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ABSTRACT
We investigate the problem of finding a revenue-optimal auction

with correlated bidders. We give an algorithm for the exact solu-

tion for two bidders, and for a
5

3
-approximation for many bidders,

improving from O(n6) runtime to O(n3) for both problems by ex-

ploiting structural properties of this problem directly. We show

that for correlated bidders, reverse auctions behave differently from

auctions. For two bidders we discuss a constant-factor reduction in

complexity. For k ≥ 3 bidders, we show that the optimal reverse

auction must sometimes buy k copies of the item.
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1 INTRODUCTION
Within mechanism design, auctions are a major field of interest [12–

14]. In this, we consider a single auctioneer who wants to sell an

item to one of several bidders, each of whom has a private valuation

for the item which the auctioneer does not know. The challenge is

to allocate the item according to some measure of optimality based

on the private valuations. In addition to social welfare optimisation,

in which we aim to allocate the item to the bidder who values it

most, revenue maximisation (where we aim to maximise the auc-

tioneer’s expected profit) has received major attention. Myerson’s

seminal result [20] showed that with independent priors, (revenue-)

optimal single-item auctions have a closed-form solution: In the

deterministic case, in which we are solely interested here, the item

is sold to the bidder with the highest “virtual valuation” and their

payment is their critical bid. This also gives the more general the-

ory: For a specific kind of “truthful” allocation functions together

with uniquely determined payments, bidders are incentivised to

reveal their true valuations to the auctioneer. We may therefore

regard the problem as one of finding allocation functions that sat-

isfy this truthfulness constraint. For correlated priors, in contrast

to the aforementioned independent-priors setting, this is an intri-

cate computational problem. The case with three or more bidders

has been shown to be intractable by Papadimitriou and Pierrakos

[22]; but on the other hand both [22] as well as Dobzinski et al. [8]

show that the optimal auction for two bidders can be computed in
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polynomial time; both approaches reduce the problem to generic

known-polynomial problems.

In addition to selling an item, auctions may also be used by

the auctioneer to buy an item or service from one of multiple

sellers. These “reverse” or “procurement” auctions are widely used

for instance to solicit bids for public projects. Many results from

auctions carry over directly to the reverse auction case. For instance,

the VCGmechanism for optimising social welfare works in a reverse

auction, as do many other auction formats. So much do these cases

appear to be mirror images of one another, that simple reverse

counterparts of single-item auctions are rarely discussed explicitly

in the literature; most of the published results on reverse auctions

investigate more complex scenarios such as differing quality or

service levels from different sellers. To our knowledge, a significant

distinction between an auction and its direct reverse counterpart

has not been discussed in the literature before.

Our main interest being in exploring the structural properties of

correlated auctions further. For the two-bidder auction, this allows

us to construct a O(n3) algorithm, which improves on O(n6) of
previous approaches. Ours is the first algorithm to exploit directly

structural properties of the problem. For reverse auctions, we show

that these behave differently than auctions, for any number of

bidders; this raises interesting questions about their complexity.

1.1 Previous Work
For a single-item auction with bidders’ valuations drawn from

independent distributions, Myerson [20] shows that maximising

revenue is equivalent to maximising virtual welfare. Several varia-

tions of optimal correlated auctions have been investigated. Most

relevant to our discussion is the literature on the complexity of op-

timal correlated auctions in which the joint prior is given explicitly

or as an oracle. Papadimitriou and Pierrakos [22] show that for two

bidders, a (revenue-) optimal auction can be found in polynomial

time. Their algorithm reduces the problem to finding a maximum-

weight independent set on a bipartite graph, with edges encoding

allocation constraints of the auction. This yields an algorithm that

runs in time O(n6) for prior support size n2 (each bidder’s valu-

ation taking one of n discrete values). For three or more bidders

they show that it is NP-hard to approximate the optimal auction

to within a factor of 1.0005. Dobzinski et al. [8] independently

also give a polynomial algorithm for the two-bidder auction. They

show that a truthful-in-expectation mechanism found via an LP

can be derandomised. The runtime of this approach depends on

the LP-solver chosen; standard interior point methods give O(n7).
Furthermore they investigate k-lookahead auctions, in which an
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optimal auction is run on the highest k bidders’ conditional dis-

tribution. They show that a polynomial-time algorithm for two

bidders extends to a polynomial-time approximation algorithm for

many bidders through the 2-lookahead auction. This builds on pre-

vious work by Ronen [23] and Ronen and Saberi [24]. Chen et al.

[2] investigate the approximation ratio of the k-lookahead auction

further. Caragiannis et al. [1] improve results by [8] on separation

between deterministic vs. randomised expected revenue, and on

the lower bound on the approximation ratio for the three-bidder

auction by [22]. Diakonikolas et al. [7] show that an approximate

trade-off between revenue and social welfare can be computed

efficiently for two bidders. Esö [9] investigate optimal auctions

for risk-averse buyers and sellers. A related setting with interde-

pendent values has been investigated by several authors, see for

instance [4, 15, 17]. Crémer and McLean [5, 6] discuss conditions

for full surplus extraction with interim individual rationality. A

similar line of inquiry to [8, 22] was pursued by Gerstgrasser et

al. [10] for the setting of market intermediation with correlated

priors, showing a polynomial-time algorithm for two bidders, and

NP-hardness for one variant involving three bidders. Sections 3.2

and 3.3 in this paper are an extension of the results therein. In all

these, as well as this paper, the focus is mainly on deterministic

mechanisms, as [8] show that the randomised case is easy.

