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ABSTRACT
We study heterogeneous k-facility location games on a real line
segment. In this model there are k facilities to be placed on a line
segment where each facility serves a different purpose. Thus, the
preferences of the agents over the facilities can vary arbitrarily.
Our goal is to design strategy proof mechanisms that locate the
facilities in a way to maximize the minimum utility among the
agents. For k = 1, if the agents’ locations are known, we prove that
the mechanism that locates the facility on an optimal location is
strategy proof. Fork ≥ 2, we prove that there is no optimal strategy
proof mechanism, deterministic or randomized, even when k = 2
and there are only two agents with known locations. We derive in-
approximability bounds for deterministic and randomized strategy
proof mechanisms. Finally, we provide strategy proof mechanisms
that achieve constant approximation. All of our mechanisms are
simple and communication efficient. As a byproduct we show that
some of our mechanisms can be used to achieve constant factor
approximations for other objectives as the social welfare and the
happiness.
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1 INTRODUCTION
Facility location games lie in the intersection of AI, game theory,
and social choice theory and have been studied extensively over
the past years. The basic version of the problem on a real line was
firstly studied by Procaccia and Tennenholtz [25]. In their setting,
a central planner has to locate a facility based on the reported lo-
cations of selfish agents. The goal of the planner is to locate the
facility in a way that the sum of the utilities of the agents is maxi-
mized. 1 However, the agents canmisreport their locations in order
to manipulate the planner and increase their utility. One main ob-
jective of the planner is to design procedures to locate the facility,
called mechanisms, that incentivize the agents to report their true
locations, i.e., the mechanisms are strategy proof.

1Note that in [25] the objective was to minimize the social cost, which w.l.o.g. is the
same as maximizing the social utility.
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When monetary payments are not allowed, that is the planner
cannot pay the agents or demand payments from them, it is not al-
ways possible to design mechanisms that implement an optimal
solution and remain strategy proof. Thus, the goal is to design
mechanisms that approximately maximize an objective function
under the constraint that they are strategy proof. The term approx-
imate mechanism design without money, introduced by Procaccia
and Tennenholtz, is usually deployed for problems like the one de-
scribed above. Procaccia and Tennenholtz studied homogeneous fa-
cility location games, where one or two identical facilities had to be
placed on a real line and every agent wanted to be as close as pos-
sible to any of them. In this setting, the agents were reporting to
the planner a point on the line and the objectives studied were the
maximization of the social welfare and the minimum utility over
the agents.

In many real life scenarios though, both facilities and agents’
preferences are heterogeneous; every facility serves a different need
and every agent has potentially different needs from the others.
Consider for example the case where the government is planning
to build a school and a factory on a street. Citizens’ preferences for
these facilities might significantly differentiate. Those who work
at the factory and also have children that go to school wish both
facilities to be built close to their homes. Citizens without children
might want the school to be build far because of the noise. Finally,
those who do not work at the factory prefer its location to be far
from their home to avoid the emitted pollution.

The example above shows that an agent might want to be close
to a facility, be away from a facility, or be indifferent about its pres-
ence. Feigenbaum and Sethuraman [8] studied 1-facility heteroge-
neous games where each agent reported his preferred location on
the line, while it was known to the planner whether he wanted to
be close to or away from the facility. Zou and Li [32] extended the
model of [8] for heterogeneous 2-facility games and studied the
social utility objective for several different scenarios of the infor-
mation the planner knows. We note that none of the papers above
studied the case where some agents were indifferent for some fa-
cilities. Serafino and Ventre [26] studied heterogeneous 2-facility
games on discrete networks. In their setting, each agent is located
on a node of a graph and either is indifferent or wants to be close
to each facility and the planner knows the location of every agent
but not their preferences for the facilities.

In this paper we extend the aforementioned models and study
heterogeneous k-facility location games (simply k-facility games)
on a given real line segment. Our main focus is to maximize the
minimum utility among all the agents, termed Egalitarian. As
byproduct we derive results for the social welfare, termed Utili-
tarian, and the recently proposed minimum happiness objective,
termed Happiness. Happiness, which is reminiscent of the pro-
portionality notion in resource allocation problems, is a fairness
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criterion for facility location problems introduced in [22]. The hap-
piness of an agent is the ratio between the utility he gets under the
locations of the facilities over the maximum utility the agent could
get under any location. To the best of our knowledge, there is no
prior work on this model. We note that while our model is a natu-
ral extension of the aforementioned models almost none of those
results apply in our case.

1.1 Our contributions
We study several questions regarding heterogeneous k-facility
games on a given line segment. For k = 1, we assume that the
locations of the agents are known to the planner. We prove 2 that,
for a large family of maxmin objectives, the mechanism that places
the facility on an optimal location for the reported preferences of
the agents is strategy proof. The only constraint we impose on the
objective functions is that they are increasing with the minimum
utility of the agents. We note that this result holds for a broad fam-
ily of objective functions of the agents, including Egalitarian and
Happiness. Our result complements the result of [8] where it was
proven that there is no deterministic strategy proof mechanism
with bounded approximation for Egalitarian for 1-facility games
with known preferences but unknown locations.

Next, we focus on the Egalitarian objective. We prove that
there is no optimal deterministic strategy proof or strategy proof
in expectation mechanism for k-facility games even for instances
with k = 2, two agents, and known locations for the agents. We
complement these results by deriving inapproximability bounds
for deterministic and randomized strategy proof mechanisms. The
techniques we use are fundamentally different from [26], since in
our model the facilities can be located anywhere on the segment
without any constraint, making the analysis more complex.

