure 3: Illustration of Question Analysis and Personaliza-
tion of User query

concern to the user (entity). Since the Knowledge Graph for differ-
ent domains are also rooted at entities for that domain, extracting
entities is the first step of our question analysis pipeline.

We use IBM Watson’s parsing and semantic analysis capabilities
for linguistic analysis of text in the user query [14] to extract user’s
intent, symptom and entity. There are several natural language
parsers that allow tokenization and POS tagging. Some also provide
a simple description of the grammatical relations in a sentence, but
this is not sufficient as technical support questions especially the
ones that are pertainable to guided troubleshooting are complex
from the point of understanding. Watson uses two deep parsing
components: English Slot Grammar (ESG) followed by Predicate
Argument Structure (PAS) for linguistic analysis of text [18]. This
helps in automatically extracting the attributes from the complex
and diverse user queries. Table 1 shows the extractions from the
actual support queries from various domains. Figure 3 (Step A:
Question Analysis) shows that for a given user query SRC 2B4C8009
failed cache battery. On dc01 dc03 will fail in 123 days. Please replace
both., the deep parser module extracts the entity cache battery, the
symptom SR 2b4c8009 failed and the intent please replace both. When
the Orchestrator bot forwards the user query to the Domain Expert
bot, then these attributes are used by the Domain Expert bot to
traverse the knowledge graph.

5.2 Personalization
Personalized support for users becomes even more important, when
users work on time constrained, dynamic service-oriented environ-
ment. As technical support questions are complex and diverse, it is
important to save user profile so that it can be used in solving future
problems. Personalization acts as an enrichment layer which helps
in identifying the domain which the user query belongs to and also

Figure 4: Illustration of the Domain Expert Bot’s query han-
dling

helps in reducing the dialog between the user and the Orchestrator
bot by extracting the information from the past problems.

Once the user’s intent, symptom and entities are correctly identi-
fied from the query, the Orchestrator bot then tries to identify the
domain from the current query itself or from the past conversations
stored in user database. For example, user query shown in Figure 3
has no information regarding the product or the domain the query
belongs to. In this case, the Orchestrator bot queries the user data-
base to extract the details of the user and identifies that the user is
registered with Power system machines (Step B:Personalization in
Figure 3). It is possible that the same user is registered with multiple
domains or a single domain has multiple systems. In such cases,
the Orchestrator bot shows the list of domains/systems with which
the user is registered and asks the user to confirm the details (Step
C:in Figure 3). In case the user specifies a new domain or system,
the Orchestrator bot updates the user details for future reference.
Orchestrator bot takes these attributes entity, symptom, intent and
domain and forwards them along with user query to the Power
Domain Expert bot for further analysis (Step D: in Figure 3).

Once the current issue is resolved by the Domain Expert bot, the
Orchestrator bot updates the details regarding the issue in the user
database. In case of a recurring issue, the Orchestrator bot along
with the new query and attributes, also forwards the similar past
issues to the Domain Expert bot enabling it to do a detailed analysis
and provide a better resolution.

6 DOMAIN EXPERT BOT
The Domain Expert Bots are considered to be expert agents capable
of handling issues related to part replacement, firmware update, ser-
vice pack installation, configuration of the site, log file analysis, etc.
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They interact only with the Orchestrator bot and COBOTS frame-
work ensures seamless interactions between Orchestrator bot and
the multiple Domain Expert bots such that the user may not even
know about the existence of the latter. Triggering of the Domain
Expert happens when it receives a message from the Orchestrator
asking it to handle a user query in its domain. The domain bot then
uses both the KG and IR engine to handle a user query. Multiple
interactions with the user (via the Orchestrator bot) is performed
on the KG to return an answer. If a relevant response cannot be
provided to the user based on the KG, the domain expert fires a
search query to its IR engine.

