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ABSTRACT
The task of conducting visually grounded dialog involves learning

goal-oriented cooperative dialog between autonomous agents who

exchange information about a scene through several rounds of

questions and answers in natural language. We posit that requiring

artificial agents to adhere to the rules of human language, while

also requiring them to maximize information exchange through

dialog is an ill-posed problem. We observe that humans do not stray

from a common language because they are social creatures who

live in communities, and have to communicate with many people

everyday, so it is far easier to stick to a common language even at the

cost of some efficiency loss. Using this as inspiration, we propose

and evaluate a multi-agent community-based dialog framework

where each agent interacts with, and learns from, multiple agents,

and show that this community-enforced regularization results in

more relevant and coherent dialog (as judged by human evaluators)

without sacrificing task performance (as judged by quantitative

metrics).
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1 INTRODUCTION
AI is increasingly becoming an important part of our daily lives, be

it in the household, the workplace or in public places. In order for

humans to interact with and understand the AI system, it needs to

learn how to communicate with us about our environment using

the languages that we speak. This requires the AI system to visually

interpret the world, and communicate descriptions of the physical

world. While such a task would have been considered impossible a

few years ago, the recent progress in the fields of Computer Vision

and Natural Language Processing, which are important building

blocks for this task, have reinvigorated interest in the community.

Several problems like image captioning ([12], [36], [30], [10], [20],

[37] ), image classification ([14], [29], [8], [34] ), object detection
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Figure 1: Multi-Agent (with 1 Q-Bot, 3 A-Bots) Dialog Frame-
work. The diagram showsmultiple A-bots interactingwith a
single Q-bot using natural language questions and answers.
The Q-bot asks relevant questions to improve its under-
standing of the image and one of the randomly chosen A-
bots answers the question. This ensures that the Q-bot can’t
overfit to responses provided by any one A-bot.

([17], [23], [24]), image segmentation ([18], [9], [22]), dialog ([28],

[31], [5]), question answering ([38], [27], [35]) etc. have received

immense amounts of attention from the research community. The

paradigm of reinforcement learning has also shown promising

results in several problems including learning to play Go [26] and

Atari games [21], among others, at superhuman levels.

Capitalizing on the growth in all these different domains, it now

seems plausible to build more advanced dialog systems capable of

reasoning over multiple modalities while also learning from one an-

other. Such systems will allow humans to have a meaningful dialog

with intelligent systems containing visual as well as textual content.

Use cases include assistive systems for the visually impaired, smart

multimodal dialog agents (unlike current versions of Siri and Alexa

which are primarily audio based and cannot make effective use

of multimodal data) and even large scale visual retrieval systems.

However, as these systems become more advanced, it will become

increasingly common to have two agents interact with each other

to achieve a particular goal [15]. We want these conversations to

be interpretable to humans for the sake of transparency and ease of

debugging. This motivates our work on goal-driven agents which

interact in coherent language understandable to humans.

This paper presents work on Goal driven Visual Dialog Agents.

Most prior work on visual dialog [[2], [4]] has approached the prob-

lem using supervised learning where, conditioned on the question -

answer pair dialog history, a caption c and the image I , the agent
is required to answer a given question q. The model is trained in

a supervised learning framework using ground truth supervision

from a human-human dialog dataset.

Some recent work [3] has tried to approach the problem using

reinforcement learning, with two agents, namely the Question (Q-)
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Bot and the Answer (A-) Bot. While the A-Bot still has the image,

caption and the dialog history to answer any question, the Question

Bot only has access to the caption and the dialog history. The two

agents are initially trained with supervision using the VisDial v0.9

dataset [2], which consists of 80k images, each with a caption and

10 human generated question-answer pairs discussing the image.

Under supervision, the agents are trained in an isolated manner to

maximize the likelihood of generating the ground truth answers.

The agents are then made to interact and talk to each other, with a

common goal of trying to improve the Q-Bot’s understanding of the

image. The agents learn from their conversation with each other via

reinforcement learning. While the supervised training in isolation
helps the agents to learn to interpret the images and communi-

cate information, it is the interactive training phase which leads

to richer dialog with more informative questions and answers as

the agents learn to adapt to each others’ strengths and weaknesses.

However, it is important to note that the optimization problem in

this conversational setting does not make the agents stick to the

domain of grammatically correct and coherent natural language.

