
A Stitch in Time - Autonomous Model Management via
Reinforcement Learning

Elad Liebman
The University of Texas at Austin

eladlieb@cs.utexas.edu

Eric Zavesky
AT&T Research

ezavesky@research.att.com

Peter Stone
The University of Texas at Austin

pstone@cs.utexas.edu

ABSTRACT
Concept drift - a change, either sudden or gradual, in the underlying
properties of data - is one of the most prevalent challenges to main-
taining high-performing learned models over time in autonomous
systems. In the face of concept drift, one can hope that the old model
is sufficiently representative of the new data despite the concept
drift, one can discard the old data and retrain a new model with
(often limited) new data, or one can use transfer learning methods
to combine the old data with the new to create an updated model.
Which of these three options is chosen affects not only near-term
decisions, but also future needs to transfer or retrain. In this paper,
we thus model response to concept drift as a sequential decision
making problem and formally frame it as a Markov Decision Pro-
cess. Our reinforcement learning approach to the problem shows
promising results on one synthetic and two real-world datasets.

KEYWORDS
Reinforcement Learning; Model Retraining; Concept Drift
ACM Reference Format:
Elad Liebman, Eric Zavesky, and Peter Stone. 2018. A Stitch in Time -
Autonomous Model Management via Reinforcement Learning. In Proc. of
the 17th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS,
9 pages.

1 INTRODUCTION
As automation grows, more and more industry control systems
around us make decisions autonomously, ranging from image un-
derstanding [19] to movie recommendation systems [9] and net-
work and service virtualization [3]. Underneath their hoods, many
of these systems rely on models. These models can be descriptive
(capturing the properties of data) or predictive (using known data
to predict other, latent properties). However, such systems are often
susceptible to the nonstationary, ever-changing dynamics of data
in the real world. In recommendation systems, tastes and fashion
change. In climate prediction, the properties of the environment
change constantly. These changes, either gradual or abrupt, are
commonly referred to as concept drift. Such shifts in the feature
distribution and underlying label correspondence constitute a sig-
nificant challenge to learning systems. In the face of concept drift,
we consider the problem of how to generically and adaptively adjust
models to mitigate the risks of drift. We refer to this challenge as
model retraining, or model management. In this paper we propose
a novel reinforcement learning (RL) approach, framing the model

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

retraining problem as a sequential decision making task, and har-
nessing ideas from the RL literature to learn a robust policy for
model update.

This paper makes two main contributions. First, we formally
frame the autonomous model retraining problem as a reinforce-
ment learning task. To our knowledge, we are the first to consider
the benefits of this approach. Second, we propose a robust and
general framework for learning an autonomous model adaptation
policy that balances learning costs with overall performance and
is completely decoupled from the underlying models. We show
empirically that this approach is superior to other baseline meta-
learning policies, including two competitive drift detection methods
(DDM[7] and HDDM[6]). We also show how our approach can be
scaled to more complex, multidimensional input, using deep neural
nets.

2 RELATEDWORK
The issue of concept drift has been the focus of many works in
the past 20 years [8, 25–27]. Widmer and Kubat proposed a frame-
work for continually deciding which samples to add and which to
throw away (or “forget”) as new data comes in [26]. Klinkenberg
and Joachims presented a windowed support vector machine for-
mulation meant to countermand drift [13], whereas Gamma et al.
started a thread of detecting drift by considering the error rate over
time [7]. More current examples include the work of Brzezinski
and Stefanowski, who actively update an ensemble of classifiers
weighted by their current accuracy, and combine them using Ho-
effding trees [2], and HDDM, a method proposed by Frias-Blanco
et al., that uses Hoeffding bounds to identify whether drift has
occurred [6]. In another related work, Minku and Yao proposed a
diversity based approach for adapting an ensemble to a drifting data
stream[15]. These works are also connected to the large subfield of
online learning [12]. The model retraining problem is also related to
the notion of continual, or lifelong learning, both in the context of
general machine learning [18], and in RL [17, 20]. However, lifelong
learning is not the same as drift adaptation, since in the case of
learning under drift, the learner is engaged in the same ongoing
task, whereas in lifelong learning, the learner is expected to adapt
to new tasks presented sequentially. Both lifelong learning, and
our proposed task of autonomous model management can also be
perceived as part of the transfer learning literature, a rich problem
domain studied extensively both in the context of RL [23], and ma-
chine learning in general [16, 24]. A key difference between these
methods and this paper is that we do not focus on the specifics of
the underlying models or even the data itself. Instead, we propose
an RL meta-learner that decides when and how the model should
be updated, thus enabling the models themselves to be simple and
generic. Previous methods for drift detection such as DDM and

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

990

HDDM (which we compare against) focus on the error rate, which
contains less information than the core distributional properties
of the data that our method uses. In addition, rather than trying
to adaptively find the optimal decision threshold given current in-
formation, methods such as DDM employs hard-coded parameters,
which are harder to tune appropriately.

3 MODEL RETRAINING AS A MARKOV
DECISION PROCESS

Updating the current model of a given system affects not only the
ability to act upon the data currently observed, but data observed
in the future as well. Update a model too quickly and you may
keep getting sidetracked by outlier occurrences, or waste resources
on needlessly retraining too frequently. Wait too long to update,
and the performance of your system might deteriorate drastically.
Given this property, it makes sense to frame autonomous model
management as a sequential decision-making task. As such, this
problem is suitably formulated as a Markov Decision Process (MDP)
[21]. In this formulation, the system is an agent, which, given the
current model, observations of new data, and knowledge of past
data, needs to routinely decide whether to update its model, and in
what fashion.

