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ABSTRACT
We study the asymptotic behavior of replicator dynamics in set-

tings of network interaction. We focus on three agent graphical

games where each edge/game is either a 2x2 zero-sum or a 2x2

coordination game. Using tools from dynamical systems such as

Lyapunov functions and invariant functions we establish that this

simple family of games can exhibit an interesting range of behav-

iors such as global convergence, periodicity for all initial conditions

as well as limit cycles. In contrast, we do not observe more complex

behavior such as toroids or chaos while it is possible to reproduce

them in slightly more complicated settings.
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1 INTRODUCTION
The analysis of multi-agent system dynamics is a central question

for numerous fields including AI, game theory as well as systems

engineering. Despite the undoubtable importance of such ques-

tions, identifying a clear path towards analytical success has been

tricky and numerous different approaches have been proposed and

explored [28, 30, 32].

What makes the analysis of MAL systems so inherently elusive

is that multi-agent systems from their very nature allow the emer-

gence of rather complex patterns of behavior [8]. Even when it

comes to simplified evolutionary game theory models of adaptive

agents behavior even relatively simple systems based on variants

of Rock, Paper, Scissors games can lead to chaotic dynamics [26].

The reason behind this emergence of complexity in evolutionary

dynamics has to do with the building components of these systems:

i.e. the dynamics themselves. Replicator dynamics is arguably the

most well known and extensively studied evolutionary dynamic [10,

25, 33]. It is a continuous time dynamic that is the smooth analogue

of the well known Multiplicative Weights Update algorithm [1, 12].

Replicator dynamics when applied to multi-agent games results
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in nonlinear dynamical systems whose behavior in three of more

dimensions can be chaotic. Examples of complex recurrent behavior

have been shown to emerge in replicator systems with four or

more independent variables [5, 23, 26, 29]. In contrast, replicator

dynamics in two agent, two strategy games (which have only two

independent variables) are known to have simple limit behaviors,

either convergence to equilibria or periodicity [7, 10, 20]. This leaves

an interesting not well understood gap about the possible behaviors

of three dimensional replicator dynamics.

Within this context, we focus on a rather natural and archetypal

class of three player games. We consider three player graphical

games, where each player corresponds to a vertex of a triangle and

each edge corresponds to a two by two game (triangular game).

Furthermore, we focus on the case where each edge game is ei-

ther completely adversarial (zero-sum game) or common utility

(coordination/partnership) game. Intuitively, one can think of these

network interactions as encoding friend-or-foe type of relation-

ships, where coordination games correspond to perfectly aligned

interests (friend) whereas zero-sum games correspond to perfectly

misaligned interests (foe).
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Figure 1: All types of 3-player triangular games.

OurResults andTechniques.We analyze the behavior of repli-

cator dynamics in the setting of friend-or-foe triangles. In the case

of all zero-sum interactions (z-z-z), we prove that as long as the

game has a fullymixed Nash equilibrium then all system trajectories
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are perfectly periodic. If the game does not have an interior equilib-

rium then all interior initial conditions converge to the boundary.

The key technical observation is that after a change of variables

the systems trajectories are shown to be planar (i.e. two dimen-

sional). Combining this result with techniques for proving more

complicated types of recurrence for replicator dynamics in zero-

sum networks [23] we establish the periodicity of the trajectories.

Our technique for proving invariant functions for replicator dy-

namics is quite generic and can be applied to large networks of

friend-or-foe games. This includes the case of (z-c-c) games. For

this class of games, we can show that the dynamics are still planar

and hence due to the Poincaré-Bendixson theorem these systems

provably cannot exhibit chaos. Boundary limit cycles, interior pe-

riodic orbits as well as convergence to equilibria are all shown to

be possible. The case of (c-c-c) is relatively straightforward as the

corresponding three player games are potential games and conver-

gence to equilibria is guaranteed from all initial conditions. Finally,

the case of (z-z-c) we show experimentally that it can exhibit limit

behavior that is not observed in any of other settings including

boundary limit cycles where the two collaborating (friend) agents

and the single agent without any friends take turns best responding

simultaneously to each other. In this case, the dynamics can result

in the evolutionary formation of a team of two cooperating agents

that act in unison against the single opposing agent, which leads

to limit cycles.

2 PRELIMINARIES
2.1 Separable polymatrix multiplayer game
A graphical polymatrix game is defined via an undirected graph

G = (V ,E), where V corresponds to the set of agents of the game

and where every edge corresponds to a bimatrix game between

its two endpoints/agents. We denote by Si the set of strategies of
agent i . We denote the bimatrix game on edge (i,k ) ∈ E via a pair of

payoff matrices:Ai,k of dimension |Si | × |Sk | andA
k,i

of dimension

|Sk | × |Si |. Let s ∈ ×iSi be a strategy profile of the game. We denote

by si ∈ Si the respective strategy of agent i . The payoff of agent

i ∈ V in strategy profile s is equal to the sum of the payoffs that

agent i receives from all the bimatrix games she participates in.