Most of the literature on reverse or procurement auctions specif-

ically seem to focus on more complex settings than the ones we

are interested in. One major area of research is when sellers offer

goods of differing qualities, see for instance Manelli and Vincent

[16]. Chapter 13.5 by Hartline and Karlin [11] in Nisan et al. [21]

discuss feasibility constraints in reverse auctions. Several chapters

in the same book briefly mention that they consider reverse auc-

tions to be covered by the model they use or similar, e.g. pages

220, 269, 332 therein [21]. To the best of our knowledge, almost no

literature looks specifically at the simple reverse auction setting

we are interested in. The main exception to this we are aware of

is a paper by Minooei and Swamy [18, 19], who discuss the more

general setting of mechanism design for covering (as opposed to

packing) problems. Conitzer and Sandholm [3] discuss collusion in

combinatorial auctions and reverse auctions. They take the reverse

setting to be a simple parallel of the forward case (as we do here),

except for an explicit constraint on allowed allocations (in their case,

for the VCG mechanism) which we also assume in this paper. They

consider among other results the complexity of computing whether

collusion is possible in a (forward or reverse) auction, showing that

this is NP-hard even for 2 colluders.

2 PRELIMINARIES
We consider a single-item auction, in which an auctioneer wishes

to sell one item to one of several bidders, numbered 1, . . . , k . We

assume each bidder i has valuationvi , which can take one of several
discrete values. For ease of notation we take vi ∈ {1, . . . ,n} = [n];
it is easily checked that none of our results depend on this. Let F de-

note the (joint) prior probability distribution over v = (v1, . . . ,vk ).
Our interest is only in deterministic mechanisms, which consist of

allocation functions xi (v) together with payment functions pi (v)
for each bidder. Let xi (v) = 1 if bidder i wins the item given bid vec-

tor v, and xi (v) = 0 otherwise. Given that we assume the auctioneer

only has a single copy of the item to sell, we require

∑
i xi (v) ≤ 1

for all v. We assume quasilinear utilities, and require the usual

notions of truthfulness / DSIC and individual rationality, as defined

formally below. We therefore can assume that players’ bids are

equal to their valuations. The auctioneer’s aim will be to maximise

their expected revenue E [pi (v)].

(Utilities) ui (v) = vixi (v) − pi (v) (1a)

(DSIC) vixi (v) − pi (v) ≥ vixi (v
′
i , v−i ) − pi (v

′
i , v−i ) ∀i, v,v ′

i
(1b)

(IR) ui (v) ≥ 0 ∀i, v
(1c)

(1-item)

∑
i
xi (v) ≤ 1 ∀v

(1d)

By Myerson [20], truthfulness in this domain for deterministic

mechanisms is equivalent to monotone allocations, and the corre-

sponding uniquely determined payments - the winner’s critical bid.

That is, if bidder i wins the auction given bid profile v, then they

also win the auction for bid profile (v ′
i , v−i ), for any v

′
i > vi ; and

their payment will be the smallest v ′
i ≤ vi such that they would

still win the auction given bid profile (v ′
i , v−i ). If bidder i does not

win they pay nothing (by IR (1c)).

xi (v) = 1 ⇒ ∀v ′
i ≥ vi : xi (v

′
i , v−i ) = 1

(2a)

pi (v) = min

{
v ′
i : xi (v

′
i , v−i ) = 1

}
if xi (v) = 1, else pi (v) = 0

(2b)

Papadimitriou and Pierrakos [22] give a very elegant geometric

representation of this condition: For each bidder i , their critical
bid is given by a function αi (v−i ) of the other bidders’ bids; where
xi (v) = 1 iffvi ≥ αi (v−i ). Consider now for each bidder i the region
Ai = {v : vi ≥ αi (v−i )} of all bid vectors for which i wins the item.

Clearly this is bordered by αi (v−i ). Furthermore, if (vi , v−i ) ∈ Ai ,
then also (v ′

i , v−i ) ∈ Ai for all v
′
i ≥ vi . This follows both from the

definition of Ai as the region bounded below by the graph of a

function of v−i , as well as directly from monotonicity. We will also

say that Ai is “upward-closed in direction vi ” for this. The 1-item
constraint (1d) entails that any twoAi must be disjoint. In summary,

the picture we get is that looking for the optimal k-bidder auction
is looking for a partition of the space of possible bid combinations

into k + 1 regions: k regions where the item is sold to each of the

buyers (each upward-closed in the corresponding direction), and

one where the item is not sold. Figure 1 shows this picture for the

two-bidder case. Taking bidder 1’s bid to be on the x-axis and bidder
2’s on the y-axis, we are looking for A1 to be rightward-closed, and

A2 to be upward-closed. There is a two-fold tradeoff: smaller αi (u)
means higher probability of drawing vi ≥ αi (u), but selling at a

lower price if so; smaller αi (u) also means “blocking” more bid

vectors for the other bidder. We will often identify a mechanism

through either the regions Ai or the functions αi ; we will write
αi (v−i ) = n + 1, if none of the bid vectors (vi , v−i ) are in Ai . When

defining a mechanism through the αi , DSIC and IR are automatic.

The 1-item constraint (1d) for two bidders can be restated as a

non-crossing property (3) [22]. The expected revenue has a simple
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v1

v2

A2 : Sell item to

buyer 2.

α2 : Critical bid
for buyer 2.

Do not sell item.

α1 : Critical bid
for buyer 1.

A1 : Sell item to

buyer 1.

If this bid combination is realised,

the mechanism sells to buyer 1

. . .

. . . for the price given by the critical bid = border of the

region A1 .

If this bid vector was added to A1 , some extra expected revenue

from it would be achieved, but at the expense of lowering the price

at all bid vectors to the right of it.

Figure 1: A mechanism as a partition of the bid space into regions of allocation, and the
corresponding critical bid functions. Discrete prior support shown dotted, with critical bid
functions and allocation regions drawn slightly larger for easier readability. (We are being
slightly imprecise here: The graph of α1 is the vertical part of the dashed blue line; The
graph of α2 is the horizontal part of the dashed red line.)

closed form in terms of αi given as equation (4) for two bidders.