Then, we focus on 2-facility games and we propose strategy
proof mechanisms that achieve constant approximation ratio for
the Egalitarian objective. All of our mechanisms are simple (i.e.
if it requires minimal information from the agents (bit-wise)) and
require limited communication. To the best of our knowledge, this
is the first paper to study the communication complexity on facil-
ity location problems and how communication affects approxima-
tion. We propose two deterministic and two randomized mecha-
nisms. The first deterministic mechanism, called Fixed, requires
zero communication between the planner and the agents. On any
instance, Fixed locates the facilities symmetrically away from the
middle of the segment without requiring any information from the
agents. Although this mechanism might seem naive, it achieves
constant approximation. Furthermore, we prove that Fixed is op-
timal when no communication is allowed. No communication
means that the agents do not transmit any bits to the planner be-
fore the locations for the facilities are decided, or equivalently that
the facilities have to be located without getting any information
from the agents. The second mechanism, termed Fixed+, utilizes
the intuition gained from Fixed and chooses between five differ-
ent location-combinations for the facilities and locates the facili-
ties in one of them by using the information it got from the agents.

2Due to space constraints some of our proofs are omitted from the main body of the
paper.

Furthermore, every agent has to communicate only 5 bits of infor-
mation to the agent. Both of our randomized mechanisms are uni-
versally strategy proof. Our first randomized mechanism, termed
Random, locates with half probability both facilities on the begin-
ning of the segment and with half probability both facilities on
the end of the segment. Random seems naive, but it achieves 1

2 -
approximation and requires zero communication. The second ran-
domised mechanism, Random+, combines the ideas of Random and
Fixed+ and improves upon Random by requiring again only 5 bits
of information per agent.

For the special case where agents’ locations are known to the
mechanism and all the agents are indifferent or want to be close to
the facilities, then we show how we can utilize the optimal mech-
anism for the 1-facility game and get a 3

4 -approximate strategy
proof mechanism for Egalitarian when k = 2.

As a byproduct, we show that Fixed and Random achieve the
same approximation guarantee for Happiness and Utilitarian.
Thus, we establish lower bounds that were not known before and
complement the results of [32].

1.2 Further related work
There is a long line of work on homogeneous facility location
games [1, 7, 13, 14, 20, 21, 31]. Different objectives and different util-
ity functions have been studied as well. In [9] the objective was the
sum of Lp norms of agent’s utilities, while in [10] it was the sum
of least squares. [12] introduced double-peaked utility functions.
The obnoxious facility game on the line, where every agent wants
to be away from the facilities, was introduced in [5] and later the
model was extended for trees and cycles in [6]. In [29] the objec-
tive of least squares for obnoxious agents was studied. [4] recently
introduced the maximum envy as an objective for facility location
games. In that paper as well as in [15], the authors studied the ap-
proximation of mechanisms according to additive errors. [27] stud-
ied false-name proof mechanisms for the location of two identical
facilities. [28] gave a characterization of strategy proof and group
strategy proof mechanisms in metric networks for 1-facility games
with private locations of the agents.

Simplemechanisms received a lot of attention lately; see [16] for
example and the references therein for simple auctions. Informally,
a simple mechanism is easy to implement and allows the agents to
“easily” deduce the strategy proofness of the mechanism. One way
to capture simplicity is to use verifiably truthful mechanisms [3],
where agents can check whether a mechanism is strategy proof
by using some, possibly exponential, algorithm. [18] formalized
simple mechanisms by introducing obviously strategy proof mech-
anisms. [11] analysed this type of mechanisms for homogeneous
1-facility games.

After a long history in theoretical computer science [17], com-
munication complexity problems studied on auction settings [2]
and for more general mechanism design problems [23, 30]. To the
best of our knowledge though, no one studied the communication
complexity of facility location games.

2 MODEL
In a k-facility game, there is a set N = {1, . . . ,n} of agents lo-
cated on the line segment [0, ℓ] and a set of k distinct facilities
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F = {1, . . . ,k } that need to be located on the segment. Each agent i
is associated with a location xi ∈ [0, ℓ] and a vector ti ∈ {−1, 0, 1}k
that represents his preferences for the facilities.

If agent i wants to be far from the facility j, then ti j = −1, if
he is indifferent, then ti j = 0, and if he wants to be close to j,
then ti j = 1. We will use y = (y1, . . . , yk ) to denote the loca-
tions of the facilities and s = (s1, . . . , sn ) to denote the profile of
the agents, i.e. their declared tuples si = (xi , ti ),∀i ∈ N . A vector
s−i = (s1, . . . , si−1, si+1, . . . , sn ) is the vector of tuples excluding si
thus we can denote a profile as (si , s−i ). AmechanismM is an algo-
rithm that takes as input a profile s and outputs the locations of the
facilities, i.e. y = M (s ). A mechanism is deterministic if it chooses
y deterministically and randomized if y is chosen according to a
probability distribution.

Let OPT(s ) and M (s ) denote the optimal value and the value
of mechanism M for an objective function under the profile s . A
mechanism M achieves approximation ratio α ≤ 1, or it is α-
approximate, if for any type profile s , it holds that M (s ) ≥ α ·
OPT(s ).

The utility agent i gets from facility j, denoted as ui j , depends
on the distance |xi − yj | and on agent’s preference for that facility.
Following the literature [25, 26], the cost that agent i ∈ N incurs
from facility j ∈ F is defined as:

ci j (xi , ti j , yj ) =

ℓ − |xi − yj |, if ti j = −1

0, if ti j = 0
|xi − yj |, if ti j = 1.