Specifically, ui (s ) =
∑

(i,k )∈E A
i,k
si ,sk . In addition, the social welfare

of a joint strategy s is defined as SW (s ) =
∑
i ui (s ).

A randomized strategy x for agent i lies on the simplex ∆(Si ) =

{p ∈ �|Si |+ :

∑
i pi = 1}. A randomized strategy x is said to be fully

mixed if it lies in the interior of the simplex, i.e. if xi > 0 for all

strategies i ∈ Si .
A (mixed) Nash equilibrium is a profile of mixed strategies such

that no agent can improve her (expected) payoff by unilaterally

deviating to another strategy.

2.2 Replicator Dynamics
The replicator equation is commonly used to describe game dynam-

ics of learning agents in evolutionary game theory. In its continuous

form it is give by the following differential equation:

ẋi ≜ xi [ui (x ) − û (x )], û (x ) =
n∑
i=1

xiui (x )

wherexi is the proportion of type i in the population,x = (x1, . . . ,xm )
is the vector of the distribution of types in the population, ui (x ) is
the fitness of type i , and û (x ) is the average population fitness. The

state vector x can also be interpreted as a randomized strategy of

an adaptive agent that learns to optimize over its possible actions

given an online stream of payoff vectors.

An interior point of the state space is a fixed point for the repli-

cator if and only if it is a fully mixed Nash equilibrium of the game.

The interior (the boundary) of the state space×i∆(Si ) are invariants
for the replicator.

We write down the replicator dynamics for the generic multi-

player game in a compact form as follows:

ẋiR = xiR
(
ui (R) −

∑
R′∈Si

xiR′u
i (R′)

)
for each agent i ∈ N , action R ∈ Si , and where we define ui (R) =
Es−i∼x−iui (R, s−i ).

Replicator enjoys desirable properties such as (low regret) as

it corresponds to follow-the-regularized leader dynamics (FTRL)

in continuous time with an entropic regularizer [17]. It has con-

nections to classic models of ecological growth (e.g. Lotka-Volterra

equations[10]), population dynamics [25], as well as several well

studied discrete time learning algorithms (e.g.MultiplicativeWeights

algorithm [1, 12]).

2.3 Dynamical Systems Theory
In this section we provide a quick introduction to the main ideas in

the topology of dynamical systems and certain important theorems

that we will be hinging upon to perform the analysis of the three

player replicator systems and the book by Bhatia and Szegö [4]

serves as a good reference (see also Weibull [33]).

Since our state space is compact and the replicator vector field

is Lipschitz-continuous, we can present the unique solution of

our ordinary differential equation as a continuous map Φ : S ×

� → S called flow of the system. Fixing starting point x ∈ S
defines a function of time which captures the trajectory (orbit,

solution path) of the system with the given starting point. This

corresponds to the graph of Φ(x , ·) : � → S, i.e., the set {(t ,y) :
y = Φ(x , t ) for some t ∈ �}. The trajectory captures the evolution

of the state of a system given an initial starting point.

A central concept in dynamical systems is the notion of trajectory

(or path) through a state x ∈ S. This corresponds to the graph of the
flow Φ(x , ·) : � → S, i.e. the set {(t ,y) : y = Φ(x , t ) for some t ∈
�}. If the starting point x does not correspond to an equilibrium,

then we wish to capture the asymptotic behavior of the system

(informally the limit of Φ(x , t ) when t goes to infinity). A function f
between two topological spaces is called a homeomorphism if it has

the following properties: f is a bijection, f is continuous, and f has

a continuous inverse. A function f between two topological spaces

is called a diffeomorphism if it has the following properties: f is a

bijection, f is continuously differentiable, and f has a continuously

differentiable inverse.

Definition 2.1. (Topological conjugacy) Two flows Φt : A→ A
and Ψt

: B → B are conjugate if there exists a homeomorphism

д : A→ B such that for each x ∈ A and t ∈ �:д(Φt (x )) = Ψt (д(x )).
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Furthermore, two flows Φt : A → A and Ψt
: B → B are

diffeomorhpic if there exists a diffeomorphism д : A→ B such that

for each x ∈ A and t ∈ � д(Φt (x )) = Ψt (д(x )). If two flows are

diffeomorphic, then their vector fields are related by the derivative

of the conjugacy. That is, we get precisely the same result that we

would have obtained if we simply transformed the coordinates in

their differential equations [16].

