
Slim-DP: A Multi-Agent System for Communication-Efficient
Distributed Deep Learning

Shizhao Sun∗
College of Computer and Control
Engineering, Nankai University

Tianjin, P.R.China
sunshizhao@mail.nankai.edu.cn

Wei Chen
Microsoft Research
Beijing, P.R.China

wche@microsoft.com

Jiang Bian
Microsoft Research
Beijing, P.R.China

Jiang.Bian@microsoft.com

Xiaoguang Liu
College of Computer and Control
Engineering, Nankai University

Tianjin, P.R.China
liuxg@nbjl.nankai.edu.cn

Tie-Yan Liu
Microsoft Research
Beijing, P.R.China

Tie-Yan.Liu@microsoft.com

ABSTRACT
To afford the huge computational cost, large-scale deep neural
networks (DNN) are usually trained on the distributed system, es-
pecially the widely-used parameter server architecture, consisting
of a parameter server as well as multiple local workers with power-
ful GPU cards. During the training, local workers frequently pull
the global model and push their computed gradients from/to the
parameter server. Due to the limited bandwidth, such frequent
communication will cause severe bottleneck for the training accel-
eration. As recent attempts to address this problem, quantization
methods have been proposed to compress the gradients for efficient
communication. However, such methods overlook the effects of
compression on the model performance such that they either suffer
from a low compression ratio or an accuracy drop. In this paper,
to better address this problem, we investigate the distributed deep
learning as a multi-agent system (MAS) problem. Specifically, 1)
local workers and the parameter server are separate agents in the
system; 2) the objective of these agents is to maximize the efficacy
of the learned model through their cooperative interactions; 3) the
strategy of the agents describes how they take actions, i.e. com-
municate their computed gradients or the global model; 4) rational
agents always select the best-response strategy with the optimal
utility. Inspired by this, we design a MAS approach for distributed
training of DNN. In our method, the agents first estimate the utility
(i.e., the benefit to help improve the model) of each action (i.e.,
transferring a subset of the gradients or the global model), and
then take the best-response strategy based on their estimated util-
ities mixed with ϵ-random exploration. We call our new method
Slim-DP as it, being different from the standard data-parallelism,
only communicates a subset of the gradient or the global model.
Our experimental results demonstrate that our proposed Slim-DP
can reduce more communication cost and achieve better speedup
without loss of accuracy than the standard data parallelism and its
quantization version.

∗This work was done when the author was visiting Microsoft Research Asia.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

KEYWORDS
Application of multi-agent system; best response strategy; dis-
tributed training; deep learning

ACM Reference Format:
Shizhao Sun, Wei Chen, Jiang Bian, Xiaoguang Liu, and Tie-Yan Liu. 2018.
Slim-DP: A Multi-Agent System for Communication-Efficient Distributed
Deep Learning. In Proc. of the 17th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2018), Stockholm, Sweden, July
10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Rapid development of deep neural networks (DNN) has demon-
strated that its great success is mainly due to the power of big
models learned based on big data [8, 22]. However, the extremely
time-consuming training has become a critical debt to obtain a
large-scale DNN model. To accelerate the training of DNN, data
parallelism powered by the architecture of parameter server [2–
4, 16, 30] has emerged as a widely-used technique in recent years.
In such a typical framework, the entire training data will be allo-
cated into multiple local workers with powerful GPU cards, and
the training procedure continues iterations of the following three
steps: 1) First, the parameter server broadcasts the current global
model to the local workers; 2) then, each local worker computes
the gradients of the current model based on its own local data; 3)
finally, the learned gradients are pushed to the parameter server,
and are aggregated to produce a new glboal model at the parameter
server side [13, 14]. As the parameter server and local workers
communicate the gradients and values of all the parameters in each
iteration, we refer this standard data parallelism approach as Plump
Data Parallelism, abbreviated as Plump-DP.

Although Plump-DP is well-motivated, it suffers from the heavy
communication cost by transferring huge amount of parameters
and updates [1, 4, 19]. For example, as shown in [1], for the parallel
training of AlexNet [11], GoogLeNet [24], ResNet152 [8] and VGG-
19 [20], the communication takes 10% to 50% of the overall training
time when there are 8 local workers, which are non-negligible com-
pared to the training time; and the percentage of communication
time continues to grow when the number of local workers is in-
creased. Furthermore, such bottleneck will become more severe

Session 18: Agent Cooperation 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

721

when the bandwidth is small, e.g., the distributed training on mobile
devices such as federated learning [10, 15].

Recent attempts proposed quantization techniques [1, 19, 27] to
reduce heavy communication cost in distributed deep learning. In
particular, the 32-bit gradient is compressed into a small number
of bits during the communication. We call the standard data paral-
lelism with quantization Quantized Data Parallelism, abbreviated
as Quant-DP. However, Quant-DP overlooks the effects of compres-
sion on the efficacy of the learned model. More concretely, while
Quant-DP uniformly sacrifices the precision of all the gradients,
the influence on the model performance of sacrificing the precision
of the gradient with large scale is larger than that of the gradient
with the scale close to zero. As a result, Quant-DP either suffers
from a low compression ratio or harms the accuracy.