(Non-Crossing Property) v1 ≥ α1(v2) ⇒ v2 < α2(v1) ∀v1,v2
(3)

R =
n∑
j=1

α1(j) ·
n∑

ℓ=α1(j)

F (ℓ, j)

 +
n∑
ℓ=1

α2(ℓ) ·
n∑

j=α2(ℓ)

F (ℓ, j)

 (4)

In a reverse auction, again a single auctioneer faces k bidders

having their valuations drawn from a joint distribution F supported

on [n]k . We assume that each bidder holds one copy of a single

type of item, each bidder’s copy identical to all others’, and that the

auctioneer wishes to procure one copy. For simplicity we now write

xi (v) = −1 if the mechanism buys a copy of the item from bidder i .
This allows us to leave the definitions of utilities, DSIC and IR in

equations (1a)-(1c) unchanged.
1
It is easy to see that in this context

it makes little sense to require that the mechanism buys at most
one copy of the item. Instead we require the mechanism to always

buy at least one copy of the item, i.e. we require that

∑
i xi (v) ≤ −1,

replacing the corresponding constraint (1d).

Geometrically, we get a very similar picture of regions Ai in
which the mechanism buys from bidder i . However, they now need

to be downward-closed in direction of vi . In the two-bidder case,

A1 ought to be leftward-closed, andA2 downward-closed. Secondly,

two or more of theAi may now overlap (when the mechanism buys

two or more copies); the constraint that

∑
i xi (v) ≤ −1 means that

the union of all Ai must cover all of the bid space.

3 THE O(n3) ALGORITHM FOR THE
TWO-BIDDER AUCTION

We now show how to compute the optimal two-bidder auction

in time O(n3). This immediately gives an O(n3) 5

3
-approximation

algorithm for many bidders, as detailed in Dobzinski et al. [8]. We

1
Taking instead vi to be nonpositive, or adjusting equations (1a)-(1c) is equivalent.

do this in three steps. First, we show that we only need to find

the optimal allocation function for one of the bidders; finding the

second bidder’s allocation function is then very easy. Indeed, pre-

computing all possible optimal allocations for the second bidder

is easy. Second, we show that the optimal critical bid for bidder 1

in each v2 = c “row” only depends in a limited way on the critical

bids in other rows. Third, we use these results to construct a very

simple bottom-up dynamic programming algorithm.

3.1 Step 1: Disentangling the Two Bidders from
One Another

One source of complexity in finding the optimal auction with cor-

related priors is that the two bidders’ allocations interact: taking

still v1 to be the horizontal axis and v2 the vertical one; if at a bid
vector w we allocate the item to bidder 1 (i.e. w ∈ A1), then by

monotonicity we also do so at all bid vectors to its right. In turn,

this means that we cannot sell to bidder 2 at any of the bid vectors

u : u1 ≥ w1 ∧ u2 ≤ w2 to the bottom right of w. Vice versa, if

at w we sell to bidder 2, we cannot sell to bidder 1 at any of the

points to its top left. This argument applies repeatedly: Allocation

to bidder 1 influences potential (and thus also optimal) allocation

to bidder 2, which in turn influences potential & optimal allocation

to bidder 1. A simple lemma shows how to disentangle the two

bidders’ allocation: Suppose (say) bidder 1’s allocation is fixed. How

does the choice of a value α2(ℓ) now influence the optimal choices

of all other values of α2? Simple: It does not. While the inclusion or

exclusion of (ℓ,v2) in A2 influences other points (ℓ,v
′
2
) in the same

“column” through monotonicity for bidder 2; the only way it could

influence a point (ℓ′,v ′
2
), ℓ′ , ℓ in another “column” is through

monotonicity for bidder 1. But by assumption bidder 1’s allocation

is already fixed. Therefore, each choice of α2(ℓ) is independent of
all the others. Furthermore, clearly in column v1 = ℓ the optimal

thing to do is to run an optimal single-bidder auction for bidder 2

on all the bid vectors not inside or below A1. This principle holds

for many bidders; We state it rigorously for two bidders:

Lemma 3.1. In the optimal mechanism the following holds.

α2(ℓ) = argmax

α2(ℓ)>u(ℓ)
α2(ℓ) ·

n∑
j=α2(ℓ)

F (ℓ, j)

u(ℓ) = max {u : ℓ ≤ α1(u)}

Proof. Letα1 be fixed. Our aim is to find theα2 so as tomaximise

the expected revenue (4) while maintaining the 1-item constraint

(1d), which by Papadimitriou and Pierrakos [22] is equivalent to a

non-crossing property of critical bid functions (3). Now, clearly the

first sum in equation (4) is constant for fixed α1. So, we are looking
to solve

R2 = max

α2

n∑
ℓ=1

α2(ℓ) ·
n∑

j=α2(ℓ)

F (ℓ, j)

 (5)

Furthermore, from (3) it follows that we require

α2(ℓ) > max {u : α1(u) ≤ ℓ} =: u(ℓ) (6)
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v1

v2

A1

v1 v1

Blocked.

Run optimal 1-bidder auc-

tion here.

Figure 2: Finding the optimal allocation to bidder 2, given fixed allocation to bidder 1.
From left to right: (a) For a given fixed allocation to bidder 1 ...
(b) ... look at each v1 = c-“column” separately ...
(c) ... and run the optimal single-bidder auction for bidder 2, on the part that is not blocked
by allocation to buyer 1.

Since this is the only constraint on α2, it follows that we may

interchange the maximum and sum:

R2 =
n∑
ℓ=1

 max

α2(ℓ)>u(ℓ)
α2(ℓ) ·

n∑
j=α2(ℓ)

F (ℓ, j)

 (7)

And therefore, α2(ℓ) is as claimed.