Indeed, if the two agents are allowed to communicate and learn

from each other for too long, they quickly start generating non-

grammatical and semantically meaningless sentences. While the

generated sentences stop making sense to human observers, the

two agents are able to understand each other much better, and the

Q-Bot’s understanding of the image improves. This is similar to

how twins often develop a private language [25], an idiosyncratic

and exclusive form of communication understandable only to them.

This, however, reduces transparency of the agents’ dialog to any

observer (human or AI), and is hence undesirable. Prior work [2, 3]

which has focused on improving performance as measured by the

Q-Bot’s image retrieval rank has suffered from incoherent dialog.

We address this problem of improving the agents’ performance

while increasing dialog quality by taking inspiration from humans.

We observe that humans continue to speak in commonly spoken

languages, and hypothesize that this is because they need to commu-
nicate with an entire community, and having a private language for

each person would be extremely inefficient. With this idea, we let

our agents learn in a similar setting, by making them talk to (ask

questions of, get answers from) multiple agents, one by one. We

claim that if, instead of allowing a single pair of agents to interact,

we were to make the agents more social, and make them interact

and learn from multiple other agents, they would be disincentivized

to develop a private language, and would have to conform to the

common language. We call this Community Regularization.

In the subsequent sections we describe the Visual Dialog task

and the neural network architectures of our Q-Bots and A-Bots

in detail. We then describe the training process of the agents se-

quentially: (a) in isolation (via supervision), (b) while interacting

with one partner agent (via reinforcement), and (c) our proposed

multi-agent setup where each agent interacts with multiple other

agents (via reinforcement). We compare the performance of the

agents trained in these different settings, both quantitatively us-

ing image retrieval ranks, and qualitatively evaluating the over-

all coherence, grammar and relevance of the dialog generated, as

judged by impartial human evaluators. We make the following

contributions: We propose a multi-agent dialog setup in a natural

language setting and show that it results in community regular-

ization which ensures that the interactions between the agents

remain grounded in the rules and grammar of natural language, are

coherent and human-interpretable without compromising on task

performance. The code can be found in the following repository

https://github.com/agakshat/visualdialog-pytorch.

2 PROBLEM STATEMENT
We begin by defining the problem of Visually Grounded Dialog for

the co-operative image guessing game on the VisDial dataset.

Players and Roles: The game involves two collaborative agents

– a question bot (Q-bot) and an answer bot (A-bot). The A-bot has

access to an image and caption, while the Q-bot has access to the

image’s caption, but not the image itself. Both the agents share a

common objective, which is for the Q-bot to form a good “mental

representation" of the unseen image which can be used to retrieve,

rank or generate that image. This is facilitated by the exchange of

10 pairs of questions and answers between the two agents, using a

shared vocabulary, where the Q-bot asks the A-bot a question about

the image, and the A-bot answers the question, hence improving

the Q-Bot’s understanding of the image scene.

General Game Objective: At each round, in addition to com-

municating with the A-bot, the Q-bot also provides the learning

algorithm with its best estimate yt of the unknown image I based
only on the dialog history and caption. Both agents receive a com-

mon reward from the environment which is inversely proportional

to the error in this description under some metric L(yt ,yдt ). We

note that this is a general setting where the ‘description’ yt can
take on varying levels of specificity – from image feature embed-

dings extracted by deep neural networks to textual descriptions

and pixel-level image re-generations.

Specific Instantiation: In our experiments, we focus on the set-

ting where the Q-bot is tasked with estimating a vector embedding

of the image I, which is later used to retrieve a similar image from

the dataset. Given a feature extractor (say, a pretrained CNN model

like VGG [29]), the target ‘description’ yдt of the image, can be

obtained by simply forward propagating through the VGG model,

without the requirement of any human annotation. Reward/error

can be measured by the Euclidean distance between the target de-

scription yдt and the predicted description yt , and any image may

be used as the visual grounding for a dialog. Thus, an unlimited

number of games may be simulated without human supervision,

motivating the use of reinforcement learning in this framework.