Theorem 2.2. Poincaré Recurrence [2, 24]If a flow preserves
volume and has only bounded orbits then for each open set there exist
orbits that intersect the set infinitely often.

The Poincaré-Bendixson theorem implies that chaos in not pos-

sible in planar dynamical systems in continuous time.

Theorem 2.3. Poincaré-Bendixson theorem [3, 31] Given a
differentiable real dynamical system defined on an open subset of the
plane, then every non-empty compact ω-limit set of an orbit, which
contains only finitely many fixed points, is either a fixed point, a
periodic orbit, or a connected set composed of a finite number of fixed
points together with homoclinic and heteroclinic orbits connecting
these.

Lyapunov Function: A Lyapunov (or potential) function V :

S → R is a function that strictly decreases along every non-trivial

trajectory of the dynamical system. For continuous time dynamical

systems it holds that
dV
dt ≤ 0 with equality attained only at the

equilibrium of the system. For more information see [11].

3 GLOBAL ANALYSIS OF THREE PLAYER
GAMES

In this section, we present the global analysis of all possible three

player games with two strategies each, by using different tools from

dynamical systems theory. Before looking at the specific sub-cases

let us consider a specific structure of the polymatrix game and show

the existence of an invariant function which will help us to argue

about the global dynamics in the specific sub-cases ((z-z-z) and
(c-c-z)). We also present simulation results along side the different

cases, with different forms of the classic matching pennies that is

used for playing a zero-sum and a coordination game. To make the

notations simpler, we define the following shorthand:

MP
д
i, j (a,b, c,d ) =

[
a b
c d

]
(1)

This means that players i, j play a game with payoff matrices as

specified and the game type is д, where д = Z is a zero-sum game

andд = C is a coordination game. So the standard matching pennies

between players i, j would be given byMPZi, j (1,−1,−1, 1).

3.1 Invariant function for
Zero-Coordination-Zero Bipartite Games

We generalise the results obtained in [23] for a network zero-sum

game and in [19] for bipartite full coordination games to a more

generic bipartite graph (where connections within the partitions are

allowed) with the players within the disjoints sets are playing a zero-

sum game between them and the players between the disjoint sets

are playing coordination games with one another. So, we define

the disjoint set of vertices to be VL and VR (VL ∩ VR = ϕ and

VL ∪ VR = V ), with players i, j ∈ VL playing a zero-sum game

(similarly if they both are in VR ), while players i ∈ VL , j ∈ VR are

playing coordination games. Let EL consists of the edges whose

end points are players inVL playing a zero-sum game and similarly

define ER for VR . EC consists of player i ∈ VL and j ∈ VR , where
i, j are playing a coordination game. Then,

Theorem 3.1. Let Φ denote the flow of the replicator dynamic
when applied to a zero-coordination-zero bipartite game that has an
interior (i.e. fully mixed) Nash equilibrium q then given any (interior)
starting point x0 ∈ ×i∆(Si ), the function

∑
i ∈VL

∑
R∈Si qiR ln(xiR )−∑

j ∈VR
∑
R∈Sj qjR ln(x jR ) is a constant of the motion, i.e., it remains

constant as we move along any system trajectory.

Proof. The support of the state of system (e.g., the strategies
played with positive probability) is an invariant of the flow, so it

suffices to prove this statement for each starting point x0 at time

t = 0. We examine the time derivative of

∑
i ∈VL

∑
R∈Si qiR ln(xiR )−∑

j ∈VR
∑
R∈Sj qjR ln(x jR ). Consider the time derivative of the func-

tion as follows:∑
i ∈VL

∑
R∈Si

qiR
d ln(xiR )

dt
−

∑
j ∈VR

∑
R∈Sj

qjR
d ln(x jR )

dt

=
∑
i ∈VL

∑
(i,m)∈EL

∑
(i,k )∈EC

qTi
(
Ai,mxm +A

i,kxk
)
− xTi

(
Ai,mxm +A

i,kxk
)

−
*.
,

∑
j ∈VR

∑
(j,n)∈ER

∑
(j,k )∈EC

qTj
(
Ai,nxn +A

j,kxk
)
− xTj

(
Aj,nxm +A

j,kxk
)+/
-

=
∑
i ∈VL

∑
(i,m)∈EL

qTi A
i,mxm − x

T
i A

i,mxm +
∑
i ∈VL

∑
(i,k )∈EC

qTi A
i,kxk − x

T
i A

i,kxk

−
∑
j ∈VR

∑
(j,k )∈EC

qTj A
j,kxk − x

T
j A

j,kxk −
∑
j ∈VL

∑
(j,n)∈ER

qTj A
j,nxn − x

T
j A

j,nxn

=
∑
i ∈VL

∑
(i,m)∈EL

(
qTi − x

T
i

)
Ai,mxm +

∑
i ∈VL

∑
(i,k )∈EC

(
qTi − x

T
i

)
Ai,kxk

−
∑
j ∈VR

∑
(j,k )∈EC

(
qTj − x

T
j

)
Aj,kxk −

∑
j ∈VR

∑
(j,n)∈ER

(
qTj − x

T
j

)
Aj,nxn

=
∑
i ∈VL

∑
EL=(i,m)