However, in our model, where all the three types of agents are
available, there are cases in which the cost of the optimal solution
is 0. Thus, the approximation ratio of a mechanism is undefined. In
order to circumvent such cases we define the utility of an agent as
his satisfaction over a produced outcome. For normalization pur-
poses we assume that the maximum value of the satisfaction of an
agent i is ℓ. For that reason we define his utility for a facility j as
the difference between ℓ and cost he suffers. Formally,

ui j (xi , ti j , yj ) =


|xi − yj |, if ti j = −1
ℓ, if ti j = 0

ℓ − |xi − yj |, if ti j = 1.
(1)

The total (expected) utility agent i gets under y is defined
as the sum of the utilities he gets for each of the facilities, i.e.
ui (xi , ti , y) =

∑
j ∈[k] ui j (xi , ti j , yj ). We consider three different ob-

jective functions: Egalitarian, defined as maxymini ui (xi , ti , y),
Utilitarian defined as maxy

∑
i ui (xi , ti , y), and Happiness de-

fined as maxymini
ui (xi ,ti ,y)
u∗i (xi ,ti )

where u∗i (xi , ti ) = maxy ui (xi , ti , y).
A mechanism is called strategy proof if no agent can benefit by

misreporting his preferences. Formally, a mechanism M is strat-
egy proof if for any true profile (si , s−i ) it returns locations y
and any misreported profile (s ′i , s−i ) it returns y′, it holds that
ui (xi , ti , y) ≥ ui (xi , ti , y′). A randomized mechanism is univer-
sally strategy proof if it is a probability distribution over determin-
istic strategy proof mechanisms and strategy proof in expectation
if no agent can increase his expected utility by misreporting his
type. Furthermore a mechanism is called false-name proof if no
agent can benefit by using multiple and different identities in the
game.

3 1-FACILITY GAMES
As a warm up we first study the case where the locations of the
agents are publicly known and only one facility has to be placed on
the segment. Although this scenario seems similar to the classical
single peaked setting studied by Moulin [24], a closer look shows
that it is not the same. The utility functions are defined in such a
way that single peaked utility functions are a special case of ours.

Theorem 3.1. When the locations of the agents are known, the
mechanism that locates the facility on the left most location that
maximizes mini ui (xi , ti , y) is strategy proof.

Theorem 3.1 complements the result of [8]. There it was proven
that there is no deterministic strategy proof mechanism with
bounded approximation for Egalitarian for 1-facility games with
known preferences but unknown locations.

4 INAPPROXIMABILITY RESULTS
For the rest of the paper, unless specified otherwise, we study Egal-
itarian. In this section we provide inapproximability results for
strategy proof mechanisms for 2-facility games. We prove that, the
extension of the optimal mechanism for two facilities, i.e. placing
the facilities on the locations that maximize the objective under the
declared preferences of the agents, is not strategy proof even in set-
tings with two agents. Furthermore, we provide inapproximability
results for strategy proof mechanisms.

We prove that there is no 0.851-approximate deterministic strat-
egy proof or strategy proof in expectation mechanism.

Theorem 4.1. There is no α-approximate deterministic strategy
proof mechanism for the 2-facility game with α ≥ 0.851.

Proof. Let us consider the instances I and I ′ depicted in Fig-
ure 1. Each white circle corresponds to an agent. Agent a1 is lo-
cated on 0 and agent a2 on x , where x will be specified later in the
proof. Without loss of generality we assume that ℓ = 1.

On instance I the preferences of a1 are t1 = (−1, 1), while a2
has preferences t2 = (0, 1). It is not hard to see that the optimal
locations for the facilities are y1 = 1 and y2 = x

2 where each agent
gets utility 2− x2 . The optimal locations are depicted by black circles
in the figure.

On instance I ′ agent a1 has the same preferences as on instance
I while the preferences of agent a2 are t ′2 = (−1, 1). The optimal
locations for the facilities in this instance are y1 = 1 and y2 = x
where each agent gets utility 2 − x .

−11

0
x
2

y2
01

y1

ℓx

(a) Instance I

−11

0

y2
−11

y1

ℓx

(b) Instance I ′

Figure 1: Example for preferences in {−1, 0, 1}2.

Instances I and I ′ show that the mechanism that locates the fa-
cilities on the optimal locations is not strategy proof. On instance I

Session 15: Auctions and Mechanism Design 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

625



agent a2 can declare t ′2 = (−1, 1) and increase his utility from 2− x
2

to 2.
So, let M be a strategy proof mechanism. Firstly, we argue that

on instance I mechanism M should locate facility f1 on 1. In or-
der to see this, suppose that M locates f1 in z < 1. Then, there is
another mechanism M ′ locating f1 in 1 that achieves a better ap-
proximation than M . At instance I the utility of a1 decreases by
moving the facility f1 to z while the utility of a2 does not change.
At instance I the utility of both agents decreases by moving the fa-
cility f1 from 1 to z. Hence, under mechanismM that locates f1 on
z, both agents on both instances get weakly lower utility than the
mechanism M ′ that locates f1 on 1. Next, suppose that M locates
facility f2 on y2 ≤ x on instance I . Similarly as above, if x < y2,
then the approximation ofM on instance I could be improved.