Let us first consider a concrete example. Suppose you are manag-
ing a recommender system with a learned model that maps individ-
ual profiles to song recommendations. Song requests are received
frommultiple individuals over time. For quality assurance purposes,
requests are grouped by hours. To decide whether the model is still
useful, every k hours, the system aggregates all the songs played
in a predetermined time window (say, a single hour), along with
people’s rating of the songs recommended to them (such that the
aggregated information is supervised). Given this supervised sam-
ple of the data, how can the system decide best whether its model
is up to date or not, and if not, how it should be updated?

Accordingly, in our formulation, incoming data modeled by the
system can be divided into batches of varying size (most typically,
representing some time window e.g. days or hours). For each batch,
the system needs to decide how to best process the data. In the
process, the agent needs to balance performance and cost (as they
are determined for a given domain). We assume that it is infeasible
for an agent to observe the entire batch before making a decision
on how to best adapt the model. For this reason, the agent relies
on subsampling the data before making a decision. We assume this
subsample is unbiased. After observing the subsample, the agent
then decides how to best update the model prior to handling the
entire set of samples in the batch. This process is repeated in the
next timestep indefinitely.

In the next two subsections, we first formally recap what a
Markov Decision Process is, then proceed to describe the model
retraining problem as an MDP.

3.1 Markov Decision Processes
An MDPM is represented as ⟨S ,A,P ,R⟩ where S is the set of states
an agent can be in, A is the set of actions that the agent can take
at a state, P is the transition function that gives the transition
probability of reaching a particular next state s ′ from state s after
taking action a (P : S × A × S → R;

∑
s ′ P (s,a,s

′) = 1), and R is

the reward received given a transition (R : S × A × S → R). In
continuing (non-episodic) MDPs it is often customary to specify
a discount factor γ ∈ [0,1], which specifies the uncertainty (and
therefore diminishing importance) of future rewards compared to
rewards observed right now. To perform optimally in a task that
an MDP represents, an agent must find a policy π∗ : S → A such
that executing action π∗ (s) from any given state s would yield the
highest expected sum of rewards over the sequence of states and
actions

∑∞
t=0 γ

tR (st ,at ,st+1). This is traditionally referred to as
“solving” an MDP.

3.2 Formulation of the Model Retraining
Problem

Formulated as a Markov Decision Process, the general structure of
the model retraining problem is the same, regardless of domain or
model purpose. In this subsection we describe howmodel retraining
reduces to a Markov Decision Process.

The state is defined as a tuple ⟨Mt ,obst ⟩, with Mt the current
model and obst the new observed data at time t . Data at time t
contains multiple instances, and we refer to it as a batch. Batch sizes
may vary from one timestep to the next. Furthermore, in this paper
we assume not all batch data obst can be practically observed in
real time to make a decision. Instead, some realistically observable
and unbiased subsample of it, ôbst , is used by the agent, making
the MDP partially observable. As |ôbst | → |obst |, the properties of
the sampled data converge to the exact values of the true world
data at time t and the MDP becomes fully observable. Therefore,
the state space S is defined as the Cartesian product of the model
and observation spaces.

At each time step, the agent has the choice of either retraining a
model from scratch based on the new data, adapting (or transfering)
the current model to the new data, or leaving the current model
as is. This defines an action space of three possible actions, a ∈
{RETRAIN,ADAPT,KEEP}. For convenience of notation, we define
these actions as functions of the current state, a : M × OBS →
M ,at (⟨Mt ,obst ⟩) → Mt+1, whereM is the model space andOBS is
the observation space.

S and A induce a stochastic transition function P . Specifically,
we can use the following shorthand notation:

P (⟨Mt ,obst ⟩,at) = ⟨at (⟨Mt ,obst ⟩),obst+1⟩

Note that stochasticity originates in the fact that we do not know
what observations the agent will observe next, nor do we know how
well the data sample corresponds to the actual data the model needs
to process at time t (though we assume the sample is unbiased).

As a reward function, we factor in the utility of correctly han-
dling observed data vs. the cost of each action. A predefined utility
acc_reward is associated with every single observation o ∈ obs that
is accurately modeled at time t .

Furthermore, there is an inherent cost associated with each ac-
tion. While keeping an existing model costs nothing, adapting and
retraining are both associated with a computational penalty per
processed sample. The resultant reward function takes the form
of rt = |Omodeled | · acc_reward − action_cost, where Omodeled is the
set of all samples in the batch correctly handled by the model at
time t , where the specific notion of “correctly handled” changes

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

991

from one domain to the next. Note that this formulation satisfies
the Markov property, as the reward and transition functions are
entirely dependent on the current state and the action taken.

The cost of each action represents the computational cost of
training a model, as well as the cost of collecting and annotating
data. For instance, assume, in our music recommender system ex-
ample previously discussed, that while the sample obtained every
k hours is sufficient to determine whether the model is still useful,
it is not enough to train a sufficiently reliable model for future
timesteps, and therefore additional samples need to be obtained. In
the case of transfer, fewer samples are needed, and the computa-
tional cost of updating the model is lower than in the case that a
new model is trained from scratch. There is also the opportunity
cost of potential system downtime while models are being updated.
In such a case, it is less expensive to train a new model from scratch
during a “slow” timestep when there aren’t that many observations
to handle, compared to a very busy timestep when the number
of handled observations is very high. The specifics of such cost
considerations are determined specifically for each environment,
but the framework is sufficiently flexible to represent a wide range
of such considerations.