(
qTi − x

T
i

)
Ai,m (xm − qm ) +

(
qTm − x

T
m

)
Am,i (xi − qi )

+
∑

i ∈VL, j ∈VR

∑
EC=(i, j )

(
qTi − x

T
i

)
Ai, j

(
x j − qj

)
−

(
qTj − x

T
j

)
Aj,i (xi − qi )

−
∑
j ∈VR

∑
ER=(j,m)

(
qTj − x

T
j

)
Aj,n (xn − qn ) +

(
qTn − x

T
n
)
An, j

(
x j − qj

)
= 0

(2)

The first step arises from substituting the respective replicator equa-

tions. At the end, before grouping the terms in the final step, we use

the fact that when qk is a fully mixed Nash equilibirum (Ai,kqk )1 =

(Ai,kqk )2 = . . . = (Ai,kqk ) |Si | , to make player i indifferent to play-

ing any pure strategy. Hence, we have

(
qTi − x

T
i

)
Ai,kqk = 0 for

all players i . The last step is obtained after grouping the terms, to

take the transpose of one of terms and apply the fact that Ai,k =

−
(
Ak,i

)T
for all i,k , playing a bimatrix zero sum game. Similarly,

Ai,k =
(
Ak,i

)T
for all coordination games played by i,k . □
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We see that the (z-z-z) games (e.g., VL = {1, 2, 3},VR = ϕ) and
the (c-c-z) games (e.g., VL = {2, 3},VR = {1}) games are special

cases of the zero-coordination-zero bipartite graph, whereas the

(c-c-c) and the (z-z-c) games are not.

3.2 Z-Z-Z Game
The invariant function in this case is composed of sums of KL diver-

gences between the fully mixed Nash equilibrium and the trajectory

of the system starting in the interior. For the sum of the KL diver-

gences to remain constant any trajectory starting in the interior

has to remain bounded away from the boundary, otherwise that

sum tends to infinity. In addition, it is shown in Theorem 3.3 of [23],

that, if the flow has an interior fixed point, then for each open set E
that is bounded away from the boundary(bd (×i∆ (Si ))) there exists
orbits that intersect E infinitely often. The proof of which requires

establishing a homeomorphism д : ×i int (∆ (Si )) → R
∑
i ( |Si |−1) .

This establishes that the trajectories are volume preserving (when

the flows start in the interior). For a special case with three players

(i = 3) and two actions each |Si | = 2 ∀i , the homeomorphism д is

defined to be ln

( xiR
xi0

)
and hence let us define ziR := ln

( xiR
xi0

)
.

Theorem 3.2. A 3-player pairwise bimatrix symmetric (z-z-z)
game, with trajectories that start in the interior of the strategy space,
upon application of a homeomorphism ziR := ln

( xiR
xi0

)
, are con-

strained to lie on a plane in R2 if the game has an interior Nash
equilibrium. Otherwise the trajectories converge to the boundary. In
addition, the trajectories are always periodic.

Proof. Firstly, we note that for a 3 player game with two strate-

gies, we can rewrite the replicator dynamics as follows (with action

0 being shown here by default).

˙

ln

(
x1

1 − x1

)
= a12x2 + a13x3 + (c12 + c13)

˙

ln

(
x2

1 − x2

)
= −a12x1 + a23x3 + (c21 + c23)

˙

ln

(
x3

1 − x3

)
= −a13x1 − a23x2 + (c31 + c32)

where ai j = A
i, j
1,1+A

i, j
1,1−A

i, j
1,2−A

i, j
2,1 for i < j , ci j = A

i, j
1,2−A

i, j
2,2 and

c ji = AT
j,i

1,2 −A
T k,i

2,2 . The signs in the above equation are due to the

fact that all the players are playing bimatrix zero sum games. Using

the mapping defined above, we can make the following reduction

assuming ai j , 0 for all i, j (otherwise, the system automatically

reduces to a dimension which is strictly less than 3). Eliminating

the term with x3 in the first two equations, we get

a13ż2 − a23ż1 = a12
(
− a13x1 − a23x2

)
+ a13 (c21 + c23) − a23 (c12 + c13)

= a12ż3 + a13 (c21 + c23) − a23 (c12 + c13) − a12 (c31 + c32)