An example shown in the Figure 4 (Step A), illustrates a case
where the Orchestrator bot forwards the user request to Power
Expert bot along with the attributes. The message send to the
expert bot contains the user query, entity, symptom, intent, and
if possible machine model details. The attribute extractions are
mapped to the Power Expert bot’s KG [11] (Step B:Figure 4). Power
Bot understands that the problem is related to cache battery, it
has failed and the user wants to get the cache battery replaced.
But before going forward with the replacement, Power expert bot
asks for log files from the user so that it can diagnose the problem
properly and see whether actually the replacement is required or
there is some other issue(Step C:Figure 4). From the knowledge
graph shown in Figure 4, we can see if the cache battery fails
then one needs to analyze the log file based on which one of the
following actions reconfiguring the cache battery, check the power
supply cable, replace the cache battery, etc can be performed. To
understand which node to follow next, Power Expert bot collects
evidences from the log files and then continues the conversation
with user. In this case, Power Expert bot decides that the cache
battery needs to be shipped at the customer’s site (Step D:Figure 4).
Even though an explicit intent (replace cache battery) was specified
by the user, then also the bot follows the complete path to reach
the intent node in the knowledge graph and then provide a relevant
resolution. The two key building blocks of the Domain Expert bot
are the knowledge represented in the form of a graph and the dialog
flow which gets created using its instances.

6.1 Knowledge Representation
Every Domain Expert bot relies on a Knowledge Graph (KG) built
from its domain knowledge sources and historical ticket data. At-
tributes extracted from user inputs are used by the Domain Expert
Bot for traversing its KG to provide the relevant solution. Instances
in the KG follow a modified version of the Common Data Model
(CDM) ontology [5] for service management. An excerpt from the
ontology and a few instances for the IBM Power Systems [11] are
presented in Figure 5. The ontology connects entities in the domain
(like cache battery) to Symptoms that it can exhibit, via the exhibits
relation, and Intents that can be executed on it, via the has_task rela-
tion. Intents are connected to Symptoms that they treat or mitigate
via the treats relation. Finally, Intents are connected to Solution via
the has_solution relation. Solutions contains the steps/procedure to
perform a task

Instances for the Knowledge Graph are extracted from knowl-
edge sources and historical ticket data leveraging themodels created

Figure 5: Sample Ontology and Knowledge Graph instances
for Technical Support

for question analysis. Existing hierarchical structure in the knowl-
edge sources, like Knowledge Center documents for IBM Power
Systems, are also useful for extracting instances.

6.2 Dialog Authoring
Domain Expert Bots might need multiple interactions with the user
(via the Orchestrator bot) to reach a resolution. This interaction re-
quires the Domain Expert Bots to converse based on the instances
of the Knowledge Graph for their domains. We use Watson As-
sistant [28] from IBM as our dialog manager. Watson Assistant,
formerly known as Watson Conversation Service is a cloud-based
dialog management service for creating chat bots using IBM Wat-
son’s state-of-the-art conversational framework. A typical Watson
Assistant workspace requires hand-coding of the dialog flow and its
related components. Hence its a completely human intensive task.
But in our approach, based on our domain-specific KGs, we gener-
ate Watson Assistant workspace JSON files corresponding to each
domain automatically and link them to our master workspace. So,
the generated conversation workspace acts as the dialog manager
and acts as the backbone of our conversational flow. Figure 6 shows
a snapshot of the automatically generated conversation flow for
the Storwize product of IBM. The Storwize workspace is generated
from its KG, which in turn is generated from the Knowledge Center
pages on Storwize[12].

Nodes in the conversation flow roughly correspond to nodes in
the Knowledge Graph, with the extractions from user responses
being compared to the value of the Knowledge Graph node. For
example, the extraction failed disk drive from the question might
match the KG node failed drive. The comparisons are done with
a fuzzy match instead of an exact match, to account for various
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Figure 6: Excerpt of the automatically generatedWatson As-
sistant conversation flow

ground forms that can appear in user questions. There are a few
extra nodes to confirm the matches performed. The response gener-
ated from the bot is stored within each node, and is returned back
when traversal reaches that node.