To complete the MDP formulation, we also specify a discount
factor γ ∈ [0,1], a constant which reflects how future costs and util-
ities should count towards present estimates. Given that the agent
maximizes the sum of discounted rewards

∑∞
t=0 γ

tR (st ,at ,st+1),
setting γ to 0 only weights the immediate reward at each timestep,
whereas setting γ to 1 gives equal weight to rewards obtained now
or at any time in the future.

In the following section, we discuss how this formulation lends
itself to a reinforcement-learning based approach to finding an
optimal policy for model management that is domain agnostic in
structure.

4 LEARNING A POLICY THROUGH
APPROXIMATE VALUE ITERATION

Once the model retraining problem is formally defined as an MDP,
a suitable policy needs to be learned for this MDP. As mentioned
in Section 3, in certain cases the MDP can be explicitly “solved”,
resulting in the optimal policy. If the state and action spaces are
finite and sufficiently small, this can be done through a dynamic
programming procedure called value iteration [21]. However, in the
case of continuous state spaces this option is no longer feasible. A
variety of approximation strategies exist to mitigate this problem.
Consider for instance the simplest approach of partitioning a con-
tinuous state space via a grid, then applying value iteration on the
discretized state space (now rendered discrete and finite). As further
discussed in Section 4.1, if the state space is Lipschitz-continuous
[4], the error induced by this approximation can be bounded, and
converges to 0 as the grid becomes tighter.

Let us assume ourmodel can be parameterized asM = ⟨m1, . . . ,mk ⟩.
Given a reasonable model for observation distribution, it too can
be parameterized, either by its sufficient statistics or using a non-
parametric representation obst = ⟨d1, . . . ,dl ⟩ (examples for such a
representation include the weights of an artificial neural net or the
coefficients of a regressor). This parameterization lends itself to a

straightforward value iteration procedure based on a discretized
representation of the parameter space.

For simplicity of notation, let us consider the following shorthand
[M −C,M +C]x as representing a grid of width 2C around current
model parameters M with stepsize x . For instance, for a simple
two-dimensional model M = ⟨m1,m2⟩, [M − C,M + C]x = M1 ×
M2 = { (a,b) | a ∈ M1 and b ∈ M2 }, where C = ⟨c1,c2⟩, M1 =
{m1 − c1,m1 − c1 + x ,m1 − c1 + 2x , . . . ,m1 + c1 − x ,m1 + c1} and
M2 = {m2 − c2,m2 − c2 + x ,m2 − c2 + 2x , . . . ,m2 + c2 − x ,m2 + c2}.

By discretizing both the model and observation spaces we have
produced a discrete (and therefore finite) representation of the
state space as the Cartesian product of M × OBS where M =

[M − Cm ,M + Cm]xm , and OBS = [obs − Cobs,obs + Cobs]xobs .
This finite state representation enables us to perform the dynamic
programming procedure of value iteration. Intuitively, the result
of applying this procedure is the answer to the question of “if
my current model parameters are M and the observation data is
drawn from obs, should I RETRAIN, ADAPT, or KEEP?”. Lastly we
note that the expected reward is given by

∫
Ps (x) ·Ms (x)dx where

Ms (x) specifies whether in state s the modelM (which is part of the
state) correctly services request x . An intuitive strategy for deciding
on the discretization range is to set C values to be a factor of the
estimated observation covariance Σ. For observation distribution
parameters, under certain smoothness assumptions, modeling the
deviation range as amultiplier of the variancemanifested in the data
makes it very likely that your learned policy will be well-defined
for the next batch of observations.

Intuitively, the policy learned by the approximate value iteration
(AVI) process, given a current model and an estimate of the data
distribution, specifies deviation ranges in which keeping the current
model is best, deviation ranges where it is best to do model transfer,
and ranges where it is best to learn a new model entirely. The
challenge (and power) of this approach lies in finding the near-
optimal cutoffs for these decisions at each timestep in an adaptive
fashion. As we later show, relying on a fixed rule of thumb to
accomplish the same does worse than this value iteration approach.
In the following subsection we briefly discuss how far off from
optimal this policy can be.

4.1 Theoretical Intuition
If we were able to use the unapproximated value iteration proce-
dure (for instance, in a case where the state and action spaces are
sufficiently small), and to fully observe the data at each step, the
resulting policy would be optimal as a guaranteed property of the
value iteration algorithm. However, given that both the estimate
and the approximation are imperfect, error in the resultant policy
comes from two sources: (1) the sampling error in the estimate
of the current distribution; and (2) the state-action approximation
error. Item (1) is manageable due to the fact that as |ôbs | increases,
the statistical estimates converge to the true values of OBS . Fur-
thermore, it is reasonable to assume that in many cases ôbs can
be an unbiased sample, meaning the expectation over the bias is
0 [5]. As for Item (2), it has been shown that if the approximated
space is a non-expansion then the approximation error with re-
spect to the optimal policy is bound as well [10]. Specifically, if

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

992

the space is Lipschitz-continuous, which is a reasonable assump-
tion for many data domains, including the ones we examine in
this paper, then the error can be bound by h

1−γ (K1 + γK2 | |V ∗ | |Q)

where the | |V ∗ | |Q quasi-norm is the span of the value function,
| |V | |Q = supsV (s) − infsV (s), h is the grid width, γ is the discount
factor, and K1,K2 are constants [4].

5 DISTRIBUTION MODEL RETRAINING
In the previous Section we discussed the abstract formulation of the
model management problem as an MDP. In this Section, we discuss
autonomous model management in the concrete case where the
model needs to capture statistical properties of observed data.