Our primary focus for this work is to ensure that the agents’

dialog remains coherent and understandable while also being infor-

mative and improving task performance. For concreteness, consider

an example of dialog that is informative yet incoherent: question:
"do you recognize the guy and age is the adult?", answered with:
"you couldn’t be late teens, his". The example shows that the bots

try to extract and convey as much information as possible in a

single question/answer (sometimes by incorporating multiple ques-

tions or answers into a single statement). But in doing so they lose

basic semantic and syntactic structure. We also provide a sample of

the dialogs in Figure 2.
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is the girl close to a race ?
'is she wearing a helmet ? 
is she wearing a hat ?
what color is it ?
'is she wearing goggles ?
'is she wearing goggles ?
what color is her skis ?
is she wearing a hat ?
what color does she have ?
and what is the  girl wearing ?

no , woman is riding
no 

She is wearing a headband
I would say it’s black

Can’t see her face
Not sure

Dark, hard to tell i would guess
No

White
A white striped long sleeve shirt 

and blue

is there more than 1 skier ?
oh how many UNK do you see ? 
is the person holding a pipe of 
so me sort of basket ?
is lady going fast ?
how many is there ?
is there snow ? 
how many animals do you see ? 
is there a lot of snow ?
are they all together ? 
is there a lift ?

Yes
A few

Yes, there is a bowtie

I can not tell
It’s not silver people are in grocery

Is covered by snow covered by snow
Of the 1, and a 2

Yes tons of snow everywhere covered
Yes 1 is a darker 1

Just a few skiing out yet

are there any other people around ?
is it snowing ?
is it a sunny day ?
is the woman wearing a dress ? 
what color is it ?
is she by herself of snow ?
what color is her jacket ?
does it look like a competition ? 
is it day or night ?
is it sunny ? 

No
Can’t tell

Yes
Yes

It has a white meat and girl on
Just lady, woman and dog

Orange
Yes

Daytime
yes

how old is the woman ? 
is she in a ski resort ?
can you see the sky ? 
is she alone ? 
what color are the gloves ? 
is there snow on the ground ?
is the photo very clear ?
is she wearing a helmet ?
is it snowing ?
is it sunny ? 

About 16
I don’t think so

No
Yes

Silver
No snow

Yes
No

it looks like it is stopped
No really

what color are the skis ?
Are there any other people?
Is this outdoors?
Do you see snow?
Is it currently snowing?
Is she on a slope or hill?
Do you see trees?
Do you see the sky?
Is she wearing gloves?
Is she wearing a hat?

A UNK color
Not that i can see

Yes
Yes

No I don’t think so
No i don’t think so

Yes
No

Yep
yes

are the boys playing volleyball ?
how old do they look ?
do you see any buildings ? 
are they male ?
can you see any cars ?
can you tell how many women 
are sitting there or playing ?
are they combing leather ?
what color are the men 's shoes?
what color are the women ?
are the boys well groomed ? 

yes , a professional boy
maybe in their late 20 's
no , i don't see buildings

yes , both men and women
no , can only see the bunch of 
there are more people than 3 

no , they 're wood 
women in

they are black 
'the snowboarder is white

yes

do you recognize 1 ball ? 
that you could you are seeing 
controllers ?
do you recognize the guy and 
age is the adult ?
do you recognize them ?
how many people are there ?
do you do they fence famous ?
do you see fire ?
is the fire dog UNK ? 
do they have long manes ?
can you see other people 
watching them ?

looks like a around
that i can see the fair

you couldn't be late teens , his

motorcycle but UNK tint and UNK
35 

It looks black and white
I’m not sure because it’s is

Yes
Black and white, it looks

Yes there is a people

How old do the men appear?
Is this at a beach?
Do they have on bathing suits?
How old are they?
What color frisbee?
Do they have a regular ball shirt on?
With how old are they?
Is there other people in the pic?
How many of them are playing?
What is the woman doing?

30s
No
No

Young adults
White

1 of them do
Mid 30s

Yes, there is a man behind the him
2

sitting

What color is umbrella?
What are they wearing?
What color is frisbee?
What are they doing?
Are they all holding rackets?
Are there any other people?
What color is the frisbee?
Are there any other people?
Are the people tall?
Are they in a field?

Black with a blue stripe
T shirts and jeans

White
Sitting on the beach, talking

Yes
Yes

Creamy green
Yes a lot

Looks very tall
no

How many men?
Are they playing frisbee?
What color frisbee?
Just white?
Do men look skilled?
Why not?
They don’t seem good?
Is frisbee in air?
Who has it?
Is he bigger than other?