To reduce communication cost and preserve the accuracy at the
same time, we propose a novel multi-agent system (MAS) approach
towards communication-efficient data parallelism1. Particularly, in
a typical distributed deep learning system, the local workers and the
parameter server naturally play as separate agents. Since the role
of the local workers are different from that of the parameter server,
we call local worker local agents and parameter server center agent.
The eventual objective of all these agents is to obtain a model with
maximized efficacy through their cooperative interactions during
training.

To achieve the goal of obtaining a model with maximized effi-
cacy, each agent needs to determine its own strategy that describes
their actions in terms of transferring computed gradients or broad-
casting the global model within the certain bandwidth constraint.
In such a multi-agent system, due to the limited communication
cost, rational agents tend to select and transfer a subset of the
important gradients or parameters instead of the whole set like
Plump-DP. Therefore, the action of local workers corresponds to se-
lect a subset of their computed gradients to communicate, while the
action of the parameter server corresponds to select a subset of the
parameters in the global model to communicate. In each training
iteration, 1) after the global model is updated by aggregating gradi-
ents transferred from local agents, the center agent takes the action
in terms of broadcasting a subset of the current global model, 2)
after computing the gradients of their local models, which merges
the broadcasted parameters from the center agent, the local agents
take the action in terms of transferring a subset of their computed
gradients to the center agent. At the end of training process, all the
agents will receive the utility in terms of the performance of the
new global model.

Although the center agent and the local agents are cooperat-
ing with each other, the information available for them to make
the decisions is still quite limited. Specifically, local agents only
have the local model with parts of the parameter replaced by the
current global model, and the center agent only has the current
global model. Therefore, communication-efficient distributed deep
learning system is essentially a multi-agent system with very lim-
ited partial information. In such situation, it is quite natural and
reasonable to estimate the utility based on their own information,

1In this paper, we take the popular parameter server architecture [13] as an example.
Other architectures like MapReduce [5] can also be covered by our method with some
simplifications.

and then follow the best-response strategy to take the action that
maximizes the estimated utility.

Consequently, a critical component of this MAS approach is the
estimation of the utilities (i.e., the improvement to the global model)
for each action (i.e., transferring a subset of the gradients or the
global model). It is well known in optimization that, if the model
can only be updated in some coordinates (corresponds to a subset
of gradients), it will achieve the most objective improvement by
updating the model in the coordinates with largest scale. Thus, it
is reasonable for the local agents to estimate the utilities of the
subset of the gradients by the total scales of the gradients. Another
common observation in deep learning is that, the DNN models
has high redundancy and we can preserve the performance if we
remove parameters with small scales [7]. Therefore, the center
agent can estimate the utilities of subsets of the parameters by the
total scales of the parameters.

Moreover, in order for better exploration, we mix best-response
strategy with ϵ-random strategy, i.e., taking best-response strategy
that maximizes the expected utility with probability 1 − ϵ and
taking other actions with probability ϵ . Particularly, in the MAS
of distributed deep learning, we propose to allocate ϵ proportion
of the subset to be random selected in each interaction, instead
of random selecting the whole subset with probability ϵ . In this
way, the update of the global model can be more stable, which is
very helpful for the convergence of DNN models. Compared with
the standard Plum-DP, our approach can significantly reduce the
communication cost by only transferring the subset of gradients
(or parameters) instead of the whole set, and we call our method
Slim Data Parallelism, abbreviated as Slim-DP.

To verify the effectiveness of Slim-DP, we conducted experiments
on ImageNet [18], and evaluate our method on two state-of-the-art
models, i.e., GoogLeNet and VGG-16. We have following obser-
vations from the experimental results: 1) compared to Plump-DP,
Slim-DP can save about 55% and 70% of the communication time
for GoogLeNet and VGG-16 respectively; 2) by saving communi-
cation time, Slim-DP can process 10%+ and 30%+ more images
per second than Plump-DP for GoogLeNet and VGG-16 respec-
tively; 3) Slim-DP reduces the communication cost and improves
the speedup without loss of accuracy; 4) Slim-DP also outperforms
other communication-efficient version of Plump-DP, i.e., Quant-DP,
for both GoogLeNet and VGG-16, in terms of saved communication
time, speed and accuracy.

In the remaining part of this paper, we first introduce the stan-
dard data parallelism of DNN in Section 2. Then, in Section 3, we
give formal description of communication-efficient data parallelism
as a multi-agent system, and propose Slim-DP based on such multi-
agent system. We show experimental results in Section 4. At last,
we discuss the related works and future works in Section 5 and
Section 6 respectively.

2 PRELIMINARIES
In this section, we introduce the standard data parallelism (i.e.,
Plump-DP) with the popular parameter server architecture [13, 14].
We denote a DNN model as f (w), where w = {w1, . . . ,wN } is the
vector of the parameters and N is the number of the parameters.
We assume that there are K local workers employed in the parallel

Session 18: Agent Cooperation 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

722

architecture, and each local worker, say the k-th local worker, holds
a local dataset Dk = {(xk,1,yk,1), . . . , (xk,mk ,yk,mk)} with size
mk . We denote the parameters and gradients of the local model at
the iteration t on the worker k as wt

k and δ tk . And, we denote the
global model at the iteration t on the parameter server as wt . The
communication of gradients will be invoked after the local worker
conducts every p iterations of local training on its local data. We
call p the communication frequency. A typical data parallelism for
DNN [2, 4] iteratively implements the following three steps until
the training procedure converges2.