Since M is strategy proof, facility f2 cannot be located on any
y′2 > y2 on instance I ′. If y′2 > y2, then agent a2 from I could
declare preferences t ′2 = (−1, 1) and increase his utility. We con-
sider the following two cases concerning the location y′1 in which
M locates facility f1 on I ′:

• y′1 ≥ x . Then, obviously y1 = 1 since otherwise the util-
ity of both agents in I ′ is decreasing and thus M does not
achieve the maximum approximation. So, underM agent a2
on instance I ′ gets utility at most 2 − 2x + y2 and thus M
achieves approximation 2−2x+y2

2−x . Furthermore, on instance
I agent a1 gets utility 2ℓ − y2, since as explained earlier, M
locates f1 on 1. Thus, the approximation ofM on instance I
is 4−2y2

4−x . Observe that the approximation guarantee ofM on
I is decreasing with y2 while on I ′ it is increasing with y2.
So, if we optimize the approximation guarantee and solve
for y2 we get that y2 = 6x−2x 2

8−3x . Thus, if y′1 > x , the approx-
imation ofM is at most

4 − 2 · 6x−2x 2

8−3x
4 − x =

4x2 − 24x + 32
3x2 − 20x + 32

. (2)

• If M on instance I ′ locates f1 on y′1 < x , then observe that
there is no location y′2 for f2 such that both agents get utility
strictly larger than 1. Thus, in this case M achieves approx-
imation at most

1
2 − x . (3)

Observe that the approximation guarantee in (2) increases with
x while in (3) it decreases with x . So if we optimize on the ap-
proximation guarantee of M , we have to solve for x the equation
−4x3 + 29x2 − 60x + 32 = 0. The unique solution in [0, 1] is
x = 13−

√
41

8 . Using this value in (2) and (3) we get that any deter-
ministic strategy proof mechanism on instances I and I ′ achieves
approximation less than 0.851. □

The inapproximability bound can be extended to strategy proof
in expectation mechanisms.

Theorem 4.2. There is no α-approximate strategy proof in expec-
tation mechanism for the 2-facility game with α ≥ 0.851.

5 DETERMINISTIC MECHANISMS
In this section we propose deterministic strategy proof mecha-
nisms. An initial approach would be to consider each facility in-
dependently and place it to its optimal location. This mechanism
is strategy proof. As we already proved, placing one facility on its
optimal position is a strategy proofmechanism. Furthermore, since
we locate the facilities independently no agent has an incentive to
lie. However, this mechanism achieves poor approximation if the
agents want to be away from the facilities. Consider the case where
there are n agents on the locations 0, 2ℓn ,

3ℓ
n , . . . ,

(n−1)ℓ
n , ℓ each of

whom has preferences (−1,−1). Observe that the optimal location
for one facility is to place it on ℓ

n since this location maximizes the
minimum distance between any agent and the facility. Thus, both
facilities will be placed on the same location ℓ

n . Then the agent lo-
cated in 0 has utility 2ℓ

n , the minimum over all the agents. It is not
hard to see that an optimal solution is to locate the facility f1 on 0
and the facility f2 on ℓ where each agent gets utility ℓ. Hence, the
mechanism that locates the facilities independently in their opti-
mal locations is 2

n -approximate.
The example above provides evidence that a mechanism with

good approximation ratio should not put both facilities on the same
location if there are agents who have preference -1 for both facili-
ties; in the worst case the agent that is closest to the facilities might
have preference -1 for both of them and thus get low utility. On the
other hand, the facilities should not be far away from each other.
This is because, in the worst case again, an agent might have pref-
erence -1 for the facility that is close to his location and preference
1 for the facility that is far from his location.

Using the intuition gained from the discussion above we pro-
pose a mechanism for the 2-facility game that comprises these
ideas and places the facilities symmetrically away from the end-
points of the segment.

Mechanism Fixed depicts our approach. It does not use any in-
formation from the agents, thus it is de facto strategy proof.

Definition 5.1 (FixedMechanism). Let zf = 1−
√
2
2 . Fixedmech-

anism sets y1 = zf · ℓ and y2 = (1 − zf ) · ℓ.

Theorem 5.2. Fixed is zf ≃ 0.292-approximate.

Proof sketch. Tables 1 and 2 show the utility the agent located
on xi gets under y = (z · ℓ, (1 − z) · ℓ) and the corresponding ratio.
Our goal is to find a z ∈ [0, ℓ] that maximizes the minimum ratio.
Thus, the optimal guarantee for Mechanism 2 is achieved when
z
ℓ =

ℓ−2z
2ℓ−2z . If we solve for z, the feasible solution is zf = (1−

√
2
2 )ℓ.

ti ui (xi , ti , y) u∗i (xi , ti ) Ratio
1, 1 ℓ + 2xi 2ℓ ≥ 1/2
-1, 1 2z · ℓ 2ℓ − xi ≥ z

1, -1 (2 − 2z) · ℓ 2ℓ − xi ≥ 1/2
-1, -1 ℓ − 2xi 2ℓ − 2xi ≥ (1 − 2z)/(2 − 2z)

Table 1: Case analysis when xi ≤ z · ℓ or xi ≥ (1 − z) · ℓ.

□
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ti ui (xi , ti , y) u∗i (xi , ti ) Ratio
1, 1 (1 + 2z) · ℓ 2ℓ ≥ 1/2
-1, 1 2xi 2ℓ − xi ≥ 2z/(2 − z)
1, -1 2ℓ − 2xi 2ℓ − xi ≥ 2/3
-1, -1 (1 − 2z) · ℓ 2ℓ − 2xi ≥ (1 − 2z)/(2 − 2z)
Table 2: Case analysis when z · ℓ < xi < (1 − z) · ℓ.

Theorem 5.2 shows the sharp contrast between 1-facility and
2-facility games where both locations and preferences are private.
Recall that [8] proved that for 1-facility games there is no deter-
ministic strategy proof mechanism with bounded approximation
guarantee. Observe furthermore that Fixed does not require any
information from the agents. Next we prove that it is optimal when
no communication is allowed.

Theorem 5.3. Fixed is optimal when no communication is al-
lowed.