α2(ℓ) = argmax

α2(ℓ)>u(ℓ)
α2(ℓ) ·

n∑
j=α2(ℓ)

F (ℓ, j) (8)

□

Figure 2 illustrates this lemma. This result tells us that if we

already knew one player’s allocation & critical bid function, it

would be easy to calculate the optimal allocation & critical bids

for the second player. In fact, we can calculate all possible ones:

Notice that the optimal α2(ℓ) depends only on u(ℓ), and no other

information on α1 or α2. We can iterate through all (n2) possible
values of ℓ and u, and calculate (in linear time each) the optimal

a2(ℓ,u) = argmaxm>um ·
∑n
j=m F (ℓ, j), taking time O(n3) total.

3.2 Step 2: Disentangling the Remaining
Bidder’s Allocation

Relying on the previous subsection, we can now extend an argument

and algorithm that was first discussed by Gerstgrasser et al. [10].

Let us consider how the optimal choice for each α1(j) depends on
the value of α1 in other rows. Let us assume that for some j the
values of α1(j + 1), . . . , α1(n) - i.e. the allocation to bidder 1 in rows

above j - are fixed. A particular choice of α1(j) contributes to the
expected revenue of the mechanism in three ways:

• The contribution to expected revenue from the optimal α1(1),
. . . , α1(j − 1), which may depend on α1(j).

• In row j , the expected revenue from selling at points (α1(j), j),
. . . , (n, j) at price α1(j).

• For some columns, the choice of α1(j) may entail that the

mechanism may only sell to buyer 2 at points “above” row

j. In particular, consider column v1 = ℓ. If α1(j) ≤ ℓ, then
point (ℓ, j) ∈ A1, and thus (ℓ, j) and all points directly below

cannot allocate to buyer 2. On the other hand, this is not

necessarily influenced by the choice of α1(j): If for some

m > j, (ℓ,m) is in A1, i.e. α1(m) ≤ ℓ (which is assumed to

be fixed), then (ℓ,m),. . . , (ℓ, j),. . . , (ℓ, 1) could not allocate

to bidder 2 irrespective of the choice of α1(j). This means

that this contribution to expected revenue occurs exactly for

columns ℓ with α1(j) ≤ ℓ < minm>j α1(m).

v1

v2
Revenue from optimal auc-

tions to buyer 2. (In columns

α1(j),. . . ,minm> j α1(m) − 1.)

Revenue from selling to buyer

1.

Revenue from choices of α1(1),
. . . , α1(j − 1).

α1 (j)

Figure 3: The contribution to the auctioneer’s expected revenue due to the choice of α (j)
as in Section 3.2. The blue area shows the bid profiles where we sell to buyer 1 due to this
choice, the green area shows the bid profiles where we may sell to buyer 2 due to it (using
the respective optimal single-bidder auctions, exemplified in red dotted lines).

Figure 3 illustrates these three contributions. The crucial point

here is in the last item, which we restate as a lemma due to its

importance:

Lemma 3.2. The optimal choice of α1(1), . . . , α1(j) depends only
on the minimum of α1(j + 1), . . . , α1(n), not all individual values.

3.3 Step 3: The Dynamic Programming
Algorithm

Using these two results, calculating the optimal auction is easy. First,

let r2(ℓ,u) = maxm>u (m ·
∑n
j=m F (ℓ, j)) be the expected revenue

that can be obtained from bidder 2 on bid vectors (ℓ,u+1) and those
directly above (cf. Lemma 3.1 and discussion after). As discussed

in Section 3.1 we can compute these in time O(n3), which our

algorithm does as a first step. Now, by the discussion in Section 3.2

and Lemma 3.2, we only need to consider the minimum of α1 in
the top n − j rows in order to calculate the optimal α1 in the first

j rows. We will write α1(j) = n + 1 if none of the points in row j
are in A1. Our algorithm is as follows: for each possible value of

min {α1(2), . . . ,α1(n)} we calculate the optimal value of α1(1) and
the associated expected revenue arising from this choice. We save

these values as a1(1,m) and r1(1,m) form = 1, . . . ,n + 1. Then, we
proceed upwards and for j = 2, . . . ,n calculate the optimal values

of α1(j) for each possible value ofm = min {α1(j + 1), . . . ,α1(n)}
using the already stored values of r1(j − 1, .). In recursion form:

a1(j,m) = argmax

1≤q≤n+1

q
n∑

ℓ=q

F (ℓ, j) +
m−1∑
ℓ=q

r2(ℓ, j) + r1(j − 1,min {q,m})


(9)

and r1(j,m) = maxq {. . .}. The first term is the expected revenue

from selling to bidder 1 in this row (blue in Figure 3); the sec-

ond is the revenue from auctioning to bidder 2 in the appropriate

columns (green); the third is the expected revenue from rows be-

low j (yellow). In the third summand we use min

{
x j , . . . ,xn

}
=

min

{
x j ,min

{
x j+1, . . . ,xn

}}
. It is easy to see that we do not need

to calculate the sums inside the argmax from scratch for each value

of q we consider; By memoising the partial sums we can evaluate

the term inside the argmax in constant time. That then makes it

possible to calculate all the a1 and r1 in time O(n3). r1(n,n + 1)

will then give the optimal expected revenue, and α1 can be found
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by backtracking from a1(n,n + 1). See Algorithm 1 for the non-

memoised version. Furthermore, this extends also to a
5

3
approxi-

mation for many bidders: Dobzinski et al. [8] give this bound for

the 2-lookahead auction, which runs the optimal auction for the

two highest bidders, with their priors conditioned on the remaining

k − 2 bidders’ bids. Thus, any algorithm for the two-bidder auction

also can be used to solve the 2-lookahead auction for many bidders,

if given access to the conditional prior. The improvement our algo-

rithm gives over existing approaches thus transfers immediately

also to approximation algorithms for many bidders.