7 COBOTS IMPLEMENTATION
In this section, we describe the current implementation of COBOTS.
One underlying premise is that scalability in such frameworks
can be achieved by control and co-ordination across multiple bots.
The current implementation is based on the architecture shown
in Figure 2. The framework is implemented in Java with Watson
Assistant[28] as dialog framework and Slack being conversational
front-end using the SimpleSlack API . Though Slack was just a
medium of choice, our framework can be realized using any other
chat platforms like Facebook Messenger, Twitter, etc.

In the current implementation, every bot possesses three main
events-based functionalities - Hears, Speaks and Brain. Hears event
fires when there is an input from a user or from any other bots. We
were able to achieve the Bot-to-Bot communication via Slack Chan-
nels. Every bot listens to any Direct Message or to any new group
message in its enrolled channels. In addition to textual messages,
Hears event gets triggered on file uploads. Speaks event gets trig-
gered whenever a bot needs to send response to the messaged user
or bot in the respective channel in the form of text or file output.
Brain method is responsible for executing the business logic corre-
sponding to the current input and context. The main functionalities
of intent classification, question analysis, dialog management and
dialog authoring etc. get triggered from this method. In our system,
we support seamless interactions between the Orchestrator bot and
11 different Domain Expert bots via 11 different Slack channels. A
key advantage in our framework is the plug-and-play nature of
adding new Domain Expert bots. We have worked with several
technical teams with their own domain based services and have
plugged them in as Domain Expert bots in the system. Some of
these Domain Experts include bots for IBM Power systems, IBM
Storage, Network and Middleware etc.

Figure 7: The COBOTS Implementation

In a real-time environment, we have deployed our current im-
plementation of the COBOTS framework as part of the IBM’s first
Cognitive Services Platform1 this year.

8 CASE STUDIES
This section presents the case studies done with two domains of
server and storage. We picked the domains which were complex
and had about thousands of tickets every year. The main objective
of this evaluation was to measure the performance of the major
components of our framework.

8.1 Case Study on Server Domain Tickets
Weperformed an end-to-end evaluation of our implemented COBOTS
framework on the tickets data from IBM Power Series servers in
terms of its ability to handle direct questions that can be handled
with domain-specific rules and more complex open-ended ques-
tions. IBM Power Series tickets are maintained across two different
ticketing systems namely RETAIN and RCMS by IBM. IBM Storage
and Server businesses each have a footprint of 4-5K customers in
North America across 30K locations. The total number of tickets
considered, and the number of tickets handled by the different
components of the COBOTS framework are detailed in the Table 2.
Human evaluation was performed 2 by a team of 20 human experts
evaluation belonging to the IBM Power domain. Overall, 73% of
the IBM Power tickets were either resolved or received relevant
solution from COBOTS. It can be noted that around 42% of the
tickets hit the IR engine of the Orchestrator bot. Hence we decided
to perform a separate evaluation of the Orchestrator bot’s IR en-
gine performance. The details of the evaluation are explained in
the Section 8.3.

8.2 Case Study on Storage Domain Tickets
Similar to our analysis of our system’s performance on IBM Power
domain, we evaluated our system’s efficacy on IBM Storwize as
our next case study. In IBM Storwize domain, queries requesting
for new part replacements were considered as our target category.
Based on our numbers gathered, 30% of 7000 tickets in a month fall
under the partreplacement category. From this set of 2100 tickets,
1http://www-03.ibm.com/press/us/en/pressrelease/52781.wss
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Table 2: Server Domain Tickets Evaluation Results

Criteria Count of tickets
(a) Total number of tickets considered 23916

(b) Number of tickets with relevant resolution based on domain-specific rules 9524 (40%)
(b1) Number of tickets where logs were required by the Domain Expert bot 1859/9524 (8%)