1. Broadcast/Pull: The parameter server broadcasts the global
model to the local workers.

2. Local training: Each local worker independently trains the local
model based on its local data by stochastic gradient decent (SGD)
or other stochastic algorithm. There will be no synchronization
with the parameter server until every p local training iterations.

3. Push: Each local worker pushes the gradients δ tk of its local
model to the parameter server. At the parameter server side, these
gradients are aggregated to generate a new global model.

In spite of its straightforward motivation, Plump-DP suffers from
the heavy communication cost by communicating huge amount of
parameters and gradients. While some recent efforts attempted to
leverage quantization techniques [1, 19, 27] to reduce the communi-
cation cost by sacrificing the precision of each gradient uniformly,
they cannot preserve the accuracy and reduce the communica-
tion cost at the same time. To tackle these challenges, we view
the communication-efficient data parallelism as a multi-agent sys-
tem, and propose a new communication-efficient data parallelism
framework called Slim-DP.

3 SLIM-DP
In this section, we propose a new communication-efficient data
parallelism framework, i.e., Slim-DP, to address the challenge in
terms of heavy communication cost of Plump-DP.

3.1 Communication-Efficient Data Parallelism
as a Multi-Agent System

In the communication-efficient distributed deep learning, the pa-
rameter server and the local workers play as separate agents co-
operating with each other to train a DNN model. The eventual
objective of all these agents is to learn a model with maximized
efficacy through their interactions during training. To achieve this
goal, each agent needs to determine its own strategy. More con-
cretely, the parameter server’s strategy corresponds to the actions
in terms of broadcasting the global model within the certain band-
width constraint, while the local worker’s strategy corresponds to
the actions in terms of transferring computed gradients within the
same bandwidth constraint. As the role of the local workers are
different from that of the parameter server, we call local worker
local agents and parameter server center agent.

Now, we describe the key components of the multi-agent system
for communication-efficient data parallelism.

2In this paper, we focus on synchronous data parallelism, considering that synchronous
data parallelism can achieve better convergence than asynchronous data parallelism [2].
Note that the algorithm and results can be generalized to the asynchronous data
parallelism as well.

1. Action. When the communication bandwidth is limited, ratio-
nal agents tend to select a subset of the gradients or parameters for
communication instead of the whole set like Plump-DP. In other
words, the center agent can specify its action a0 as selecting a sub-
set of the parameters to broadcast, and the k-th local agent can
specify its action ak as selecting a subset of the computed gradients
to transfer to the center agent. Since there are same amounts of
parameters and gradients (i.e., N), we denote a0,a1, . . . ,ak ∈ AC ,
where the action space AC = {(c1, . . . , cN)|

∑N
i=1 ci = C, ci ∈

{0, 1}, i = 1, . . . ,N } contains all the subsets of {1, . . . ,N }, andC is
the communication bandwidth.

2. Environments. There are center environment and local environ-
ments in this multi-agent system. Assume the current global model
is w, and the center agent takes an action a0 to select a subset from
it. Then, the selected parameter set to broadcast can be denoted as
a0 ⊙ w, where ⊙ is the element-wise product. We call the current
global model w center environment. After receiving a0 ⊙ w, the
k-th local agent first updates its local model wk by wk ⊕ (a0 ⊙ w),
where ⊕ stands for the overwrite operation that overwrites the cor-
responding parameters in the local model by the received part of
the global model. Then, the local agent computes the new gradients
of the updated local model over its local mini-batch data sk . We
call the local models {w1, . . . ,wK } and the local mini-batch data
{s1, . . . , sK } local environments.

3. Utility. Given the actions and environments, the total util-
ity can be defined as the performance of the new global model.
Mathematically,

u(a0,a1, . . . ,aK ;w,w1, . . . ,wK , s1, . . . , sK)

= −L

(
w +

K∑
k=1

ak ⊙ (д (wk ⊕ (a0 ⊙ w), sk))

)
, (1)

where L(·) is the loss of a model and д(·) is the gradient of a model.
Whilst both center and local agents are cooperating with each

other, the information available for them to make the decisions is
limited. On the one hand, the center agent is only aware of the center
environment; on the other hand, local agents know nothing but
their own local environments. Therefore, communication-efficient
distributed deep learning is a multi-agent system with very limited
partial information.

3.2 Best-Response Strategy
In a typical multi-agent system with very limited partial informa-
tion, rational agents usually follow the best-response strategy to
take the action that can maximize the utility estimated based on
their own information.

In the communication-efficient distributed deep learning, we
assume that the center agent estimates its utilities as,

û(a0;w) = ∥a0 ⊙ w∥1. (2)

In other words, the center agent estimates the utilities of the ac-
tions by the total scales of the parameters in corresponding subset.
This is inspired by the common observation [7] that deep neu-
ral networks usually have many redundant parameters, especially
those with small scales, removing which even causes no significant
performance drop of the model.

Session 18: Agent Cooperation 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

723

(a) Pull (b) Local Training (c) Push

Figure 1: Slim-DP.