Thus,

a13ż2 − a12ż3 − a23ż1 = K

where,

K = a13 (c21 + c23) − a23 (c12 + c13) − a12 (c31 + c32)

Finally, integrating with respect to time from t = 0 to any generic

point in time t , we get the following equation:

a13z2 − a23z1 − a12z3 = Kt +C0 (3)

If K > 0, the right hand side of the above equation tends to infinite

as t → ∞ and this implies the magnitude of atleast one of the zi
must approach infinity, which implies xi → 0 or xi → 1. This

implies that the dynamics converge to the boundary. A similar

argument follows for K < 0. Now when K = 0, the above equation

is the plane given by:

a13z2 − a23z1 − a12z3 = C0 (4)

Hence, any trajectory starting in the interior is forced to lie in

this plane. Through Poincaré-Bendixon theorem, we know that the

only possible limiting trajectories are limit cycles, period orbits or

convergence to fixed points. However, [23] also showed that the

general network zero-sum game exhibits Poincaré recurrence and

hence the only possible limiting behaviour in this case is periodicity,

such that the initial state is visited infinitely often.

□

Corollary 3.3. The trajectories associated with the 3-player pair-
wise bimatrix symmetric (z-z-z) game, accommodates periodic orbits
in the interior of the state space if and only if there is a continuum of
Nash equilibria in the interior of the state space.

Proof. The fully mixed Nash equilibrium of the system, corre-

spond to the equilibria of the replicator dynamics which lie in the

interior. These are characterized by the system of linear equations

as follows:

(a12) x2 + (a13) x3 = −(c12 + c13) (5)

(−a12) x1 + (a23) x3 = −(c21 + c23) (6)

(−a13) x1 + (−a23) x2 = −(c31 + c32) (7)

Eliminating x3 from the first two equations we get the following

equation:

−a12a13x1 − a12a23x2 = (c21 + c23)a13 − (c12 + c13)a23 (8)

Adding the above equation to (−a12) times (−a13) x2 + (−a23) x3 =
−(c31 + c32), we get the left hand side of this to be 0 and the right

hand side boils down to K = a13 (c21 + c23) − a23 (c12 + c13) −
a12 (c31 + c32), as defined previously. Hence to have a continuum of

equilibria it is necessary and sufficient that K = 0, and the system

of linear equations will then have infinite solutions. From Theorem

3.2 we have that the limiting behavior is periodic in the interior of

the state space. However, we also know from Theorem 3.2, when

K , 0, or equivalently when this system has no interior equilibria,

the limiting behavior is forced to go to the boundary of the state

space thus proving that existence of interior periodic orbits implies

the existence of a continuum of Nash equilibria in the interior of

the state space.

□
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(a) MPZ
1,2 (1, −1, −1, 1), MPZ

1,3 (1, −1, −1, 1), MPZ
2,3 (1, −1, −1, 1) (b)MPZ

1,2 (1, −1, −1, 1), MPZ
1,3 (1, −1, −1, 1), MPZ

2,3 (2.2, −2, −2, 2)

Figure 2: Plots of trajectories in the (z-z-z) game where the red circles indicate the initial conditions and the green squares
indicate the time average of the associated trajectories.

3.3 C-C-Z Game
The (c-c-z) game is also a special case of the zero-coordination-zero

bipartite game, with the invariant function beingH = −
( ∑

2

i=1
∑
1

k=0
qik ln (xik )−

∑
1

k=0 q3k ln (x
3k )

)
. Now, if we leverage the Theorem

3.1, we learn that this function can still remain constant when one

of the terms go to∞ and another term goes to −∞ at the same rate.

Hence it is impossible to conclude if the trajectories will be bounded

away from the boundary (unlike (z-z-z) games) and hence Poincaré

recurrence does not hold in this case. But we use homeomorphism

д : ×i int (∆ (Si )) → R
∑
i ( |Si |−1) , that was defined previously and

this is independent of the type of the game that is being played and

is true due to the property of the replicator equations in general.

We define ziR := ln

( xiR
xi0

)
, similar to the (z-z-z) game.

Theorem 3.4. A 3-player pairwise bimatrix symmetric (c-c-z)
game, with trajectories that start in the interior of the strategy space,
upon application of a homeomorphism ziR := ln

( xiR
xi0

)
, are con-

strained to lie on a plane in R2 if the game has an interior Nash
equilibrium. Otherwise the trajectories converge to the boundary. In
addition, the trajectories can be periodic in the interior of the state
space or exhibit convergence to limit cycles or fixed points.

Proof. Firstly, we note that for a 3 player game with two strate-

gies, we can rewrite the replicator dynamics as follows (with action

0 being shown here by default).