One type of model maintenance problem that has multiple uses
and serves as a good illustration for a framework is that of distribu-
tion tracking. Given a constant stream of multidimensional data, we
need to generate a model that tracks the properties of the observed
data. In this setting, we are interested in modeling the observed data
as a multivariate Gaussian, with (µ,Σ) as the sufficient statistics.
We consider observations in the current batch o ∈ obst as modeling
success cases, or “hits”, if they are within a certain factor of our
estimated µ. Similarly, we consider it a modeling failure, or a “miss”,
if an observation is outside that confidence range. At each timestep,
the agent is presented with a set of observations obst , drawn from
some unknown distribution. The agent is then allowed to sample
some subset ôbst of the observations, and decide whether it needs
to update the model, and how. As described in the previous section,
in this paper we consider three options at each timestep - keep
the model unchanged, retrain a new model from scratch based on
the new observations, or use transfer learning to update the old
model with the new model. In the next Subsection we show how
this setting is formally adapted as a Markov Decision Process.

5.1 MDP representation for the Distribution
Tracking Problem

Following the formulation presented in subsection 3.2, we define the
state as a tuple ⟨Mt = ⟨µt ,Σt ⟩,obst ⟩, with Mt and obst the model
and the new observed data at time t . In each timestep the agent has
the choice of either retraining a model from scratch based on the
new data, adapting (or transfering) the current model to the new
data, or leaving the current model as is. In the distribution tracking
setting, updating the model from scratch simply means taking the
maximum likelihood estimate of µ and Σ based on the sampled
observations at time t , ôbst . In this paper, adapting the model means
taking the average between the current model and the new model

estimates µt+1 = (µt + ôbst)/2, Σt+1 = (Σt +var (ôbst))/2.
The transition function P (⟨Mt ,obst ⟩,at) = ⟨at (⟨Mt ,obst ⟩),obst+1⟩

is defined concretely as:

at (⟨Mt ,obst ⟩) =

= ⟨Mt ,obst+1⟩ if at = KEEP

= ⟨⟨(µt + ôbst)/2,Σt+
var (ôbst))/2⟩,obst+1⟩ if at = ADAPT

= ⟨⟨ôbst),var (ôbst)⟩,obst+1⟩

if at = RETRAIN

(1)

Finally, the reward function is formulated as rt = |Omodeled | ·

acc_reward− action_cost. An observation is successfully modeled if
o ∈ [(1− δ)µ, (1 +δ)µ], where δ is the slack or accuracy factor. This
concept is illustrated by example in Figure 1. We note that given
a current model and an assumed distribution, the expectation of
the reward can be computed analytically, a property we use in the
value iteration process. The action cost is determined according
to the concrete domain of application, and needs to reflect both
the computational increased incurred by the sample size and the
difficulty of obtaining samples.

5.2 AVI for Distribution Model Retraining
In this section we concretely adapt the abstract value iteration
approach proposed in Section 4 to the distribution tracking problem,
based on the MDP formulation described above (Section 5.1).

Recall that in the distribution tracking case, the model tracks the
mean and the variance of an observed data stream as a multivariate
Gaussian. For simplicity, let us assume that we are only interested
in tracking the mean, that the data is one-dimensional, and that
our current estimate of the mean is µ. Now we observe a sample set
from the next data batch, ôbs . If we assume that new observations
can only deviate by a certain range C = Cobs · var(ôbs) from the
current mean, we can assume a putative range for the expected
mean of future observation batches, ¯̂

obs ∈ [µ −C,µ +C]. Since the
observations represent the same distribution we are trying to model,
C may be used for both model and observation space discretization.

As described in Section 3, we discretize the range [µ − C,µ +
C]x and perform value iteration on the grid values, with all the
properties known. At every step of the dynamic programming
process, we are essentially asking the following: if I observe k
samples drawn from a distribution with mean a and variance b, and
my current model is with mean c , what is the expected reward?
Assuming µt+1 ∼ N(µt ,vart) and vart+1 remains the same, this

Figure 1: An example 2-dimensional model for a data distribution.
A new observation that is sufficiently “close” to the mean estimate
(as determined by a parameter) is considered a success (or a “hit”),
whereas an observation that is not is a failure (or “miss”). X and Y
axes are in 2-dimensional feature space, color represents estimated
distribution frequency.

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

993

Algorithm 1 Distribution Tracking Approximate Value Iteration

1: Input: observation sample ôbs, current model mean µ , current variance
estimate Σ, variation fraction C , discretizing factor k , discount factor
γ .

2: Set C = Cobs · var(ôbs)
3: Discretize range M̂ = [µ − C, µ +C]k , yielding an approximate state

space S = M̂ × M̂ = {⟨m, obs⟩ | m, obs ∈ M̂⟩.
4: while not converged do
5: Vi+1 (s) := maxa

{∑
s ′ Pa (s, s ′) (Ra (s, s ′) + γVi (s ′))

}
6: end while
7: return policy:

π (s) := arg max
a

∑
s ′

Pa (s, s ′)
(
Ra (s, s ′) + γV (s ′)

)

question can be answered analytically for each state, making the
AVI process well-defined, as described in Algorithm 1.

6 DISTRIBUTION TRACKING - EMPIRICAL
EVALUATION

In this section we study our model retraining agent architecture in
three different domains: one synthetic and two real world datasets.
In all the experiments, γ = 0.95. While adjusting for different dis-
count factors is outside the scope of this paper, our experimentation
with other γ values in the range [0.9,0.99] indicates that results are
qualitatively robust in that respect. In our experiments, we assume
a utilty of 10 for each serviced request and a cost of 5 for using sam-
ples in training. In the case of transfer, a smaller model is trained,
using only 50% of the amount of samples needed to retrain from
scratch. Throughout the paper we use a sampling rate of 10% per
batch. These parameters were chosen for simplicity, as they seem to
reflect reasonable tradeoffs. Based on informal experimentation, the
results do not seem qualitatively sensitive to the specific parameter
configuration.