Meanwhile, we assume that the k-th local agent estimates its
utilities as

ûk (ak ;a0 ⊙ w,wk , sk) = ∥ak ⊙ д(wk ⊕ (a0 ⊙ w), sk)∥1. (3)

In other words, the local agents estimate the utilities of the actions
by the total scales of the gradients in corresponding subset. This
is inspired by that when we can only update the model in some
coordinates (corresponding to a subset of gradients), updating the
model in the coordinates with the scale close to zero will not bring
much improvement to the loss function [12].

As all the agents follow the best response strategy based on esti-
mated utilities to take actions, it is necessary to mix best-response
strategy with ϵ-random strategy, which traditionally takes best-
response strategy that maximizes the expected utility with probabil-
ity 1− ϵ and taking other actions with probability ϵ . Particularly, in
the MAS of communication-efficient distributed deep learning, we
propose to allocate ϵ proportion of the subset of the gradients (or
parameters) to be random selected in each interaction, instead of
random selecting the whole subset with probability ϵ . In this way,
the update of the global model can be more stable, which is very
helpful for the convergence of the deep learning model. Specifically,
agents will finally take the following action:

a∗0 =

(
arg max

a0∈A(1−ϵ)C
û(a0;w)

)
∧ aϵ ; (4)

a∗k =

(
arg max

ak ∈A(1−ϵ)C
û(ak ;a0 ⊙ w,wk , sk)

)
∧ aϵ , k = 1, . . . ,K

where aϵ is randomly sampled from AϵC .

3.3 Algorithm Description
Figure 1 illustrates the whole Slim-DP. Similar to Plump-DP, it
also consists of three iterative steps, i.e., pull, local training and
push. In this figure and the remaining parts of this paper, for ease
of reference, we call the subset of gradients transferred during
the communication the communication set. In addition, we call the
portion of the communication set that is randomly selected the
explorer, denoted as TR,k (δ tk), and the portion of the communica-
tion set that is selected to maximize the estimated utility (i.e., the

scale of the gradients) the core, denoted as TS,k (δ tk). It is clear that
TC,k (δ

t
k) = TR,k (δ

t
k) ∪ TS,k (δ

t
k), where k indicates the k-th local

agent. Similarly, for the center agent, we use the notation TC (wt),
TR (wt) and TS (wt).

Firstly, we introduce the inputs for Slim-DP as follows.
1. The local data set Dk , where k ∈ {1, . . . ,K};
2. The hyperparameter α ∈ (0, 1) that controls the size of commu-

nication set in Slim-DP comparing to Plump-DP, i.e.,α =
|TC,k (δ tk) |
|δ tk |

=

|TC (wt) |
|wt |

;
3. The hyperparameter ϵ ∈ [0,α] that controls the size of the

explorer, i.e., ϵ =
|TR,k (δ tk) |
|δ tk |

=
|TR (wt) |
|wt |

;
4. The communication frequency p, i.e., the frequency that the

local worker push TC,k (δ tk) to or pull TC (wt) from the parameter
server.

Then, we introduce the Slim-DP algorithm (described in Algo-
rithm 1), which consists of the following six steps. All the steps are
executed iteratively until the training converges.

1. LocalTrain (wt
k ,Dk ,p): Each local agent computes the gradi-

ents of the parameters wt
k by minimizing the cross entropy loss

using SGD on its local dataset Dk . Such computation lasts for p
mini-batches before the communication with the parameter server.
We accumulate the model updates over p mini-batches and denote
the result as δ tk .

2. CoreSelection (δ tk ,α − ϵ): Each local agent chooses α − ϵ of
gradients δ tk to maximize the expected utility, i.e., the scale of the
gradients. Similarly, this step can also be executed by the center
agent, in which the parameters is chosen.

3. Exploration (δ tk\TS,k (δ
t
k), ϵ): Each local agent randomly sam-

ples ϵ of gradients from the set of gradients outsides the core, i.e.,
δ tk\TS,k (δ

t
k). Similarly, this step can also be executed by the center

agent, in which the parameters is randomly sampled.
4. Push (TC,k (δ tk)): At the local agent side, we execute Push

(TC,k (δ tk)), i.e., send the subset of local updates (i.e., TC,k (δ tk)) to
the center agent. At the center agent side, we add the gradients
received from all the local agents to the global model, i.e., wt+1 ←
wt − η

∑K
k=1TC (δ

t
k).

Session 18: Agent Cooperation 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

724

Algorithm 1: Slim-DP (Dk ,α ,p, ϵ)
Local Agent k:
w0
k ←Pull(w0);

while f (w̄t ;x) dose not converge do
δ tk ← LocalTrain(wt

k ,Dk ,p);
TS,k ← CoreSelection(δ tk ,α − ϵ);
TR,k ← Exploration(δ tk\TS,k (δ

t
k), ϵ);

TC,k ← TS,k ∪TR,k ;
Push(TC,k (δ tk));
w̃t ←Pull(TC (wt));
wt
k ←Merge(wt

k , w̃
t);

Center Agent:
while f (w̄t ;x) does not converge do

wt+1 ← wt − η
∑K
k=1TC,k (δ

t
k);

t ← t + 1;
TS ← CoreSelection(wt ,α − ϵ);
TR ← Exploration(wt \TS (wt), ϵ);
TC ← TS ∪TR .