Proof. LetM be any deterministic mechanism that locates the
facilities with no communication. Since M is deterministic, it lo-
cates the facilities on the same locations for any instance. So, let
y1 ·ℓ and y2 ·ℓ be the locations of the first and the second facility re-
spectively.Without loss of generality assume that 0 ≤ y1 ≤ y2 ≤ 1.
We will prove our claim by contradiction. So, for the sake of con-
tradiction assume that the approximation ratio ofM is strictly bet-
ter than z = (1 −

√
2
2 ). Without loss of generality we assume that

y1 ≤ 1
2 . Consider the following two instances. On the first instance

there is only one agent on y1 ·ℓ with preferences (−1,−1). The util-
ity of the agent underM is (y2−y1) ·ℓ. The optimal solution locates
both facilities on ℓ and the agent gets utility (2 − 2y1) · ℓ. So, the
approximation ratio of M is y2−y1

2−2y1 . Since the approximation of M
is strictly greater than z, we get that

y1 <
y2 − 2z
1 − 2z . (4)

Now, consider the instance where there is only one agent on 0 with
preferences (−1, 1). UnderM , the agent gets utility (1+y1 −y2) · ℓ.
The optimal solution for this instance locates the first facility on
ℓ, the second one on 0, and the agent gets utility 2ℓ. Hence, the
approximation guarantee of M on this instance is 1+y1−y2

2 . Again,
since we assume that the approximation is strictly greater than z,
we get that

y1 > 2z + y2 − 1. (5)

The combination of Equations (4) and (5) dictates that y2 > 3 −
1
2z − 2z > 1 − z. Using another two instances we can prove that
y1 < z. More specifically, we use the instance where there is only
one agent on y2 · ℓ with preferences (−1,−1) and the instance
where there is only one agent on ℓ with preferences (1,−1). Fi-
nally, consider again the instance where there is only one agent on
0 with preferences (−1, 1). Recall that the approximation guaran-
tee of the mechanism on this instance is 1+y1−y2

2 . So, since y1 < z
and y2 > 1 − z we get that the approximation guarantee is strictly
less than z which is a contradiction. Our claim follows. □

5.1 Fixed+ mechanism
In order to describe Fixed+, we need to introduce the following
events:
• Lj : Every agent wants facility j below ℓ/2. Formally, for ev-
ery agent i with xi ≤ ℓ

2 it holds that ti j ∈ {0, 1} and for
every agent i with xi >

ℓ
2 it holds that ti j ∈ {0,−1}.

• Hj : Every agent wants facility j above ℓ/2. Formally, for ev-
ery agent i with xi ≤ ℓ

2 it holds that ti j ∈ {0,−1} and for
every agent i with xi >

ℓ
2 it holds that ti j ∈ {0, 1}.

Fixed+ mechanism

Input: Locations x1, . . . ,xn and preferences p1, . . . ,pn .
Output: Locations y1 and y2.
Set zd =

17−
√
161

16 .
(1) If events L1 and L2 occur, then set y1 = y2 = zd · ℓ.
(2) Else if events L1 and H2 occur, then set y1 = zd · ℓ

and y2 = (1 − zd ) · ℓ.
(3) Else if events H1 and H2 occur, then set y1 = y2 =

(1 − zd ) · ℓ.
(4) Else if events H1 and L2 occur, then set y1 = (1 −

zd ) · ℓ and y2 = zd · ℓ.
(5) Else set y1 = zd · ℓ and set y1 = (1 − zd ) · ℓ.

Lemma 5.4. Fixed+ is strategy proof.

Proof sketch. Mechanism Fixed+ is strategy proof due to the
combination of the symmetric locations it locates the facilities and
the way it chooses how to locate them. If the locations were not
symmetric, or if zd was varying through the Steps, then the mech-
anism would not be strategy proof. The intuition behind the strat-
egy proofness is as follows. The first four steps of the mechanism
trigger when the preferences of all the agents align in some way.
On the other hand, Step 5 triggers only when agent’s preferences
conflict each other. Since there are only two plausible positions
for each facility and they are symmetric, no agent can increase his
utility by misreporting his location or his preferences. If the pref-
erences are aligned any change on the facilities can only weakly
decrease his utility. If Step 5 is triggered, then any kind of misre-
porting will either have no effect on the outcome, i.e., the conflicts
will still be present, or it will make the preferences aligned, but
the new location for the facilities will be worse for the agent that
misreported his type. □

Theorem 5.5. Fixed+ is 2zd
2−zd ≃ 0.311-approximate.

Proof. In order to prove our claim, we will focus on the agent
that gets the minimum utility under Fixed+. Wewill prove that for
every possible combination of his preferences and his location the
agent gets at least 2zd

2−zd fraction of the utility he would get under
an optimal solution. So, let i be an agent that gets minimum utility
under Fixed+. Without loss of generality we will assume that he
is located below ℓ

2 . Observe that for the preference combinations
(0, 1), (1, 0), (0,−1), (−1, 0) the agent gets utility at least ℓ, while
the maximum utility he can get is trivially bounded by 2ℓ. Hence,
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if the agent’s preferences are one of these combinations, then un-
der any location for the facilities the agent gets at least half of his
maximum utility and the mechanism is at least 1

2 -approximate.
• pi = (1, 1). Observe that if there exists an agent with pref-
erences (1, 1), then Fixed+ will locate the facilities either
through Step 1, or through Step 5. We will consider each
case separately and we will identify the worst case for each
one. Observe that under any of these steps, agent i gets
utility at least (1 + 2zd ) · ℓ, while the maximum utility he
can get is bounded by 2ℓ. So, the mechanism is ( 12 + zd )-
approximate in any of these steps. Hence, the mechanism is
2zd
2−zd -approximate.