˙

ln

(
x1

1 − x1

)
= a12x2 + a13x3 + (c12 + c13)

˙

ln

(
x2

1 − x2

)
= a12x1 + a23x3 + (c21 + c23)

˙

ln

(
x3

1 − x3

)
= a13x1 − a23x2 + (c31 + c32)

where ai j = A
i, j
1,1+A

i, j
1,1−A

i, j
1,2−A

i, j
2,1 for i < j , ci j = A

i, j
1,2−A

i, j
2,2 and

c ji = AT
j,i

1,2 −A
T k,i

2,2 . Using the mapping defined above, we can do

the following (assuming ai j , 0 for all i, j, with similar reasoning

provided in Theorem 3.2). Eliminating the term with x3 in the first

two equations, we get

a13ż2 − a23ż1 = a12
(
a13x1 − a23x2

)
+ a13 (c21 + c23) − a23 (c12 + c13)

= a12ż3 + a13 (c21 + c23) − a23 (c12 + c13) − a12 (c31 + c32)

Thus,

a13ż2 − a12ż3 − a23ż1 = K

where,

K = a13 (c21 + c23) − a23 (c12 + c13) − a12 (c31 + c32)

Finally, integrating with respect to time from t = 0 to any generic

point in time t , we get the following equation:

a13z2 − a23z1 − a12z3 = Kt +C0 (9)

If K > 0, the right hand side of the above equation tends to infinite

as t → ∞ and this implies the magnitude of at least one of the

zi must approach infinity, which implies xi → 0 or xi → 1. This

implies that the dynamics converge to the boundary. A similar

argument follows for K < 0. Now when K = 0, the above equation

is the plane given by:

a13z2 − a23z1 − a12z3 = C0 (10)

Hence, any trajectory starting in the interior is forced to lie in

this plane. Through Poincaré-Bendixon theorem, we know that the

only possible limiting trajectories are limit cycles, period orbits or

convergence to fixed points.

□

Corollary 3.5. If the trajectories associated with the 3-player
pairwise bimatrix symmetric (c-c-z) game accommodates periodic
orbits in the interior of the state space then there exists a continuum
of Nash equilibria in the interior of the state space.

Proof. The fully mixed Nash equilibrium of the system, corre-

spond to the equilibria of the replicator dynamics which lie in the
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interior. These are characterized by the system of linear equations

as follows:

(a12) x2 + (a13) x3 = −(c12 + c13) (11)

(a12) x1 + (a23) x3 = −(c21 + c23) (12)

(a13) x1 + (−a23) x2 = −(c31 + c32) (13)

Eliminating x3 from the first two equations we get the following

equation:

a12a13x1 − a12a23x2 = (c21 + c23)a13 − (c12 + c13)a23 (14)

Adding the above equation to (−a12) times (a13) x2 + (−a23) x3 =
−(c31 + c32), we get the left hand side of this to be 0 and the right

hand side boils down to K = a13 (c21 + c23) − a23 (c12 + c13) −
a12 (c31 + c32), as defined previously. In addition, from the previous

theorem we see that when K , 0 the limiting behavior is forced

to go to the boundary of the state space. Hence if the there is a

periodic orbit in the interior then K should be equal to 0. But as

seen above, if K = 0 the system of linear equations will then have

infinite solutions which implies the existence of a continuum of

Nash equilibria in the interior of the state space. □

3.4 C-C-C Game
The fully coordinated game, is not a special case of the more general

zero-coordination-zero bipartite game and hence we have to resort

to other methods to perform the global analysis in this case. One

such result is proved in [12] for congestion games. We look at the

social welfare of this system and prove that it serves as a Lyapunov

(Potential) function for the system.

Theorem 3.6. The social welfare of the system SW =
∑
i ui is a

Lyapunov function. The limit setΩ of any orbit is a compact, connected
set that consists entirely of equilibria and upon which the social
welfare is constant.

Proof. Let us consider the derivative of SW

˙SW =
∑
i

∑
R∈Si

∂SW

∂xiR
ẋiR

=
∑
i

∑
R∈Si

ui (R)xiR *
,
ui (R) −

∑
R′

ui (R
′)xiR′+

-

=
∑
i

∑
R∈Si

ui (R)xiR *
,

∑
R′

ui (R)xiR′ −
∑
R′

ui (R
′)xiR′+

-
=

∑
i

∑
R∈Si

xiR
∑
R′

xiR′
(
u2i (R) − ui (R)ui (R

′)
)

=
∑
i

∑
R∈Si

∑
R′∈Si

xiRxiR′
(
u2i (R) − ui (R)ui (R

′)
)

=
∑
i

∑
R<R′∈Si

xiRxiR′
(
u2i (R) + u

2

i (R
′) − 2ui (R)ui (R

′)
)

=
∑
i

∑
R<R′∈Si

xiRxiR′
(
ui (R) − ui (R

′)
)
2

This means that the social welfare of the system always increases

with time and hence serves as a Lyapunov function. At this point

the fact that the limit set is a compact, connected set that consists

entirely of equilibria and upon which the social welfare is constant

follows from standard arguments, e.g., [13]. We provide the full

argument for completeness below.