Algorithm 1 Optimal auction with two correlated bidders.

1: for ℓ = 1, . . . ,n do
2: for u = 0, . . . ,n do
3: r2(ℓ,u) = maxm>u (m ·

∑n
r=m F (ℓ, r ))

4: form = 1, . . . ,n + 1 do
5: r1(0,m) =

∑m−1
q=1 r2(0,q)

6: for j = 1, . . . ,n do
7: form = 1, . . . ,n + 1 do
8: a1(j,m) = argmax

1≤q≤n+1{
q
∑n

ℓ=q F (ℓ, j) +
∑m−1

ℓ=q r2(ℓ, j) + r1(j − 1,min {q,m})

}
9: r1(j,m) = max1≤q≤n+1{

q
∑n

ℓ=q F (ℓ, j) +
∑m−1

ℓ=q r2(ℓ, j) + r1(j − 1,min {q,m})

}
return r1(n,n + 1)

Theorem 3.3. It is possible to calculate the optimal two-bidder
auction with correlated priors in time O(n3), where the prior support
is of size n2. This also gives a O(n3) 5

3
-approximation algorithm for

many bidders.

Proof. The memoised O(n3) algorithm follows easily from the

conceptual prototype presented in Algorithm 1. We defer the details

to the full paper. To verify that the algorithm returns the correct

value, consider that we can write the expected revenue as follows:

R =
n∑
j=1

α1(j) ·
n∑

ℓ=α1(j)

F (ℓ, j)

 +
n∑
ℓ=1

α2(ℓ) ·
n∑

j=α2(ℓ)

F (ℓ, j)

 (10)

Here the first term gives the expected revenue from selling to bidder

1, the second term gives the expected revenue from selling to bidder

2: for v2 = j we sell to bidder 1 at price α1(j) for bid combinations

v = (α1(j), j) , . . . , (n, j), giving probability

∑n
ℓ=α1(j)

F (ℓ, j).

Now, as a first step we partition the range of the outer sum in

the second term along those indices for which ℓ = α1(j) for an α1(j)
with α1(j) < min {α1(j + 1), . . . ,α1(n)}.

R =
n∑
j=0

α1(j)
n∑

ℓ=α1(j)

F (ℓ, j) +

min{α1(j+1), ... }−1∑
ℓ=α1(j)

α2(ℓ) ·
n∑

j=α2(ℓ)

F (ℓ, j)


(11)

Note that

∑
min{α1(j+1), ...,α1(n)}−1
ℓ=α1(j)

[. . .] is indexing over the empty

set and we take it to equal 0, if α1(j) ≥ min {α1(j + 1), . . . ,α1(n)}.

We also take α1(0) = 1 and F (., 0) = 0. The outer sum now iter-

ates over all the “rows” v2 = 1, . . . ,n. Let now r2(ℓ,u) be defined
as before; r2(ℓ,u) = maxm>u (m ·

∑n
r=m F (ℓ, r )), and a2(ℓ,u) =

argmaxm>u (m ·
∑n
r=m F (ℓ, r )). By the discussion in Section 3.1 in

the optimal auctionα2(ℓ) = a2(ℓ,u(ℓ))whereu(ℓ) = max {u : ℓ ≤ α1(u)}
is the topmost point in column j that is inA1. And similarly r2(ℓ,u(ℓ))
is precisely the contribution to expected revenue from bidder 2 in

column ℓ. It is easy to see that each column ℓ is counted in the outer

sum precisely in the summand j = u(ℓ). We can therefore rewrite

the expected revenue in terms of r2 instead of α2.

R =
n∑
j=0

α1(j)
n∑

ℓ=α1(j)

F (ℓ, j) +

min{α1(j+1), ...,α1(n)}−1∑
ℓ=α1(j)

r2(ℓ, j)


(12)

Let now r ′
1
(j,m,q) be the j-th summand of this, with two free pa-

rameters:

r ′
1
(j,m,q) = q

n∑
ℓ=q

F (ℓ, j) +
m−1∑
ℓ=q

r2(ℓ, j) (13)

Then takingmin ∅ = n + 1, we can write the optimal revenue using

r ′
1
.

R =
n∑
j=0

[
r ′
1

(
j,min {α1(j + 1), . . . ,α1(n)} ,α1(j)

)]
(14)

So far we have only reasoned about the revenue given fixed α1
and α2, which when introducing r2 we assumed to be optimal.

Clearly for the optimal mechanism it holds, by definition, that that

is optimal over all possibilities for α1:

R = max

1≤a1(j)≤n+1;
a1(0)=0

n∑
j=0

[
r ′
1

(
j,min {a1(j + 1), . . . ,a1(n)} ,a1(j)

)]
(15)

Since not all of the summands depend on all of the a1(j), and since

they are all non-negative, we can interchange summation and the

maximum operators.
2

R = max

a1(n)

[
r ′
1

(
n,min ∅,a1(n)

)
+

max

a1(n−1)

[
r ′
1

(
n − 1,min{a1(n)},a1(n − 1)

)
+

max

a1(n−2)

[
r ′
1

(
n − 2,min {a1(n),a1(n − 1)} ,a1(n − 2)

)
+ · · ·

] ] ]
(16)

2
More generally, it is easy to check that for fi (xi , . . . , xn ) ≥ 0 the following holds.

max

x

[ n∑
i=1

fi

]
= max

xn

[
fn (xn ) + max

xn−1

[
fn−1(xn−1, xn ) +

[
· · · +max

x
1

f1(x) · · ·
] ] ]
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Now we can write R as a recursion in r1. The following coincides
with the definition of r1 in equation (9):

r1(j,m) = max

q

[
r ′
1

(
j,m,q

)
+ r1

(
j − 1,min

{
q,m

})]
= max

q

[
q

n∑
ℓ=q

F (ℓ, j) +
m−1∑
ℓ=q

r2(ℓ, j) + r1
(
j − 1,min

{
q,m

})]
(17)