• pi = (1,−1). When there exists an agent below ℓ
2 with pref-

erences (−1, 1), then Fixed+ will locate the facilities either
through Step 2, or through Step 5. Observe that both steps lo-
cate the facilities in the same way. Since Step 2 allows more
freedom in order to construct the instance where Fixed+,
we will study only this step. If we check Tables 1 and 2 we
can see that in any case the ratio of themechanism is greater
than 1

2 .
• pi = (−1, 1). When there exists an agent below ℓ

2 with pref-
erences (−1, 1), then Fixed+ will locate the facilities either
through Step 4, or through Step 5. When Step 4 is used, we
can check Tables 1 and 2 and can see that in any case the
ratio of the mechanism is greater than 1

2 . When Step 5 is
used, the utility of agent i is at least 2zd · ℓ. For the cho-
sen value of zd , the worst case for this step is when agent
i is located on zd · ℓ and there is another agent on ℓ

2 + ϵ
with preferences (0, 1). Then, the optimal solution locates
the first facility on ℓ and the second one on z where the
utility for agent i is (2 − zd ) · ℓ. Hence, the approximation
guarantee of the mechanism for this case is 2zd

2−zd .
• pi = (−1,−1). When there exists an agent below ℓ

2 with
preferences (−1,−1), then Fixed+ will locate the facilities
either through Step 3, or through Step 5.When Step 3 is used
by the mechanism, then agent i gets utility (1− zd −xi ) · 2ℓ
while the optimal value is trivially bounded by (1 − xi ) · 2ℓ.
Hence, since xi ≤ ℓ

2 , the approximation guarantee of the
mechanism is bounded by 1 − zd

2 >
2zd
2−zd . When Step 5 is

used, the worst case instance for the mechanism is when
agent i is located on zd there is another one agent on ℓ

2 − ϵ
with preferences (1, 0). Then, the utility of agent i in the
optimal solution is bounded by 7ℓ

4 −zd ·ℓ while the utility he
gets under Fixed+ is (1−2zd ) · ℓ. Hence, the approximation
ratio of Fixed+ is 1−2zd

7
4−zd

=
2zd
2−zd , for the chosen value of zd .

□

Observe that since Fixed+ asks for the exact location of every
agent, it requires arbitrarily large communication; this happens for
example when the location xi of an agent i is irrational. However,
a closer look shows that this is not necessary. Fixed+ only needs
to know whether an agent is located below or ℓ

2 . One bit suffices
for this piece of information; an agent transmits 0 if he is below ℓ

2
and 1 if he is above ℓ

2 . Furthermore, his preference for each facil-
ity requires two bits, so Fixed+ requires only five bits per agent.

An interesting question is whether there exists a mechanism that
achieves better approximation when every agent communicates
O (1) bits.

6 RANDOMISED MECHANISMS
In this section we propose two randomised mechanisms, Random
and Random+ that are universally strategy proof and achieve con-
stant approximation ratio. Random requires zero communication
and Random+ can be implemented using five bits per agent.

Definition 6.1 (Random mechanism). Random sets y1 = y2 = 0
with probability 1

2 and y1 = y2 = ℓ with probability 1
2 .

Theorem 6.2. Random is universally strategy proof and achieves
1
2 approximation.

Proof. Firstly, it is easy to see that the the mechanism is uni-
versally strategy proof since in each case the mechanism chooses
a fixed location, which is strategy proof. We will prove that every
agent gets utility at least ℓ

2 in expectation from every facility. Sup-
pose that agent i ∈ N is located on xi and has preferences ti . Let
us study the expected utility the agent gets from the facility j. If
ti j = 1, then the agent’s utility is ℓ − xi when yj = 0 and xi when
yj = ℓ. If ti j = −1, then the agent gets utility is xi if yj = 0 and
ℓ − xi if yj = ℓ. If ti j = 0, then the agent gets utility ℓ irrespec-
tively from yj . It is not hard to see that the agent gets utility at
least ℓ

2 in expectation from each facility. So the agent in expecta-
tion gets utility at least ℓ. The maximum utility the agent can get
is trivially bounded by 2ℓ. Hence, every agent gets at least half of
the maximum utility he could get and the theorem follows. □

Although Random seems naive, it achieves the best approxima-
tion so far, using zero communication as well. However, we should
note that Random can be extended for k-facility games, for any k ,
and achieve 1

2 approximation. Furthermore, we use the intuition
obtained from it in order to construct Random+. The first four steps
of Random+ are the same as in Fixed+, so again we will use the
events Lj and Hj introduced in the previous section.

Random+ mechanism

Input: Locations x1, . . . ,xn and preferences p1, . . . ,pn .
Output: Locations y1 and y2.
Set zr = 13−

√
161

8
(1) If events L1 and L2 occur, then set y1 = y2 = zr · ℓ.
(2) Else if events L1 and H2 occur, then set y1 = zr · ℓ

and y2 = (1 − zr ) · ℓ.
(3) Else if events H1 and H2 occur, then set y1 = y2 =

(1 − zr ) · ℓ.
(4) Else if events H1 and L2 occur, then set y1 = (1 −

zr ) · ℓ and y2 = zr ℓ.
(5) Else with probability 1

2 sety1 = y2 = zr ·ℓ and with
probability 1

2 set y1 = y2 = (1 − zr ) · ℓ.

Lemma 6.3. Random+ is universally strategy proof.

The proof of Lemma 6.3 uses similar arguments as Lemma 5.4.

Theorem 6.4. Random+ is ( 12 + zr ) ≃ 0.538-approximate.
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The proof of Theorem 6.4 uses similar arguments as Theo-
rem 5.5. Furthermore, using the same technique as for Fixed+,
Random+ can be implemented in a communication efficient way
where each agent sends only five bits to the planner.

7 TWO-PREFERENCE INSTANCES
In this section we study k-facility games where all the agents
have preferences in {0, 1}k , {1,−1}k , or in {0,−1}k , which we call
two-preference instances. The non existence of optimal determin-
istic strategy proof mechanisms can be extended even on two-
preference instances with three agents.