5. Pull (TC (wt)): Each local agent pulls the subset of the parame-
ters TC (wt) from the center agent.

6. Merge (wt
k , w̃

t): The parameter w̃t , which is pulled from the
center agent, will be merged with the current local parameters wt

k
to produce a new local model. This new model will be set as the
starting point of next round of local training.

3.4 Communication Efficiency and Time
Efficiency

In this subsection, we discuss the communication and time effi-
ciency of Slim-DP, and introduce some implementation details to
further improve the communication efficiency and time efficiency.

3.4.1 Communication Efficiency. In Slim-DP, since we transfer
a subset instead of the whole set of the gradients like in Plump-DP,
we should make the receiver know which gradients are transferred.
Therefore, the information transfered between local agent and the
master agent should be represented as ⟨key, value⟩ pairs, where the
key is the index of the gradients (or parameters) and the value is the
corresponding gradients (or parameters). Thus, the real amount of
transferred information is the double the size of the communicated
gradients (or parameters).

In practice, the communication efficiency can be further im-
proved by executing CoreSelection step after each q rounds of com-
munication (i.e., q > 1) instead of for each round of communication.
The reason is that the model will not differ very significantly after
recent updates and thus the scale of gradients will not change that
fastly when it is computed based on very close model. Then, as
theCoreSelection step is executed after each q rounds of communi-
cation, for the information about the core, we can use key catching
filter [14] to transfer it because the core is not frequently renewed
during the training, and thus the keys for the core can keep un-
changed for a period. In the key catching filter, both the sender and
receiver have cached the keys, and the sender then only needs to

send the values with a signature of the keys. Therefore, the real
amount of transferred information for the core is approximated to
the same size of the core, i.e., (α−ϵ)N , whereN is the number of the
gradients (or parameters). For the information about the explorer,
we still need to transfer it by the ⟨key, value⟩ pair, and thus the real
amount of transferred information for the explorer is 2ϵN .

Therefore, in Slim-DP, the real amount of total transferred infor-
mation is (α + ϵ)N . In Plump-DP, the real communication amount
equals to the number of the gradients, i.e., N , since we need to
transfer the whole set of the gradients (or parameters).

3.4.2 Time Efficiency. Compared to Plump-DP, Slim-DP may
bring in two kinds of potential extra time. The first kind of potential
extra time is the time to generate the index for the explorer and the
core. For the generation of the index for the explorer, since it is not
related to the scale of the gradients, it can be executed off-line or
overlapped with the gradient computation. For the generation of
the index for the core, since it is less frequent than the communi-
cation in practice, the time for it can be ignored comparing to the
communication time. Therefore, generating the index for explorer
and core will not bring in extra time.

The second kind of potential extra time is the time to extract
corresponding gradients (or parameters) from the generated index
of the explorer and the core. In the worst case, such extraction is
done by scanning the whole set of the gradients (or parameters),
whose time cost is proportional to the number of the parameters N .
In practical implementation, multi-thread scanning can be easily
leveraged to ensure limited such time cost.

Overall, Slim-DP will bring a very small amount of extra time,
which is less than O(N).

3.5 Discussions
We make the following discussions for Slim-DP:

1. Trade-off between Accuracy and Speed. The size of the com-
munication set α trades-off the accuracy and the speed. On the
one hand, larger α indicates that Slim-DP can communicate more
gradients, including both the core and the explorer, which will
result in better accuracy. The reason is that a larger core ensures
the coverage of sufficient number of important gradients (i.e., the
gradients with large scale), and a larger set of random explored
parameters results in sufficient exploration outside the core. On the
other hand, larger α also implies more communication cost, which
slows down the training.

2. Trade-off between Exploration and Exploitation. For the fixed
size of the communication set α , the value of ϵ trades-off the explo-
ration and the exploitation. On the one hand, when ϵ is very small
or even ϵ = 0, there is no sufficient exploration of gradients other
than those in the core (i.e., the best response) during the training,
which hurts the performance. On the other hand, when ϵ yields a
greater value or even ϵ = α , the selected core cannot cover enough
important gradients (i.e., the gradients with large scale), which will
hurt the performance as well.

3. Relationship with Dropout/DropConnect. The motivation of the
two methods are different. Slim-DP aims at designing a data paral-
lelism approach to accelerate the training of big DNN models by
reducing communication cost, while Dropout/ Dropconnect [21, 25]
is a trick in the sequential training to avoid overfitting. Moreover,

Session 18: Agent Cooperation 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

725

Table 1: Top-5 Accuracy (%) and Saved Communication Time.

K=4 K=8

Model Method Top-5
Accuracy

Saved
Communication Time

Top-5
Accuracy

Saved
Communication Time

GoogLeNet
Plump-DP 88.06 - 88.03 -
Quant-DP 88.02 (-0.04) 47.85% 88.08 (+0.05) 49.87%
Slim-DP 88.29 (+0.23) 55.12% 88.23 (+0.20) 56.14%

VGG-16
Plump-DP 86.53 - 86.48 -
Quant-DP 86.55 (+0.02) 63.05% 86.53 (+0.05) 63.97%
Slim-DP 87.03 (+0.50) 71.15% 86.91 (+0.43) 70.06%

(a) GoogLeNet (b) VGG-16

Figure 2: Speed.