6.1 Proof of Concept - Synthetic Data
As a first step, we concretely illustrate our approach using a syn-
thetic domain. This step is useful since controlling the process
which generates the data gives us the freedom to both test the
validity of our approach and test its limitations.

Our synthetic domain is simple - data is drawn from a 2-dimensional
Gaussian distribution with unknown ⟨µ,Σ⟩ parameters. At each
timestep, a number of observations drawn from a Poisson distri-
bution |obst | ∼ Poi(λ). Additionally, the distribution shifts in a
random walk process at each timestep - µ and Σ drift by factors
drawn from a different unknown distribution is added. To make
the distribution meaningful, an upper bound is placed on the value
of the true underlying variance.

We compare our value iteration approach to seven baseline poli-
cies: (1) a “do nothing” policy which always stays with its current
model; (2) a “retrain always” policy, which retrains a model, paying
the cost associated with this action, at each timestep; (3) an “adapt
always” policy, which always updates the existing model using
new data; (4) a random policy, which chooses actions uniformly
irrespective of the current state at each timestep; (5) a fixed policy,

which adapts the model if the observed data has deviated by more
than 25% of the current estimate, and retrains if it has deviated by
more than 50%. (6) DDM [7], a drift detection method that identifies
potential drift based on the distributional properties of the error
rate. DDM identifies two levels of drift risk - “warning” level and
“drift” level, so these two levels correspond naturally to “transfer”
and “retrain” actions, respectively (default parameters were used).
(7) HDDM [6], a more recent approach to drift detection that relies
on Hoeffding bounds. HDDM also identifies “warning” and “drift”
modes for the data, which again correspond with “transfer” and
“retrain” (default parameters were used).

We analyze the performance of each model reuse strategy over
30 timesteps with randomly drawn batches in this synthetic do-
main. The experiment is repeated over 10 iterations at each step to
provide a measure of statistical significance to the reported results.
The results are provided in Figure 2. As can be observed, our system
significantly outperforms the other baselines. Figure 2(a) shows the
overall average reward per step, whereas (b) and (c) show the accu-
racy and the costs, respectively, illustrating how the AVI approach
carefully balances these two considerations in model retraining.

Figure 2: Reward per step over 30 time steps for our approximate
value iteration (AVI) system compared to the other model retrain-
ing policies. Results are averaged over 20 simulations per step and
are statistically significant (using a paired t-testa). Results are in the
synthetic domain. (a) avg. reward (b) average success rate (c) avg.
cost. Figure is best viewed in color.

a In all places where mentioned, statistical significance was
determined for cumulative reward at the end of the 30 steps for all

agents.

6.2 Real World Domain I - ThisIsMyJam
Dataset

It is important to ascertain whether our approach holds merit with
real world data that may not (and is indeed unlikely to) behave like

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

994

a constantly shifting Gaussian distribution. For this purpose we
look at an interesting real world domain: the ThisIsMyJam archive,
which curates people‘s reported song preferences (AKA “jams”) [11].
This Is My Jam (2011-2015) was an online social music network
where users could post one song at a time, their current “jam”. A jam
lasted for up to aweek, emphasizing the ephemeral nature of jams as
favorite songs at that particular point in time. By cross-referencing
the attested “jams” with the Million Song Dataset [1], one can
extract many auditory features of songs liked by multiple people
over varying time spans between the years 2011-2015. As a proof of
concept, we set out to track the distribution of tempo and loudness
of preferred songs on a weekly basis, using the same assumptions
used in the synthetic domain. This task makes a good real-world
test case for handling drift, since aggregated song preferences can
vary wildly over short periods of time, and being able to track
distributional properties of musical preferences is a valuable aspect
of any music recommendation system that operates over extended
periods. In the following experiments, the grid granularity we used
was 50, and C = 3. Figure 3(a) illustrates the results in this domain.
The results indicate that despite the domain being extremely noisy
over time (as reflected by the correlated fluctuations in performance
of all the algorithms examined), the value-iteration-based approach
we propose consistently outperforms the baselines in terms of
balancing performance and cost.

6.3 Real World Domain II - ECOMP
Lastly, we study the effectiveness of the proposed framework for
tracking distributions on another, fundamentally different real
world dataset, based on AT&T’s ECOMP Framework. The chats
dataset looks at real world anonymized data derived from a cus-
tomer care scenario, where a model must determine if a customer’s
needs were fully satisfied after a digital chat with a representative.
In this study, digital chats are pooled from 9/1/15 to 4/1/16 (214 days,
over 1.8M samples) and transformed into term frequency (1363 fea-
tures) with annotations as either true (the issue was resolved) or
false (a subsequent chat was received) - this last annotation serves
as the label we wish to predict. In this experiment, however, we
are only interested in tracking the request distribution, reflecting
the frequencies of certain terms. At each experiment we build a
joint model on the top two principal components of the word count
features. The results are presented in Figure 3. As before, we com-
pare to the other baseline policies described above, and show our
RL approach significantly outperforms the other ones. The grid
granularity used was 50, and C = 5. Since data is provided in day
ranges, in our experiments we treat all requests on a given day
as a single batch. Figure 3(b) illustrates the results in this domain.
This domain is of interest because success in tracking the profile of
customer requests over time suggests overall applicability of the
proposed drift management approach for many real world online
services. Our results indicate that in this environment our proposed
method does particularly well, outperforming the other baselines
by a large margin.