Theorem 7.1. For any k ≥ 2, there is no optimal determin-
istic strategy proof mechanism for k-facility games even on two-
preference instances with three agents and known locations.

The proof of the theorem follows from the instances below. As
in Theorem 4.1, white circles correspond to agents and black circles
to the optimal locations.

01

0
ℓ
3

11

ℓ
2

y2 y1
10

ℓ
2ℓ
3

(a) Instance I

11
y2

0

11
y1

ℓ
2

10

ℓ

(b) Instance I ′

Figure 2: Example for preferences in {0, 1}2. The agent lo-
cated on 0 in the instance I can declare preferences (1, 1) and
increase his utility by moving the facility f2 closer to 0.

-1 1

0

1 1

ℓ
2 ℓ-ϵ

y2 y1

ℓ

(a) Instance I

-1 1

0

-1 1

ℓ-ϵ

y2 y1

ℓ

(b) Instance I ′

Figure 3: Example for preferences in {−1, 1}2. The agent lo-
cated on ℓ−ϵ in the instance I can declare preferences (−1, 1)
and increase his utility by moving the facility f2 closer to
ℓ − ϵ .

We now show how we can modify Fixed+ by changing the
value of zf and achieve better approximation guarantees. We de-
note the mechanisms as Fixed{0,1} , for preferences in {0, 1}k , and
Fixed{0,−1} , for preferences in {−1, 0}k . Furthermore, for k = 2
we derive a new deterministic mechanism termed OPT 2, for the
the case where all agents have preferences in {0, 1}2 and their lo-
cations are known.

Definition 7.2. Fixed{0,1} sets y1 = . . . = yk = ℓ
2 .

Theorem 7.3. Fixed{0,1} is 1
2 -approximate.

Proof. Observe that for every agent i and any facility j it holds
that ui j (xi , ti j , yj ) ≥ ℓ − |xi − ℓ

2 | ≥
ℓ
2 . Hence, ui (xi , ti , y) ≥

k ·ℓ
2 .

Observe, however, that maxy ui (xi , ti , y) ≤ k · ℓ. Hence, agent i
under y gets at least half of his maximum utility. □

0 -1 -1 0

0

-1 -1

ℓ
2

y2y1

ℓ

(a) Instance I

-1 -1 -1 0

0

-1 -1

ℓ
2

y2y1

ℓ

(b) Instance I ′

Figure 4: Example for preferences in {−1, 0}2. The agent lo-
cated on 0 in the instance I can declare preferences (−1,−1)
and increase his utility by moving the facility f2 away from
0. Observe that for the Instance I ′ there are two optimal so-
lutions (y1 = 0, y2 = ℓ and y1 = ℓ, y2 = 0). However, this does
not affect the correctness of our example assuming that the
mechanism chooses a solution deterministically.

Definition 7.4. Fixed{0,−1} sets y1 = . . . = y ⌈ k2 ⌉
= 0 and

y ⌊ k2 ⌋
= . . . = yk = ℓ.

Theorem 7.5. Fixed{0,−1} is ⌊
k
2 ⌋
k -approximate.

Proof. Observe that since ti ∈ {0,−1}k it holds that
ui (xi , ti , y) =

∑
j ⌈k2 ⌉ · xi + ⌊

k
2 ⌋ · (ℓ − xi ) ≥ ⌊ k2 ⌋ · ℓ. Observe

though that maxy ui (xi , ti , y) ≤ k · ℓ. Hence, Fixed{0,−1} is at least
⌊ k2 ⌋
k -approximate. □

Definition 7.6. OPT 2 locates each one of the two facilities inde-
pendently on its optimal location.

It is not hard to see thatOPT 2 is strategy proof. This is because
we know that when agents’ locations are known, the mechanism
that locates one facility on the leftmost optimal location is strategy
proof. So, since the mechanism locates each facility independently
no agent can increase his utility by lying.

Theorem 7.7. OPT 2 is 3
4 -approximate.

Proof. Before we analyze the approximation guarantee of the
mechanism, let us first study the locations in which the mecha-
nism places the facilities. Since the preferences of each agent are
in {0, 1}2, it is not hard to see that the optimal location for each
facility is the median point between the locations of the leftmost
and the rightmost agents that want to be close to the facility.

Without loss of generality we can assume that the agent with
the minimum utility under OPT2, denoted by a1, has preferences
(1, 1). If ti = (1, 0), then the agent would have utility at least 3

2 ℓ
since any other agent whowants to be close to the first facility is lo-
cated in distance at most ℓ from a1’s location. Themaximum utility
the agent can get is 2ℓ, so the mechanism is then 3

4 -approximate.
Assume that a1 is located on x ≤ ℓ

2 . Then, without loss of gen-
erality we can assume that he is located on 0, since for any other
location the agent would be closer to the facilities and thus his util-
ity would increase. Then, observe that agent a1, alongside with the
rightmost agents, will define the locations of the facilities. Observe
that if the rightmost agent has preferences (1, 1), then OPT2 is op-
timal. So, we can assume that the rightmost agent, denoted by ar1,
has preferences (0, 1). In the worst case ar1 will be located on ℓ,
since for every other location the utility of agent a1 will be lower.
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We have to consider the two possible preferences for the second
rightmost agent with preference 1 for the first facility and prove
that OPT2 achieves the desired approximation. We will use ai to
denote this agent and xi to denote his location.