CoreSelection step (corresponding to the best response) is quite
indispensable for Slim-DP, while Dropout/DropConnect simply
applies pure random sampling.

4 EXPERIMENTS
4.1 Experimental Settings
Platform. Our experiments are conducted on a GPU cluster in-
terconnected with an InfiniBand network, each machine of which
is equipped with two NVIDIA’s K20 GPU processors. One GPU
processor corresponds to one local agent.
Data.We conduct experiments on ImageNet (ILSVRC 2015 Classi-
fication Challenge) [18]. In our experiments, each image is normal-
ized by subtracting the per-pixel mean computed over the whole
training set, and cropped to the size of 224×224. In addition, no
data augmentation is used during the training.
Model.Weemploy twomodels, i.e., VGG-16 [20] andGoogLeNet [24].
VGG-16 is a 16-layer convolutional neural networkwith about 140M
parameters and GoogLeNet is a 22-layer convolutional neural net-
work with about 13M parameters. All the hyperparameters of the
models, e.g., initialization, learning rate, dropout ratio, weight de-
cay and coefficient for momentum, are set the same as that in the
Caffe [9] model zoo.

Parallel Setting. We explore the number of local workers K ∈
{4, 8}. Local workers communicate with the parameter server after
the updates for every mini-batch, i.e., p = 1. We use DMTK frame-
work3 to implement the related operations of the parameter server,
i.e., the center agent.
Hyperparameter Setting of Slim-DP. For each dataset, we ex-
plore the size of the communication set α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and the size of the explorer ϵ ∈ {0, 0.25α , 0.5α , 0.75α ,α }, and then
report the one that achieves best performance over all these hy-
perparameters. Finally, we choose to use α = 0.2 and ϵ = 0.1 for
VGG-16, and α = 0.3 and ϵ = 0.15 for GoogLeNet.

4.2 Compared Methods
We compare performance of the following three methods.
• Plump-DP denotes the standard data parallelism framework
that transfers the updates and parameters of the whole global
model [2, 4].
• Quant-DP denotes the method that reduces the communi-
cation cost by quantizing each gradient to a small number of
bits (less than 32 bits) during the communication4. There are

3https://github.com/Microsoft/multiverso.
4Actually, Quant-DP and Slim-DP can be used simultaneously to reduce the communi-
cation cost because Quant-DP aims at reducing precision of each float while Slim-DP
aims at reducing the number of such float. The comparison between Quant-DP and

Session 18: Agent Cooperation 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

726

https://github.com/Microsoft/multiverso

(a) GoogLeNet, K = 4 (b) VGG-16, K = 4 (c) GoogLeNet, K = 8 (d) VGG-16, K = 8

Figure 3: Top-5 Test Accuracy w.r.t. Time

a few kinds of such quantization method, i.e. 1-bit SGD [19],
TernGrad [27] and random quantization SGD [1]. In our ex-
periments, we implement the last one since it yields better
performance by introducing randomization. And, we use the
same hyper-parameters as in [1], i.e., we employ the 8-bit
version and set the bucket size as 512.
• Slim-DP refers to the communication-efficient data paral-
lelism framework proposed in this paper, which reduces the
communication cost by transferring the gradients (or param-
eters) with large scale (corresponding to the best response)
together with a random explored set of other gradients (or
parameters).

4.3 Experimental Results
4.3.1 Communication Cost. We first compare the communica-

tion cost of different methods. To this end, we count the communica-
tion time caused by that each local agent processes 10kmini-batches
of data. For Quant-DP, the extra decoding and encoding time has
been counted into the communication time. For Slim-DP, the extra
time to extract parameters/updates according to exploration and
core-selection (see Section 3.4 for the analysis of the time efficiency)
has been counted into the communication time.

Table 1 shows the reduced communication time of Quant-DP
and Slim-DP compared to Plump-DP on both GoogleNet and VGG-
16. From this table, Slim-DP can reduce more communication time
than Quant-DP. For example, whenK = 4, Slim-DP saves about 55%
and 71% of the communication time for GoogLeNet and VGG-16
respectively, while Quant-DP only saves about 47% and 63% of the
communication time respectively. The observations of K = 8 are
similar.

4.3.2 Speed. To compare the speed of different methods, we
count the number of images can be processed by each method per
second. Figure 2 shows the results. From the figure, we can observe
that Plump-DP can process more images per second than both
Plump-DP and Quant-DP. Specifically, the improvement of speed is
related to the communication-to-computation ratio and the number
of local agents. First, DNN models with larger communication-to-
computation ratio (e.g., VGG-16) can benefit more from Slim-DP
than those with smaller ratio (e.g., GoogLeNet). For example, when

Slim-DP in the experiments only aims at emphasizing the benefit of leveraging the
knowledge about multi-agent system to solve the problems in the distributed deep
learning but not to negate Quant-DP.