7 PREDICTION MODEL RETRAINING
In this Section we discuss another instantiation of the autonomous
model management problem, that of maintaining prediction models.

Figure 3: Reward per step over 30 time steps for our approximate
value iteration (AVI) system compared to the other model retrain-
ing policies. Results are averaged over 20 simulations per step. (a)
Results are in the AT&T ECOMP domain. (b) Results are in the song
preference domain. Figure is best viewed in color. In both cases re-
sults are statistically significant (using a paired t-test).

While tracking feature distributions is a valuable task, in many
real world scenarios the purpose of a trained model is to use the
incoming data to predict other, hidden properties. In this section we
study this problem, focusing on binary label classification. Given
a constant stream of multidimensional data, we generate models
that are meant to track the distributional properties of this data, as
well as its correspondence to a predicted variable (or label).

7.1 MDP representation for the Prediction
Problem

The case of tracking a function of the data may seem inherently dif-
ferent, but conceptually, it is in fact a generalization of the previous
scenario. From the state space perspective, recall that in the distri-
bution tracking setting described in Section 5 the states are defined
as the tuple ⟨Mt ,obst ⟩, with Mt and obst the model and the new
observed data at time t . In the prediction model retraining case, the
formulation is exactly the same, but the internals ofM are different
- instead of storing sufficient statistics about the distributions, the
model now contains a parameterization of the mapping from the
observed data to the predicted label. However, in general structure,
this task can also be seen as a concrete instantiation of the general
problem described in Section 3. If in the distribution tracking case
we were only interested in having new observations be sufficiently
close to our model estimation, we now wish to explicitly predict
labels for observations. In this case, a success (or a “hit”) is a case
when we predict the label of a new observation correctly, and a
failure (or a “miss”) is the case we didn’t. It is easy to see now why
this setting strictly generalizes the distribution tracking case - one
can construct a prediction task where the predicted label is “1” if the
observation is within a certain ellipse around the distribution mean,
and “0” otherwise (where the hidden decision boundary needs to be

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

995

learned by the classifier). This model prediction formulation exactly
mimics the distribution tracking case.

In cases where the model can be explicitly parameterized, almost
the exact approach as that taken in Algorithm 1 can be taken, with
only a fewmodifications, namely to the grid partitioning of the state
space, which is now defined as S = {⟨m,obs⟩ | m ∈ M̂ ,obs ∈ OBS}.

While not all modeling approaches are equally amenable to this
type of model parameterization, many useful families of classifiers,
such as artificial neural networks and logistic regression (which we
use in this paper), expose their internal parameters. This property
makes such models particularly suitable to be used in conjunction
with the model management framework proposed in this paper.

7.2 Real World Domain - ECOMP
As a proof of concept for the predictive model update case, we
once again use the AT&T’s ECOMP data. In our experiment, we
use the two features most correlated with the predicted label. As an
underlying predictivemodel we use logistic regression. As described
above, this model is straightforwardly usable within the context of
our framework since it explicitly exposes its parameters. Recall that
in the logistic regression setting we fit coefficients β0,β1 such that
they capture the log odds ratio ln(Pr (label=1 |x)

1−Pr (label=1 |x)) = β0 + β1 · x .
Given that this is the case, an arithmetic mean of the coefficients
is a reasonable analogue to the notion of transfer defined in the
distribution tracking case. We also note that the expected utility of
servicing requests adhering to one decision rule based on another
decision rule can again be computed analytically. In this case, we
used a grid granularity of 10 per dimension, C = 5, and days as
timesteps. Using the ECOMP dataset tomonitor a predictivemodel’s
ability to classify user requests as solved vs. unsolved is a real world
use case for the proposed framework. We show that despite this
setting being significantly harder, the AVI approach still does a
better job of balancing cost and accuracy over time compared to
the seven baselines we tested.

The results in this experiment are presented in Figure 4. Even
in this considerably more complicated case, the RL approach we
present in this paper is significantly superior to the other model
update policies examined.

8 SCALING UP MODEL RETRAININGWITH
FITTED VALUE ITERATION AND DEEP
NEURAL NETS

As encouraging as the results in sections 6 and 7 are, the concrete
implementation used in those sections is not without limitations.
Perhaps most important is the issue of scale - any reinforcement
learning paradigm reliant on grid value iteration is heavily subject
to the curse of dimensionality. Fortunately, alternative function
approximators, more amenable to high-dimensional input, exist. In
this section, we adapt a different approximate value iteration ap-
proach, Fitted Value Iteration [10], to the model retraining problem,
using a Convolutional Neural Network [14] as the approximator.
We subsequently demonstrate that how with this modification our
framework scales to much higher dimensional input.

Figure 4: Reward, success rate and cost per step over 30 time steps
for our approximate value iteration (AVI) system compared to the
other model retraining policies in the AT&T ECOMP domain. In
this experiment, the models do not simply track a distribution but
rather attempt to make predictions over the data. Results are aver-
aged over 20 simulations per step and are statistically significant
(using a paired t-test). Figure is best viewed in color.