(b2) Number of tickets handled by the Orchestrator bot based on the previous history 7665/9524 (32%)
(c) Number of tickets enriched and sent to human agents for further analysis 8009 (34%)
(c1) Number of tickets resolved using the IR engine of the Domain Expert bot 4269/8009 (18%)

(c2) Number of tickets where the Orchestrator bot returned a valid link 3740/8009 (16%)
(d) How many where handled by the IR Engine of the Orchestrator bot 10123 (42%)

Table 3: Storage Domain Tickets Evaluation Results

Criteria Count of tickets
(a) Total number of tickets considered 7000

(b) Number of tickets belonging to partreplacement category 2100 (30%)
(c) Number of tickets considered for manual evaluation by experts 900/2100

(d) Number of tickets marked as either resolved or relevant by experts 695/900 (77%)

we evaluated a sample of 900 tickets by a team of experts from
the IBM Storwize domain. We found that 695 tickets (77%) were
marked as either resolved or relevant solution was provided by our
COBOTS framework.

8.3 Case Study on the Orchestrator Bot’s IR
Engine Performance

We evaluated COBOTS system through two experiments both tar-
geting IT Service Management domain. In the first experiment, 21
technical services architects with expertise in various IT Service
Management sub-domains (such as Storage, Networking, Database
etc) asked COBOTS system a total of 202 questions. These archi-
tects evaluated each of the 662 responses suggested by COBOTS
on a scale of "Resolved" - meaning the suggestion contained the
expected answer, "Contributed" - meaning the suggestion had some
useful information contained but not the complete solution, and
"Not Related" - meaning the suggestion was not useful at all. If
one of the top 3 suggestions to each question was rated either "Re-
solved" or "Contributed", we considered that question to have a
good answer. We chose this evaluation metric over others such
as Normalized Discounted Cumulative Gain due to its simplicity.
Using this evaluation metric, 141 out of the 202 questions had at
least one good answers in top 3 resulting in an overall accuracy of
70%. Further, 85 questions (42%) had one answer with a Resolved
rating. Figure 8 shows the overall accuracy by topics.

The results also indicated that 37 questions had their intent mis-
classified and hence no answers were returned. This substantiates
our need to attain scalability across multiple domains with this
multi-bot framework. Via co-ordinated control and hand-off we
are able to handle multiple domains with low error (37 out of 202
questions ~18% error) in accuracy. However we are still working

Figure 8: Accuracy of the system by topics

on further improvements for increasing the accuracy of domain
understanding.

We also recognized the need to improve content/content cov-
erage. For about 24 questions (~11%), these had no good answers
specially for two categories Cloud and MigrationT&T.

In the second experiment, sample questions came from a set of
ground truth question-answer pairs prepared for a service desk
virtual agent targeted to the sub-domain of a popular email client.
A total of 148 unique questions were presented to the COBOTS
system, and the resulting 732 suggestions were evaluated in the
same manner as before (here the suggestion was rated "Resolved"
if it contained the same information as the original answer from
the ground truth data). The COBOTS system achieved an accuracy
of 81% (120 out of 148 questions had a good answer), with 76% (112
out of 148) questions having a Resolved answer.
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9 CONCLUSION AND FUTUREWORK
In this paper, we have presented a scalable, multi-bot framework to
build conversational systems for technical support by leveraging
interactions and co-ordination between bots to automate the pro-
cess of guided troubleshooting. Going forward, we can group the
current limitations of our system and future work in four directions
- 1. Improving the intent categorization accuracy 2. Improving the
content coverage for some of the specific topics 3. Currently the
queries handed off to human agents by the system are just saved
as chat sessions. As our next extension, we plan to mine these chat
session to derive new insights on specific topics and issues. 4. We
also plan to work on generating personalized responses by analyz-
ing the current tone and emotion of user to make it further more
human like interaction.
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