Let x (t ) denote the trajectory given an initial condition x (0).
SW (x (t )) is increasing in t and since the social welfare is bounded,

SW (x (t )) converges as t → ∞ to SW ∗ = sup{SW (x (t ))}. By con-

tinuity of SW , SW (y) = limn→∞ SW (x (tn )) = SW ∗ for all y ∈ Ω,
that is for any y in the limit set of the trajectory x (t ). So, SW is

constant on Ω. Next, y (t ) = limn→∞ x (tn + t ) so y (t ) lies in Ω,
that is, Ω is invariant. Therefore, if y ∈ Ω the orbit y (t ) lies in Ω
and so SW (y (t )) = SW ∗. But SW is strictly increasing everywhere

except on equilibrium orbits and so Ω consists entirely of equilibria.

Finally, Ω can be written as a decreasing intersection of compact,

connected sets, Ω =
⋂
t Closure {x (s ) : s ≥ t }, hence it is a compact,

connected set.

□

By [12] it is known that in potential games generically only pure

Nash equilibria are stable and thus the system typically converges

to a pure Nash equilibrium as seen in the experiments.

3.5 Z-Z-C Game
The z-z-c game is not a special case of any of the above games seen

before and as such no reduction is possible, akin to the (z-z-z) and
the (c-c-z) games. Moreover, the behavior of this system is more

complicated than the pure coordination game and does not always

converge to equilibria. This is expected due to the presence of zero-

sum edges. We present some simulation results for the (z-z-c) game

below and try to study the dynamics experimentally.

4 DISCUSSION OF RESULTS
We discuss some of the simulation results in detail here.

4.1 z-z-z games
The fully zero-sum games in figure 2a exhibit periodic orbits in the

interior for different interior starting points (shown as red points).

Moreover, the time average of the system trajectories (shown as

green markers), that lie completely in the interior coincide with line

of equilibria (shown in black). This is a useful characterization of

the average behavior of the system in terms of the Nash equilibria.

The exception to the above rule is shown in figure 2b when one of

the zero-sum games isMPZ
2,3 (1.1,−1,−1, 1) and this perturbation

causes the system to converge to the boundary at an exponential

rate, as we had shown while deriving the reduction for the (z-z-z)
game. Due to the payoff asymmetry we have, K , 0 and hence

there are no interior Nash equilibria.

4.2 c-c-z games
The plots in the (c-c-z) game were obtained by keeping the coordi-

nation games the same for all the cases and varying the extent of

the zero-sum game by changing its payoffs. In figure 3, we observe

that with the particular set of game parameters, the system exhibits

behavior that is very much similar to a fully zero-sum game, includ-

ing the fact that it is not robust to perturbations in the payoffmatrix,

which causes the system to converge to the boundary. However, by

increasing the payoffs in the coordination game, we see that the
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(a) MPC
1,2 (1, −1, −1, 1), MPC

1,3 (1, −1, −1, 1), MPZ
2,3 (5, −5, −5, 5) (b)MPC

1,2 (1, −1, −1, 1), MPC
1,3 (1, −1, −1, 1), MPZ

2,3 (2.4, −2, −2, 2)

Figure 3: Plots of trajectories in the (c-c-z) game, with a normal and perturbed payoff on the zero-sum edge. The red circles
indicate different initial conditions and the green squares indicate the time average of the associated trajectories.

(a) MPC
1,2 (1, −1, −1, 1), MPC

1,3 (1, −1, −1, 1), MPZ
2,3 (1, −1, −1, 1)

Figure 4: Plots of trajectories in the (c-c-z) game, converging
to fixed points on the boundary.

system converges to the vertices (just like in a full coordination

game).

4.3 c-c-c games
The results of the (c-c-c) game are in line with the fact that they

are potential games and hence the Lyapunov function which is the

social welfare of the system increases along the trajectory of the

system. Convergence to the boundary (vertices), can be seen in

figure 5. A similar behavior was observed for other changes in the

parameters of one of the coordination game payoffs.