2
Yes

White
Yes
No

Playing
Guess not, I said no

No
Person 1

no

2 men in a grassy park playing frisbee

The little girl is standing with skis on her feet Human-Human Dialogue SL

RL - 3Q, 1ARL - 1Q, 3ARL - 1Q, 1A

Human-Human Dialogue SL

RL - 3Q, 1ARL - 1Q, 3ARL - 1Q, 1A

Figure 2: A randomly selected image from the VisDial dataset followed by the ground truth (human) and generated dialog
about that image for each of our 4 systems (SL, RL-1Q,1A, RL-1Q,3A, RL-3Q,1A). These examples were 2 of the 102 used in the
human evaluation results shown in Table 2

3 RELATEDWORK
Most of the major works which combine vision and language have

traditionally focused on the problem of image captioning (([12],

[36], [30], [10], [20], [37]) and visual question answering ([1], [39],

[7]). The problem of visual dialog is relatively new and was first

introduced by Das et al. [2] who also created the VisDial dataset to

advance the research on visually grounded dialog. The dataset was

collected by pairing two annotators on Amazon Mechanical Turk

to chat about an image. They formulated the task as a ‘multi-round’

VQA task and evaluated individual responses at each round in an

image guessing setup. In subsequent work by Das et al. [3] they

proposed a reinforcement learning based setup where they allowed

the Question bot and the Answer bot to have a dialog with each

other with the goal of correctly predicting the image unseen to the

Question bot. However, in their work they noticed that the rein-

forcement learning based training quickly led the bots to diverge

from natural language. In fact Kottur et al. [13] recently showed

that language emerging from two agents interacting with each

other might not even be interpretable or compositional. We use

community regularization to alleviate this problem. Recent work

has also proposed using such goal driven dialog agents for other

related tasks including negotiation [16] and collaborative drawing

[11]. We believe that our work can easily extend to those settings as

well. Lu et al. [19] proposed a generative-discriminative framework

for visual dialog where they train only an answer bot to generate

informative answers for ground truth questions. These answers

were then fed to a discriminator, which was trained to rank the

generated answer among a set of candidate answers. This is a ma-

jor restriction of their model as it can only be trained when this

additional information of candidate answers is available, which
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restricts it to a supervised setting. Furthermore, since they train

only the answer bot and have no question bot, they cannot simu-

late an entire dialog which also prevents them from learning by

self-play via reinforcement. Wu et al. [33] further improved upon

this generative-discriminative framework by formulating the dis-

criminator as a more traditional GAN [6], where the adversarial

discriminator is tasked to distinguish between human generated

and machine generated dialogs.

4 AGENT ARCHITECTURES
We describe all the different components of the agent architectures

in this section. Note that the overall architecture is mostly bor-

rowed from Das et al. [3], Lu et al. [19] with slight modifications

to individual units and an additional caption encoder. We explain

these modifications in detail in this section. We would like to stress

that these changes are not the main contribution of our paper. The

main contribution is the Multi-agent dialog framework described

in section 5.3.

4.1 Question Bot Architecture
The question bot architecture we use is inspired by the answer

bot architecture in Das et al. [3], Lu et al. [19] but the individual

units have been modified to provide more useful representations.

Similar to the original architecture, our Q-Bot, shown in Fig. 3a,

also consists of 4 parts, (a) fact encoder, (b) state-history encoder,

(c) question decoder and (d) image regression network.

(1) Fact Encoder: The fact encoder is a unidirectional LSTM
which is given the previous question-answer pair (qt−1,at−1)
as input. The LSTM generates a fact embedding Ft ∈ R

512
.

(2) State/History Encoder: We modify the state-history en-

coder to incorporate a two-level hierarchical encoding of

the dialog. The encoder first computes the fact embeddings

H
Q
t = (F1, F2, F3...Ft−1), using an LSTM akin to the fact en-

coder described above. We pass these embeddings and Ft
computed by the Fact Encoder through a fully connected

layer, generating attention weights which are used to attend

over H
Q
t , producing the history embedding S

Q
t ∈ R

512
. No-

tice that this results in a two-level hierarchical encoding of

the dialog (qt ,at ) → Ft and (F1, F2, F3, ...Ft ) → S
Q
t .

(3) Caption Encoder: This is a unidirectional LSTM which is

given the image caption c as input. The LSTM generates a

caption embedding CQ ∈ R512.

(4) Feature Regression Network: {FQt , S
Q
t ,C

Q } are concate-

nated to produce an embedding E
Q
t . This is passed through

2 fully connected layers with dropout to produce ŷt from

the current encoded state ŷt = f (S
Q
t ).

(5) Question Decoder: The hidden state of this LSTM is initial-

ized with the hidden state of the fact encoder. E
Q
t is passed

through a fully connected layer to generate e
Q
t , which is

used to update the hidden state of the LSTM of the question

decoder. The question qt is then generated by sequentially

sampling words (either via teacher forcing during supervised

pretraining or via autoregressive generation during RL and

evaluation).