Firstly, we consider the case where agent ai has preferences
(1, 1) and xi ≥ ℓ

2 . The utilities of the agents for the facilities un-
der the locations (y1, y2), where y2 ≤ xi , are u1 = 2 − y1 − y2,
ui = 2 − 2xi + y1 + y2 and ur1 = 1 + y2. OPT2 will locate the fa-
cilities to y1 =

xi
2 and y2 = ℓ

2 and the utility of agent a1 will be
u1 =

3−xi
2 . Observe that the locations of the facilities that make

the utilities of these three agents equal provide an upper bound on
the utility the agent a1 gets under the optimal solution, since any
other solution would yield lower utility for at least one of these
agents. If we find the locations of the facilities that equalize the
utilities for the agents we get y1 = 2xi − ℓ and y2 = ℓ − xi and
thus the optimal utility for agent a1 is bounded by 2ℓ − xi . Hence,
OPT2 is α = 3−xi

4−2xi ≥
3
4 -approximate.

In the case where xi < ℓ
2 , it is not difficult to see that agent a1

gets utility at least 5
4 ℓ underOPT

2. Observe that under the optimal
solution the utility of the agents is bounded by 3

2 ℓ, since there are
no locations for the facilities where both a1 and ar1 get more than
3
2 ℓ. Thus, in this case the mechanism is 5

6 -approximate.
If the preferences of ai are (1, 0), then similar analysis can be

applied. □

8 UTILITARIAN AND HAPPINESS
In this section we show that Fixed, Fixed{0,1} , Fixed{0,−1} , and
Random achieve the same approximation guarantees for Utili-
tarian and Happiness objectives as Egalitarian. All mecha-
nisms remain strategy proof since they do not require any infor-
mation from the agents. Recall, Utilitarian is the sum of the
utilities of the agents, formally

∑
i ui (xi , ti , y) and Happiness is

mini
ui (xi ,ti ,y)
u∗i (xi ,ti )

, where u∗i (xi , ti ) =maxyui (xi , ti , y).

Theorem 8.1. For Utilitarian and Happiness objectives the fol-
lowing hold. Fixed is zf -approximate. Fixed{0,1} is 1

2 -approximate.

Fixed{0,−1} is
⌊ k2 ⌋
k -approximate. Random is 1

2 -approximate.

Proof. In the proofs of Theorems 5.2, 7.3, 7.5, and 6.4 it is
proven that for every agent i holds that ui (xi ,ti ,y)

u∗i (xi ,ti )
≥ α , where

α is the approximation ratio of the corresponding mechanism.
Hence, the claim for Happiness already follows from those proofs
since they capture the definition of Happiness. For Utilitar-
ian, observe that OPTw = maxy

∑
i ui (xi , ti , y) ≤

∑
i u
∗
i (xi , ti ).

So, from the proofs of the aforementioned theorems we get that
ui (xi , ti , y) ≥ u∗i (xi , ti ) · α for every i . So, if we sum over i we get
that
∑
i ui (xi , ti , y) ≥ α ·∑i u∗i (xi , ti ) ≥ α ·OPTw and the theorem

follows. □

The observing reader may wonder whether the approximation
guarantee of Fixed for Utilitarian contradicts the result of [32].
Recall, [32] proved that there is no deterministic strategy proof
mechanism for Utilitarian with approximation ratio better than
2
n . However, a closer look will reveal that in order to establish that
result the following assumptions must be made. Firstly, that ev-
ery agent wants to be close to the first facility and away from the

second facility. Furthermore, they defined the utility of an agent
located on xi to be ui (xi , y) = |xi − y1 | − |xi − y2 |. This different
definition of utility is crucial for deriving those negative results
and this is the reason why our results do not contradict theirs.

9 DISCUSSION
In this paper we studied heterogeneous facility locations on the
line segment. To the best of our knowledge, this is the first sys-
tematic study of this model for the Egalitarian objective. We
derived inapproximability results for strategy proof mechanisms
for Egalitarian even for instances with known locations and two
agents. Furthermore, we derived strategy proof mechanisms that
achieve constant approximation for Egalitarian, some of which
also achieve the same guarantee for Utilitarian and Happiness
objectives.

All of our mechanisms are simple and can be implemented in a
communication efficient way. More specifically, every mechanism
needs zero or five bits of information from every agent. Commu-
nication efficiency is crucial for real life scenarios. Consider the
example of the factory and the school discussed in the introduc-
tion. If thousand of citizens live on this street, then our mecha-
nisms require only their preferences and whether they live on the
west part of the street or on the east one and not their full ad-
dress saving huge amount of time to the planner. To the best of our
knowledge, this is the first time that communication complexity
is studied for facility location problems. We strongly believe that
there is much to be said about facility location mechanisms and
communication complexity. Firstly, it would be really interesting
to understand how limited communication affects the approxima-
tion guarantee of mechanisms. Is there a better randomised mech-
anism than Randomwhen no communication is allowed? Are there
better mechanism than Fixed+ and Random+ when every agent is
allowed to communicate O (1) bits? Can Fixed+ and Random+ be
extended for k ≥ 3 facilities?

Another intriguing avenue of research is to use communi-
cation complexity in order to define “simple” mechanisms. Re-
cently Li [19] defined the obviously strategy proof (OSP) mecha-
nisms in order to capture the simplicity of mechanisms. Intuitively,
a mechanism is obviously strategy proof if it remains incentive
compatible even when some of the agents are not fully rational.
The formal definition of OSP is quite technical, and thus we de-
cided not to include it in our paper since it would deviate from its
main theme. However, we strongly believe that some of our mech-
anisms, if not all of them, should be obviously strategy proof [19].
Fixed and Random do not use any information from the agents. In
both Fixed+ and Random+, if an agent knows the declarations of
the rest of the agents, then he can verify that he cannot increase
his utility by misreporting his type using O (1) space. We believe
that this kind ofmechanism are de facto simple and deserve further
studying.
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