4.4 z-z-c games
Finally, the case of (z-z-c) we show experimentally that it can

exhibit limit behavior that is not observed in any of other settings

including boundary limit cycles where the two agents who are

coordinating and the single agent who is playing two zero-sum

games, take turns best responding simultaneously to each other. In

this case, x1 gets arbitrarily close to 0 or 1 and has to cycle because it

0
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p
3
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1
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0.6 0.8

p2-s1

0.8

0.6

p1-s1

0.4

1

0.4
0.2

0.2

0 0

(a) MPC
1,2 (1, −1, −1, 1), MPC

1,3 (1, −1, −1, 1), MPC
2,3 (5, −5, −5, 5)

Figure 5: Plots of trajectories in (c-c-c) game with the red
circles showing the initial conditions.

is playing a zero-sum game against two coordinating players, hence,

it can be seen that x2 and x3 move along x2 = x3 line. Furthermore,

increasing the strength of the coordination game results in the

destruction of this limit cycle and then we have convergence.

4.5 Related Work
The fact that equilibria do not suffice to understand the behavior of

replicator dynamics even in simple games dates at least back to the

work of Eshel and Akin [7] where they established the instability of

mixed Nash equilibria for replicator dynamics in (single-population)

games; for a detailed discussion, see [10]. The existence of constant

of motions for the replicator dynamics allowed the characteriza-

tion of certain classes of (two-player symmetric random-matching)

games as Hamiltonian systems (i.e. as dynamics possessing a Hamil-

tonian function that foliates the space of population states into

invariant manifolds) [9]. Piliouras and Shamma [23] were the first

to establish Poincaré recurrence for (network) zero-sum games in

the context of replicator dynamics. These results have recently been
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(a)MPZ
1,2 (1, −1, −1, 1), MPZ

1,3 (1, −1, −1, 1), MPC
2,3 (0.2, −0.2, −0.2, 0.2)
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(b) MPZ
1,2 (1, −1, −1, 1), MPZ

1,3 (1, −1, −1, 1), MPC
2,3 (5, −5, −5, 5)

Figure 6: Plots of trajectories in the (z-z-c) game, showing cases with convergence to fixed points and limit cycle. The red circles
indicate the initial conditions.

generalized to more expanded classes of games [21] and dynam-

ics including follow-the-regularized leader dynamics [17]. Finally,

current work extends such Poincaré recurrence results even in the

case of time-evolving Rock-Paper-Scissors games where the exact

parameters of the game are a function of the state of the game [14].

The only other result that we know of that argues about periodicity

of replicator dynamics in three or more dimensions is [22] which

studies a setting where Boolean functions compete against each

other (prey-predator sexual evolution with binary features).

Our focus on this paper is on continuous-time systems. The

dynamics of discrete time multi-agent systems (e.g. Multiplicative

Weights Dynamics) in contrast can be chaotic even in simple sym-

metric two by two games [18].

The role of relationship triangles, such as “the friend of my friend

is my friend" and “the enemy of my friend is my enemy" has been

studied in evolutionary models of structural changes in networks by

Jon Kleinberg and colleagues [15]. More recently, the evolution of

beliefs has been studied in such signed networks where a plus sign

corresponds to friends and a minus sign corresponds to enemies

[27]. The evolution of selfish behavior within such triangles has

not been studied before as far as we know.

5 CONCLUSION
In this paper, we analyze the behavior of replicator dynamics, ar-

guably the most well known evolutionary dynamics, in three player

polymatrix (triangle) games where each edge game is either a two-

by-two zero sum or coordination game. These settings encode tri-

adic friend-or-foe interactions. Relationship triangles [15] is a basic

building block of social networks and are thus a natural setting

on which to study multi-agent learning behavior. From the per-

spective of dynamical systems since these systems are nonlinear

and have three independent variables chaotic behavior is possible.

Nevertheless, no such behavior is observed with the systems either

converging to equilibria, to limit cycles or are periodic. Given that

four dimensional replicator systems can exhibit chaos [29] trian-

gle friend-or-foe games are shown to lie on a sweet spot between

complexity and simplicity. They allow for complex but predictable

interactions. This might be an indicator of the practical importance

of relationship triangles for social networks as they allow for richer

social dynamics that are still manageable and interpretable.
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A INFORMATION THEORY
Entropy is a measure of the uncertainty of a random variable and

captures the expected information value from a measurement of the

random variable. The entropy H of a discrete random variable X
with possible values {1, . . . ,n} and probability mass function p (X )
is defined as H (X ) = −

∑n
i=1 p (i ) lnp (i ).

Given two probability distributions p and q of a discrete ran-

dom variable their K-L divergence (relative entropy) is defined as

DKL (p∥q) =
∑
i ln

(
p (i )
q (i )

)
p (i ). It is the average of the logarithmic

difference between the probabilities p and q, where the average is
taken using the probabilities p.

For more details the reader should refer to the classic text by

Cover and Thomas [6].
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