8.1 Fitted Value Iteration
Sampling-based Fitted Value Iteration, or FVI [10], is an off-policy
approximate dynamic programming algorithm that computes an
approximation of the optimal value function, V̂ (s) by repeatedly
sampling a finite subset of the state space, SFV I = {s

1,s2, . . . ,sm },
and using it to perform value iteration, while also refining a func-
tion approximator that predicts V̂ (s) for s ∈ S that haven’t been
observed yet. More concretely, in our general case:

∀i ∈ {1 . . .m}

yi = R (si) + γ ·maxa (E(s ′ |s i ,a)[V̂ (s ′)])

V̂ (s) := SL({(s1,y1, (s2,y2), . . . , (sm ,ym)})

V̂ (s) is initialized arbitrarily (in our case, most conveniently, to
all zeros). d after each update scan, a supervised learning algorithm
SL is used as a function approximator that approximates the value
function over the complete state-space, based on the “labeled” ex-
amples generated with by the previous version of the approximator,
{(s1,y1, (s2,y2), . . . , (sm ,ym)}. While FVI is not guaranteed to con-
verge to the optimal policy, it often performs well in practice, and
is theoretically well-behaved [22].

8.2 Generalizing the Model Retraining
Framework with Neural Fitted Value
Iteration

In this subsection we consider how to concretely extend the dis-
tribution tracking approach described in Section 5 to an arbitrary
number of dimensions using an FVI approach. Instead of sampling
a grid representation of the entire state space, we wish to iteratively
sample from the state space ⟨Mi ,obsi ⟩. For this purpose, we can
use the sampled batches of observations to sample <model, true

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

996

Algorithm 2 Distribution Tracking Fitted Value Iteration

1: Input: observation sample ôbs which is a union of observation samples
from the last k timesteps, max number of iterations q, initial approxi-
mate value function V̂0, discount factor γ .

2: i = 0
3: while V̂ not converged and i < q do
4: draw states Si+1 = {⟨M i , obs i ⟩}
5: compute approximate reward for each state {ri }
6: yi+1 (s) := ri (s) + maxa

{∑
s ′ Pa (s, s ′)γ (Vi (s ′))

}
7: Train new approximator V̂i+1 = CNN (Si+1, yi+1)
8: i = i + 1
9: end while
10: The resultant policy:

π (s) := arg max
a

∑
s ′

Pa (s, s ′)
(
Ra (s, s ′) + γ V̂ (s ′)

)

observation distribution> configurations. Because in the multivari-
ate case computing the expected utility of a model given a true
distribution analytically may be expensive, we opt to approximate
this utility using Monte Carlo sampling. Specifically, we draw from
the “real distribution” and estimate how many of these requests are
adequately handled by the model, giving us an immediate reward
signal for the state which fits the analytical estimate in expectation.

For the purpose of function approximation we use a 5-layer
convolutional neural net regressor. The training input is a tuple of
both themodel and true distribution coefficients, and the supervised
signal is R (⟨Mi ,obsi ⟩) + γ ·maxa (E(s ′ |s i ,a)[V̂ (a(⟨Mi ,obsi ⟩)]). We
iteratively draw a new subset and update the function approximator
using FVI until either convergence or a predetermined maximal
number of iterations is reached. The full procedure is described in
Algorithm 2.

8.3 Empirical Evaluation
We illustrate the effectiveness of the FVI approach using a syn-
thetic dataset of a 20-dimensional multivariate Gaussian that shifts
randomly in each dimension in each timestep. As before, using
a synthetic dataset for testing is useful since controlling the pro-
cess which generates the data gives us the freedom to fully test
the validity and robustness of our approach. Data is drawn from
a 100-dimensional Gaussian distribution with unknown ⟨µ,Σ⟩ pa-
rameters. As before, at each timestep, a number of observations
(or requests) is drawn from this distribution (the number of obser-
vations drawn is itself a random variable drawn from a Poisson
distribution |obst | ∼ Poi(λ)). Additionally, the distribution shifts in
a random walk process at each timestep - µ and Σ drift by factors
drawn from a different unknown distribution. We use the same
cost parameters as in Section 5, with the same baselines, all gen-
eralizable to the 20-dimensional case. The results are presented in
Figure 5. As one might observe from the results, despite the overall
challenge, the value-iteration approach still does best in terms of
balancing retraining costs and performance.

9 SUMMARY & DISCUSSION
The risk of concept drift has a potentially devastating effect onmany
real world systems that involve modeling. To this end, in this paper

Figure 5: Reward, success rate and cost per step over 30 time steps
for our fitted value iteration (FVI) system compared to the other
model retraining policies on simulated 10-dimensional data. Re-
sults are averaged over 20 simulations and are statistically signifi-
cant (using a paired t-test). Figure is best viewed in color.

we present a reinforcement learning approach for continual model
updating. Rather than building concept drift resistance into the
learned model, we frame the model update problem as a sequential
decision making task, and adapt an approximate value iteration
approach to learn a policy for when to update the model, and how.
This framework is generic, has theoretical grounding, and can be
easily applied to many different real world systems. We empirically
evaluate our approach on three different datasets, and show it
outperforms other baseline update policies.

Our approach is just the first step toward more robust systems
that can adapt to changing environments. Certain issues, such as
the appropriate partitioning of streaming data into batches, and
identifying performance under different types of drift, should be
explored in future work. In addition, other reinforcement learning
algorithms andmore refined transfer strategies could greatly benefit
the system, and would make for excellent follow-up research.

10 ACKNOWLEDGMENTS
This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by NSF
(IIS-1637736, IIS-1651089, IIS-1724157), Intel, Raytheon, and Lock-
heed Martin. Peter Stone serves on the Board of Directors of Cog-
itai, Inc. The terms of this arrangement have been reviewed and
approved by the University of Texas at Austin in accordance with
its policy on objectivity in research.

REFERENCES
[1] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. 2011.