It is easy to check that (for the optimal value ofm), r1(j,m) is exactly

the sum of the first j summands in the expression for the optimal

revenue (equations (14), (15)).

r1

(
j,min

{
α1(j + 1), . . . ,α1(n)

})
=

j∑
s=0

[
r ′
1

(
s,min

{
α1(s + 1), . . . ,α1(n)

}
,α1(s)

)]
(18)

From this it follows immediately that R = r1(n,n+1), as desired. Al-
gorithm 1 calculates this value R = r1(n,n+ 1) by construction. The
algorithm also keeps track of the associated α1. This can be retraced
asα1(n) = a1(n,n+1), andα1(j) = a1

(
j,min {α1(j + 1), . . . ,α1(n)}

)
.

We can calculate α2 as α2(ℓ) = a2(ℓ,max {j : α1(j) ≤ ℓ}). □

4 THE REVERSE AUCTION CASE
We now turn to the reverse auction case. This is in many settings

equivalent to the auction case; However with correlated priors

unexpected things happen. Recall that here we are looking for

regionsAi which are downward-closed in directionvi , may overlap,

and must cover all of the bid space. In an auction, a large part of

the auctioneer’s power comes from the option of not selling the

item; Indeed, reserve prices below which the item is not sold are

at the heart of Myerson’s seminal result [20]. For a single bidder,

not selling is even all the power the auctioneer has to achieve

any revenue. In a reverse auction, the equivalent of this is to buy

multiple copies of the item from multiple sellers. In a way, both of

these cases are suboptimal locally, but allow for higher expected

revenue globally: If for a given bid vector v the auctioneer does not

sell in the auction this clearly foregoes some potential contribution

to expected revenue arising from selling at v; but, it may allow the

auctioneer to generate a higher contribution to expected revenue

(through higher prices) at some other bid vectors. Similarly in the

reverse auction, buying from multiple bidders at a bid vector v
clearly incurs a double or multiple contribution to expected cost

arising from v; but, it may allow the auctioneer to achieve a lower

expected cost elsewhere in the bid space as a result.

It is easy to see that the possibility of buying from multiple

bidders generates a much richer space of potential outcomes than in

the auction.Whereas in the auction there isk+1 possible allocations
for each bid vector (selling to each of the bidders, plus selling to

none of them), in the reverse auction we potentially have to deal

with 2
k − 1 possible allocation (buying from any combination of

bidders, except from none of them). The question we deal with

in this section is whether all of these are actually relevant to the

problem of finding the optimal reverse auction; that is, will all of

these occur in an optimal mechanism? The answer is surprising:

“Yes”, for k ≥ 3 bidders, so the reverse auction in these cases is

x

Buying from seller 2

Buying from seller 1

No need to buy

from bidder 1 here.

By assumption, not

buying from bid-

der 1 at x(2) , so by

truthfulness neither

at x′.

By assumption, not

buying from bid-

der 2 at x(1) , so by

truthfulness neither

at x′.

So cannot buy from

either at x′, which
is a contradiction.

x

x(2)

x(1)

x′

Buying from seller 2

Buying from seller 1

Figure 4: From left to right:
(a) In the first case of Theorem 4.1, if there is no point to the right of x inwhichwe buy only
from seller 1, we can improve our cost by not buying from seller 1 in the shaded region,
i.e. moving the blue line so it coincides with the red one.
(b) Buying from either seller is blocked at x′ due to truthfulness, in the second case of
Theorem 4.1. By assumption we do not buy from seller 1 at x(2) , and thus by truthfulness
cannot buy from seller 1 at x′. Vice versa we assume we do not buy from seller 2 at x(1) ,
and so cannot buy from them at x′ either. That leaves us with noone to buy the item from
at x′, violating our feasibility constraint.

clearly structurally different than the corresponding auction; but

“No” for 2 bidders. The latter is surprising in itself, as a priori both the

2-bidder auction as well as the 2-bidder reverse auction potentially

have three valid allocations. As it turns out, not even these two

cases are structurally the same.

Theorem 4.1. In the single-item reverse auction with two corre-
lated sellers, the optimal mechanism will never buy from both bidders.

Proof. Suppose for bid vector x we buy from both sellers. We

consider two cases. Firstly, suppose there exists an i such that for

no point x′ = (x ′i ,x−i ) with x ′i > xi we buy only from seller i .
Then we could strictly improve our cost if we did not buy from i
at x and all those bid vectors x′ = (x ′i ,x−i ) with x ′i > xi . Thus the
mechanism was not optimal. See Figure 4 (a) for an illustration.

So assume that for both i , there exists a bid vector x(i) = (x′i , x−i),
with x ′i > xi , so that we buy only from seller i at x (i). But then
by truthfulness it follows that at x′ = (x ′

1
,x ′

2
) we cannot buy from

either of the sellers. (If we bought from seller 1 at x′, we would also
buy from seller 1 at x(2) by truthfulness, but that contradicts our

assumption. Vice versa for seller 2.) But not buying at all at x′ is
not a valid mechanism by definition. Figure 4 (b) shows this case.

Thus, the optimal (valid) reverse auction can never buy from

both bidders at once. □

An immediate consequence of this result is that the optimal

mechanism design problem in this setting is simpler than in the

auction setting: We are now only looking for a partition of the bid

space into two regions A1 and A2 = Ac
1
. It is easy to check that this

allows us to shave a constant multiplicative factor off the runtime

of our two-bidder auction algorithm. We list this as Algorithm 2,

again in non-memoised form for conciseness. To our knowledge

this is the first algorithm specific to the reverse auction setting,

exploiting structural arguments of this problem, and therefore also

the first to show a lower runtime of this problem compared to the

optimal correlated auction.
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Algorithm 2 Optimal reverse auction with two correlated bidders.