K = 8, Slim-DP can process 40%+ more images than Plump-DP
on VGG-16, while it processed 10%+ more images than Plump-DP
on GoogLeNet. Second, the situation with more local agents can
benefit more from Slim-DP than that with less local agents. For
example, on VGG-16, Slim-DP can process 30%+ more images than
Plump-DP when K = 4 and 40%+ more images when K = 8.

4.3.3 Accuracy. For a distributed training method, the commu-
nication cost should be reduced (and the speed should be improved)
without significant loss of accuracy. Therefore, we compare the
accuracy of all the methods. Table 1 summarizes the accuracy when
the method is trained to convergence. From the table, we can ob-
serve that Slim-DP reduces the communication cost (and improves
the speed) without introducing loss of accuracy, and it even achieves
better accuracy than Plump-DP while Quant-DP only achieves com-
parable performance with Plump-DP. Specifically, the accuracy im-
provement of Slim-DP over Plump-DP is about 0.2% and 0.5% for
GoogLeNet and VGG-16 respectively. In addition, except for the
final test accuracy when the model is trained to convergence, we
also show the test accuracy during the training in Figure 3. From
the figure, we can observe that Slim-DP consistently achieves bet-
ter performance than both Plump-DP and Quant-DP during the
training.

4.3.4 Trade-off between Exploration and Exploitation. To investi-
gate the effects of exploration (i.e., randomly choosing the gradients
or parameters) and exploitation (i.e., choosing the gradients or pa-
rameters that maximize the expected utility), we fix the size of the
communication set (i.e., α) and vary the size of the explorer (i.e.,
ϵ). We set α = 0.3, and compare the performance of Slim-DP when
ϵ = 0.3 (no exploitation), ϵ = 0.15 (the one used in the former
experiments), and ϵ = 0 (no exploration). For ease of reference, we
denote Slim-DP with constraint α on the communication set and
the ratio ϵ that controls the size of the explorer as Slim-DP (α , ϵ).

Figure 4 shows the test accuracy curves w.r.t. the overall time.
Note that we take GoogLeNet and K = 4 as an example and the
observations on VGG-16 and K = 8 are similar. From this figure,
we can observe that Slim-DP (0.3,0.15), which considers both explo-
ration and exploitation, achieves best performance, indicating that
both exploration and exploitation are indispensable for the success
of Slim-DP. When there is no exploitation, i.e., Slim-DP (0.3,0.3),
Slim-DP equals to DropConnect. We observe that Slim-DP in such
case slightly improves the performance of Plump-DP in terms of
accuracy as a regularization method. When there is no exploration,

Session 18: Agent Cooperation 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

727

Figure 4: Exploration and Exploitation Trade-off.

i.e., Slim-DP (0.3,0), Slim-DP fails to converge and thus we do not
show it in the figure.

4.3.5 Trade-off between Accuracy and Speedup. We plot the test
accuracy curve w.r.t. the overall time for Slim-DP (0.2, 0.1), Slim-DP
(0.3, 0.15) (the one that we used in the former experiments) and
Slim-DP (0.5, 0.25) in Figure 5. We take GoogLeNet and K = 4 as an
example and the observations on VGG-16 and K = 8 are similar. We
fix the ratio of the size of the explorer to the size of communicated
set (i.e., fix ϵ/α) to avoid extra influence introduced by the trade-off
between exploration and exploitation.

From Figure 5, we observe that Slim-DP (0.3,0.15) achieves both
best speedup and accuracy. For Slim-DP (0.2,0.1), it cannot achieve
the same accuracy as Plump-DP since it communicates too few
parameters and cannot cover enough important gradients (or pa-
rameters). For Slim-DP (0.5,0.25), although it achieves the similar
accuracy as Slim-DP (0.3, 0.15), it does not achieve the similar
speedup as Slim-DP (0.3, 0.15) because it transfers more gradients
(or parameters).

5 RELATEDWORKS
Many works improve the parallel training of DNN by designing
new local training algorithms, new model aggregation methods,
and new global model update rules. For example, to improve the
local training, NG-SGD [16] implements an approximate and effi-
cient algorithm for Natural Gradient SGD; large mini-batch meth-
ods [6, 29] increase the learning rate and themini-batch size to accel-
erate the convergence. To design new model aggregation methods,
EASGD [30] introduces an elastic force which takes the weighted
combination of the local model and the global model as the new
local model; EC-DNN [23] uses the output-average instead of the
parameter-average to aggregate local models. To improve the global
model update rules, BMUF [3] designs block-wise model-update
filtering and utilizes the momentum of the global model to improve
the speedup of Plump-DP. All of these methods do not aim at the
same problem as our method, and can be used simultaneously with
our method to further improve the performance of distributed deep
learning.

Figure 5: Accuracy and Speedup Trade-off.

Some works consider to improve distributed deep learning by
reducing the communication cost. First, system-level technique
makes the computation of one layer overlap with the communi-
cation of gradients of another layer [2, 6]. Unfortunately, there is
no system-level technique can perfectly hide all the communica-
tion time without loss of accuracy [2], and thus it is necessary to
employ algorithm-level methods. Second, for NLP tasks, sampling
method [28] only transfers the gradients of the parameters that
corresponds to the most frequent words in the vocabulary in the
RNN model. However, such method cannot be generalized to the
parallel training of general DNNmodels. Furthermore, quantization
method [1, 19, 27] quantizes each gradient to a small number of
bits (less than 32 bits) during the communication.