The million song dataset.. In ISMIR, Vol. 2. 10.
[2] Dariusz Brzezinski and Jerzy Stefanowski. 2014. Reacting to different types of

concept drift: The accuracy updated ensemble algorithm. IEEE Transactions on
Neural Networks and Learning Systems 25, 1 (2014), 81–94.

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

997

[3] Margaret Chiosi and Brian Freeman. 2015. AT&T’s SDN Controller Implementa-
tion Based on OpenDaylight. (27-31 7 2015). http://doi.acm.org/10.1145/2843948
Open Daylight Summit.

[4] Chee-Seng Chow, John N Tsitsiklis, et al. 1989. An optimal multigrid algorithm
for discrete-time stochastic control. (1989).

[5] William G Cochran. 1977. Sampling techniques. 1977. New York: John Wiley and
Sons (1977).

[6] Isvani Frías-Blanco, José del Campo-Ávila, Gonzalo Ramos-Jiménez, Rafael
Morales-Bueno, Agustín Ortiz-Díaz, and Yailé Caballero-Mota. 2015. Online
and non-parametric drift detection methods based on HoeffdingâĂŹs bounds.
IEEE Transactions on Knowledge and Data Engineering 27, 3 (2015), 810–823.

[7] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. 2004. Learning
with drift detection. In Brazilian Symposium on Artificial Intelligence. Springer,
286–295.

[8] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A survey on concept drift adaptation. ACM Computing Surveys
(CSUR) 46, 4 (2014), 44.

[9] Carlos A. Gomez-Uribe and Neil Hunt. 2015. The Netflix Recommender System:
Algorithms, Business Value, and Innovation. ACM Trans. Manage. Inf. Syst. 6, 4
(Dec. 2015).

[10] Geoffrey J Gordon. 1995. Stable function approximation in dynamic programming.
In Proceedings of the twelfth international conference onmachine learning. 261–268.

[11] Andreas Jansson, Colin Raffel, and Tillman Weyde. [n. d.]. THIS IS MY JAMâĂŤ-
DATA DUMP. ([n. d.]). https://archive.org/details/thisismyjam-datadump

[12] Jyrki Kivinen, Alexander J Smola, and Robert CWilliamson. 2004. Online learning
with kernels. IEEE transactions on signal processing 52, 8 (2004), 2165–2176.

[13] Ralf Klinkenberg and Thorsten Joachims. 2000. Detecting Concept Drift with
Support Vector Machines.. In ICML. 487–494.

[14] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. 1997. Face
recognition: A convolutional neural-network approach. IEEE transactions on
neural networks 8, 1 (1997), 98–113.

[15] Leandro L Minku and Xin Yao. 2012. DDD: A new ensemble approach for dealing
with concept drift. IEEE transactions on knowledge and data engineering 24, 4
(2012), 619–633.

[16] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2010), 1345–1359.

[17] Mark Bishop Ring. 1994. Continual Learning in Reinforcement Environments. Ph.D.
Dissertation. University of Texas at Austin.

[18] Paul Ruvolo and Eric Eaton. 2013. ELLA: An Efficient Lifelong Learning Algo-
rithm. ICML (1) 28 (2013), 507–515.

[19] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 815–823.

[20] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. 2010.
Intrinsically motivated reinforcement learning: An evolutionary perspective.
IEEE Transactions on Autonomous Mental Development 2, 2 (2010), 70–82.

[21] Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement
Learning (1st ed.). MIT Press, Cambridge, MA, USA.

[22] Csaba Szepesvári and Rémi Munos. 2005. Finite time bounds for sampling
based fitted value iteration. In Proceedings of the 22nd international conference on
Machine learning. ACM, 880–887.

[23] Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement
learning domains: A survey. Journal of Machine Learning Research 10, Jul (2009),
1633–1685.

[24] Lisa Torrey and Jude Shavlik. 2009. Transfer learning. Handbook of Research on
Machine Learning Applications and Trends: Algorithms, Methods, and Techniques
1 (2009), 242.

[25] Alexey Tsymbal. 2004. The problem of concept drift: definitions and related work.
Computer Science Department, Trinity College Dublin 106 (2004).

[26] Gerhard Widmer and Miroslav Kubat. 1996. Learning in the presence of concept
drift and hidden contexts. Machine learning 23, 1 (1996), 69–101.

[27] Indrė Žliobaitė. 2010. Learning under concept drift: an overview. arXiv preprint
arXiv:1010.4784 (2010).

Session 25: Learning and Adaptation 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

998

http://doi.acm.org/10.1145/2843948
https://archive.org/details/thisismyjam-datadump

	Abstract
	1 Introduction
	2 Related Work
	3 Model Retraining as a Markov Decision Process
	3.1 Markov Decision Processes
	3.2 Formulation of the Model Retraining Problem

	4 Learning a Policy through Approximate Value Iteration
	4.1 Theoretical Intuition

	5 Distribution Model Retraining
	5.1 MDP representation for the Distribution Tracking Problem
	5.2 AVI for Distribution Model Retraining

	6 Distribution Tracking - Empirical Evaluation
	6.1 Proof of Concept - Synthetic Data
	6.2 Real World Domain I - ThisIsMyJam Dataset
	6.3 Real World Domain II - ECOMP

	7 Prediction Model Retraining
	7.1 MDP representation for the Prediction Problem
	7.2 Real World Domain - ECOMP

	8 Scaling Up Model Retraining with Fitted Value Iteration and Deep Neural Nets
	8.1 Fitted Value Iteration
	8.2 Generalizing the Model Retraining Framework with Neural Fitted Value Iteration
	8.3 Empirical Evaluation

	9 Summary & Discussion
	10 acknowledgments
	References