1: c1(0, .) = 0

2: for j = 1, . . . ,n do
3: form = 1, . . . ,n + 1 do
4: a1(j,m) = argmin

1≤q≤m{
q
∑q

ℓ=1
F (ℓ, j) + j

∑m−1
ℓ=q

∑j
s=1 F (ℓ, s) + c1(j − 1,q)

}
5: c1(j,m) = min1≤q≤m{

q
∑q

ℓ=1
F (ℓ, j) + j

∑m−1
ℓ=q

∑j
s=1 F (ℓ, s) + c1(j − 1,q)

}
return c1(n,n + 1)

Do not want to buy from bidder

1 at q, as that would raise pur-

chase price at p1 .

Do not want to buy from bidder

2 at q, as that would raise pur-

chase price at p2 .

That only leaves bidder 3 to buy

from at q.

v1

v2

v3

qp1

p2

Figure 5: The gadget we will use in the proof of Theorem 4.2. High probability weight on
points p1 and p2 makes it optimal to buy from seller 3 (in green) at point q. Buying from
either of the other sellers at qwould raise the purchase price at either p1 or p2 , thus raising
the expected cost. By monotonicity, the mechanism thenmust also buy from seller 3 at all
points behind q in this view.

Surprisingly, for k ≥ 3 bidders the opposite holds: It is possible

to construct instances in which it is optimal to buy all k copies of

the item.

Theorem 4.2. For three or more bidders, the optimal reverse auc-
tion may buy from all sellers.

Proof. To show this, we will construct an instance. Our main

gadgetwill be of the following form: Consider points p1 = (cL, cM, cH)
and p2 = (cM, cC, cH)with high probability weight, and a third point
q = (cM, cM, cH) with very low probability weight, for some con-

stants cL << cM << cH. We will want to make this so that the

optimal mechanism will want to buy at the point p1 cheaply from

seller 1 - and thus cannot buy at point q from seller 1, as by mono-

tonicity that would also raise the purchase price at p1. Similarly

for buyer 2 and points p2 & q. As a consequence, it will want to
buy at q from seller 3. This will be at a very high purchase price,

but if the probability weight on q is small enough, this will still

be optimal in expectation. Figure 5 illustrates this construction.

By monotonicity it follows that if the mechanism buys from seller

3 at q = (cM, cM, cH), it must also buy from seller 3 at all points

(cM, cM,v3),v3 ≤ cH.
By creating three such gadgets in the right places and rotated

appropriately, we can then make it optimal to buy from all three

sellers at the intersection of these q-segments. Consider the con-

struction in Figure 6. In this we have one gadget consisting of

p12 = (cH, cL, cM), p13 = (cH, cM, cL) and q1 = (cH, cM, cM) with

v1

v2

v3

x

q3p31

p32

q2p21

p23

q1

p12

p13

Figure 6: Three gadgets make up the construction used in the proof of Theorem 4.2. No-
tice that for bid vector x (in the centre at the intersection of the three qi -segments), the
mechanism will buy from all three sellers, due to monotonicity and the allocation at the
points qi .

the auctioneer buying from bidder 1 in the q1-segment; and sim-

ilarly one gadget consisting of p21, p23 and q2 for bidder 2; and a

third one comprising p31, p32 and q3 for bidder 3. Again let there be

very high probability weight on the pi j , and very small probability

weight ϵ on the qi (and everywhere else). The qi are placed such

that the qi -segments intersect at the point x = (cM, cM, cM). It is

easy to check that the optimal mechanism will indeed buy from

bidder i in each qi -segment, for ϵ small enough; it will thus buy

from all three bidders at x.
To show this formally, wlog we take the prior support to be [3]3,

and cL = 1, cM = 2, cH = 3; it is easy to see that the following

arguments work for any other choice of these constants. Let there

be probability weight
1−ϵ
6

on points p12 = (3, 1, 2), p13 = (3, 2, 1),

p21 = (1, 3, 2), p23 = (2, 3, 1), p31 = (1, 2, 3), p32 = (2, 1, 3), and

probability weight
ϵ
21

on each of the remaining 21 points of the prior

support. We will denote by q1 = (3, 2, 2), q2 = (2, 3, 2), q3 = (2, 2, 3)

among these. Notice how for i = 1, 2, 3 each of these sets of two

pi j and one qi forms one of the gadgets discussed in the main text.

To show this we will proceed as follows. First, we show that the

optimal mechanism has the property that the auctioneer buys each

of the points pi j for price 1 from seller j (and only seller j). There is
two things to check here; step 1(a), we show that a valid allocation

exists that has this property. Step 1(b), we show that any allocation

with this property has lower expected cost than any allocation

without this property. Step 2, we deduce from this that the optimal

mechanism buys from all three sellers at point x = (2, 2, 2).

Step 1(a): There is a valid mechanism that buys from seller j (and
only seller j) at each point pi j , for price 1: This is easy to see. We

show one such mechanism in Figure 7. Each cell lists the bidder(s)

that the item is bought from for this given bid vector; with the high

probability bid vectors shown in bold face.