A few works consider to describe the distributed machine learn-
ing as a multi-agent system, but they target at different task with
us. For example, job assignment problem is studied in [26] and dis-
tributed data mining is combined with multi-agent system in [17].
To best of our knowledge, it is the first time to apply techniques
about multi-agent system to communication-efficient distributed
deep learning.

6 CONCLUSION AND FUTUREWORK
In this paper, we describe the distributed training of DNN as a multi-
agent system, and propose a novelMAS approach to communication-
efficient data parallelism, called Slim-DP. Specifically, we only trans-
fer a subset of the gradients or parameters during the communi-
cation, which consists of one set that is chosen to maximize the
expected utilities and another randomly picked set. Experimental
results demonstrate that Slim-DP reduces more communication
cost and achieves better speedup without loss of accuracy than
standard data parallelism and its quantization version. This paper is
a successful attempt to leverage the knowledge about multi-agent
system to solve the problem in the distributed deep learning. In the
future, we plan to give some theoretical justifications for Slim-DP
and propose more algorithms from the MAS view to improve the
performance of distributed deep learning.

Session 18: Agent Cooperation 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

728

REFERENCES
[1] Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2016. QSGD: Ran-

domized Quantization for Communication-Optimal Stochastic Gradient Descent.
arXiv preprint arXiv:1610.02132 (2016).

[2] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2016. Revisiting
Distributed Synchronous SGD. arXiv preprint arXiv:1604.00981 (2016).

[3] Kai Chen and Qiang Huo. 2016. Scalable training of deep learning machines by
incremental block training with intra-block parallel optimization and blockwise
model-update filtering. In Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on. IEEE, 5880–5884.

[4] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in Neural Information Processing Systems.
1223–1231.

[5] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[6] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accu-
rate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677 (2017).

[7] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both Weights
and Connections for Efficient Neural Network. In Advances in Neural Information
Processing Systems 28. 1135–1143.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual
learning for image recognition. arXiv preprint arXiv:1512.03385 (2015).

[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).

[10] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[12] Yann LeCun, John S Denker, and Sara A Solla. 1990. Optimal brain damage. In
Advances in neural information processing systems. 598–605.

[13] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling dis-
tributed machine learning with the parameter server. In 11th USENIX Symposium
on Operating Systems Design and Implementation. 583–598.

[14] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. 2014. Communication
efficient distributed machine learning with the parameter server. In Advances in
Neural Information Processing Systems. 19–27.

[15] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. 2016.
Communication-efficient learning of deep networks from decentralized data.
arXiv preprint arXiv:1602.05629 (2016).

[16] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. 2014. Parallel train-
ing of DNNs with natural gradient and parameter averaging. arXiv preprint
arXiv:1410.7455 (2014).

[17] Vuda Sreenivasa Rao. 2009. Multi agent-based distributed data mining: An
overview. International Journal of Reviews in Computing 3 (2009), 83–92.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[19] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic
gradient descent and its application to data-parallel distributed training of speech
DNNs.. In Interspeech. 1058–1062.

[20] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[21] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[22] Rupesh K Srivastava, Klaus Greff, and Juergen Schmidhuber. 2015. Training
Very Deep Networks. In Advances in Neural Information Processing Systems 28.
2368–2376.

[23] Shizhao Sun, Wei Chen, Jiang Bian, Xiaoguang Liu, and Tie-Yan Liu. 2017.
Ensemble-Compression: A New Method for Parallel Training of Deep Neural
Networks. In The European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases.

[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[25] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. 2013. Reg-
ularization of neural networks using dropconnect. In Proceedings of the 30th
International Conference on Machine Learning (ICML-13). 1058–1066.

[26] GerhardWeiß. 1998. A multiagent perspective of parallel and distributed machine
learning. In International Conference on Autonomous Agents: Proceedings of the
second international conference on Autonomous agents, Vol. 10. 226–230.

[27] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, and Hai
Li. 2017. TernGrad: Ternary Gradients to Reduce Communication in Distributed
Deep Learning. In Advances in Neural Information Processing Systems 28.

[28] Tong Xiao, Jingbo Zhu, Tongran Liu, and Chunliang Zhang. 2017. Fast Parallel
Training of Neural Language Models. International Joint Conference on Artificial
Intelligence (2017).

[29] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Scaling SGD Batch Size to 32K
for ImageNet Training. arXiv preprint arXiv:1708.03888 (2017).

[30] Sixin Zhang, Anna E Choromanska, and Yann LeCun. 2015. Deep learning with
Elastic Averaging SGD. In Advances in Neural Information Processing Systems 28.
685–693.

Session 18: Agent Cooperation 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

729

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

	Abstract
	1 Introduction
	2 Preliminaries
	3 Slim-DP
	3.1 Communication-Efficient Data Parallelism as a Multi-Agent System
	3.2 Best-Response Strategy
	3.3 Algorithm Description
	3.4 Communication Efficiency and Time Efficiency
	3.5 Discussions

	4 Experiments
	4.1 Experimental Settings
	4.2 Compared Methods
	4.3 Experimental Results

	5 Related Works
	6 Conclusion and Future Work
	References