Step 1(b): Any mechanism that allocates at the points pi j in
this manner has lower expected cost than any mechanism that
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v3 = 1 v1 = 1 v1 = 2 v1 = 3

v2 = 3 1 3 3

v2 = 2 3 3 3
v2 = 1 2 2 2

v3 = 2 v1 = 1 v1 = 2 v1 = 3

v2 = 3 1 2 3

v2 = 2 1 1,2,3 1

v2 = 1 2 2 2
v3 = 3 v1 = 1 v1 = 2 v1 = 3

v2 = 3 1 1 3

v2 = 2 1 3 2

v2 = 1 2 2 2

Figure 7: The full allocation for the instance in Theorem 4.2. Each cell shows the bidder(s)
the mechanism buys from at the given bid vector. High probability points are shown in
bold face.

does not. We show this by giving first an upper bound on the

expected cost of any mechanism with this property. This consists of

an exact expression for the contribution to expected cost incurred

at the pi j , plus an upper bound on the contribution at all the other

points. Second, we give a lower bound of the expected cost of any

mechanism which does not have this property; for this it suffices

to lower bound the expected cost incurred at the pi j .
So, assume a mechanism allocates at the pi j in the manner

claimed; then the expected cost can be (very crudely) bounded

above by 6 · 1 · 1 · ( 1−ϵ
6
) + 21 · 3 · 3 · ( ϵ

21
) = 1 + 8ϵ . The first term

is the contribution from the 6 points pi j where we buy at price 1

from exactly 1 seller with probability
1−ϵ
6

each, the second term a

bound from the 21 remaining points, where we buy from at most

from 3 sellers, for at most a price of 3, with probability ( ϵ
21
) each.

On the other hand, if a mechanism allocated at any of the pi j
differently (while maintaining monotonicity), that would mean

either raising the purchase price to at least 2 at a pi j (either due
to buying from the same bidder at a higher price, or buying from

a different bidder at price ≥ 2), or buying from more than one

buyer at a pi j . Either way we would incur at least an extra ( 1−ϵ
6
)

expected cost at one of the pi j . The resulting total expected cost of

the mechanism would thus also be at least 7 · ( 1−ϵ
6
).

It is easy to check that 1 + 8ϵ is less than 7( 1−ϵ
6
) if ϵ < 1

55
. So,

for any such ϵ the optimal mechanism will have the property that

the auctioneer buys each of the points pi j for price 1 from seller j
(and only seller j).

Step 2: Since the optimal mechanism buys from seller j for price
1 at each pi j , it follows that it buys from bidder i at each qi , as
buying from either of the other bidders would contradict the low

buying price at a pi j . Therefore by monotonicity, it will buy from all

three sellers at x = (2, 2, 2). For k bidders, this construction easily

generalises. Use k gadgets, each with k − 1 points pi j forcing the
mechanism to buy point qi from the remaining bidder.

□

5 DISCUSSION AND FUTUREWORK
Our O(n3) algorithm for the two-bidder auction is interesting not

only in its own right - presenting a substantial improvement of the

previously known O(n6) approaches, both for the exact solution

for two bidders but also for a
5

3
-approximation for many bidders;

but it is significant also because of the techniques used in arriving

at it. Our algorithm is the first to exploit structural properties of

the 2-bidder auction design problem, whereas previous approaches

reduce the problem to a generic graph algorithm respectively a

derandomised LP. In contrast, structural insights allow us to de-

compose the problem into a simple recursion. Generalised versions

of these observations hold for many settings, and could potentially

be useful there.

Lemma 3.1 gives a useful characterisation of the optimal two-

bidder auction, and indeed this generalises to virtually all correlated

mechanism design settings we can think of. For two-bidder settings,

this gives a useful decomposition into optimal single-bidder mecha-

nisms, that may be tractable in many cases. For more general cases,

an analogue of Lemma 3.1 states — informally — that in an optimal

mechanism, for any partition of bidders into two sets S1, S2, for
a fixed bid vector v1 of bidders in S1, the allocation to bidders in

S2 is simply that of the optimal |S2 |-bidder mechanism taking into

account the (fixed) allocations to bidders in S1. This may be a useful

aid in exploring multi-bidder settings.

It is interesting to consider why this generalisation cannot be

used to show a polynomial-time algorithm for the three-bidder

auction. For this setting, we get two characterisations depending

on whether we partition into |S1 | = 2, |S2 | = 1, or vice versa. If

we take S1 = {b1,b2}, S2 = {b3}, we get that for any fixed v1,v2,
the allocation to bidder 3 in the induced affine linear v3-subspace
(i.e. in each “vertical line” in the bid space) is that of the optimal

single-bidder auction to bidder 3 on all bid vectors that are above

any allocated to bidders 1 and 2 (i.e. on those not blocked by the

allocation to bidders 1 and 2). Vice versa, if we take S1 = {b3},
S2 = {b1,b2}, we get that for fixed v3, the allocation to bidders

1 and 2 on the induced v1,v2-subspace (each horizontal plane in

the bid space) is that of the optimal two-bidder mechanism on

all bid vectors not blocked by the allocation to bidder 3. While

these are interesting properties, what is missing is an analogue of

Lemma 3.2, which allows us to rewrite the optimal revenue as a

tractable recursion. In the three-bidder case, we do not have an

efficient way of computing the optimal allocation to two or even

one bidder. Even in such settings where this result does not lead to

an efficient algorithm, it may still be useful in characterising the

optimal mechanism. One open question that is of particular interest

here is whether Lemma 3.1 and its generalisation also hold as an

“if and only if” statement. That is, it would be nice if they would

give sufficient conditions for a mechanism to be optimal.

Our results on correlated reverse auctions for the first time (to

our knowledge) show an asymmetry between auctions and reverse

auctions. For two bidders, a further structural analysis allows us

to show a small reduction in complexity compared to the auction,

and to devise the first algorithm specific to the correlated reverse

auction setting. Our result for three or more bidders is surprising,

as it shows a much higher dimensional space of possible outcomes

- exponential (in the number of bidders) compared to linear in an

auction. We take this as evidence that the reverse auction case is

interesting to consider as a separate problem from the standard

auction model.
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