Note that we use a dropout of 0.5 in all the LSTMs during training.

All LSTM hidden layers sizes are 512, and the image embedding

size is 4096. The input word embedding size is 300.

LSTMC

FC Ipred

St

History Attention

LSTMFt

LSTMH1

LSTMHt-1

Concat

et

Encoder

(a) Encoder architecture for Q-Bot

I

St

History Attention

LSTMFt

LSTMC0

LSTMHt-1

Concat

et

Encoder

CNN

(b) Encoder architecture for A-Bot

Figure 3: Agent Encoder Architectures

4.2 Answer Bot Architecture
The architecture for A-Bot, also inspired from Lu et al. [19], shown

in Fig. 3b, is similar to that of the Q-Bot. It has 3 components: (a)

question encoder, (b) state-history encoder and (c) answer decoder.

(1) Question Encoder: The question encoder is a unidirec-

tional LSTM which is given the current question qt gener-
ated by the Q-Bot as input. The LSTM generates a question

embedding QA
t ∈ R

512
.

(2) State/History/ImageEncoder:The encoder first computes

the fact embeddingsHA
t = (F1, F2, F3...Ft−1), using an LSTM

akin to the fact encoder described above. By passing these

embeddings and the QA
t computed by the Question Encoder

through a fully connected layer, attention weights are gen-

erated which are used to attend over HA
t , producing the

history embedding SAt ∈ R
512

. Notice that this results in a

two-level hierarchical encoding of the dialog (qt ,at ) → Ft
and (F1, F2, F3...Ft ) → SAt . {Q

A
t , S

A
t ,yдt } are then concate-

nated to produce an embedding EAt .
(3) Answer Decoder: The hidden state of this LSTM is ini-

tialized with the hidden state of the question encoder. EAt is

passed through a fully connected layer to generate eAt , which
is used to update the hidden state of the LSTM of the answer

decoder. The answer at is then generated by sequentially

sampling words (either via teacher forcing during supervised

pretraining or via autoregressive generation during RL and

evaluation).
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5 TRAINING
We follow the training process proposed inDas et al. [3]. Two agents,

a Q-Bot and an A-Bot are first trained in isolation, by supervision

from the VisDial dataset. After this supervised pretraining for 15

epochs over the data, we smoothly transition the agents to learn

from each other via reinforcement learning. The individual phases

of training will be described in more detail below. Note that the key

novelty of the work is the multi-agent dialog framework proposed

in Section 5.3

5.1 Supervised pre-training
In the supervised part of training, both the Q-Bot and A-Bot are

trained separately, using a Maximum Likelihood Estimation (MLE)

loss computed using the ground truth questions and answers, re-

spectively, for every round of dialog. The Q-Bot simultaneously

optimizes another objective: minimizing the Mean Squared Error

(MSE) loss between the true (yдt ) and predicted (yt ) image embed-

dings. The ground truth dialogs and image embeddings are from

the VisDial dataset.

Given the true dialog history, image features and a question from

the dataset, the A-Bot generates an answer to that question. Given

the true dialog history and the previous question-answer pair from

the dataset, the Q-Bot is made to generate the next question to

ask the A-Bot. Both agents receive only ground truth questions

and answers, never what the other agent generated - so the two

agents never actually interact during this phase of training. How-

ever, there are multiple problems with this training scheme. First,

MLE is known to result in models that generate repetitive dialogs

and often produce generic responses. Second, since the agents are

never allowed to interact during training, they end up encountering

out-of-distribution questions and answers when made to interact

during evaluation, which reduces the task performance. This can

be observed in Figure 4. The performance of the agents trained via

supervised learning dips after each successive dialog round.

5.2 Reinforcement Learning Setup
To alleviate the issues pointed out with supervised training, we let

the two bots interact with each other via self-play (no ground-truth

except images and captions). This interaction is also in the form of

questions asked by the Q-Bot, and answered in turn by the A-Bot,

using a shared vocabulary. The state space is partially observed and

asymmetric, with the Q-Bot observing {c,q1,a1 . . .q10,a10} and
the A-Bot observing the same, plus the image I . Here, c is the cap-

tion, and qi ,ai is the i
th

dialog pair exchanged where i = 1 . . . 10.

The action space for both bots consists of all possible output se-

quences of a specified maximum length (Q-Bot: 16, A-Bot: 9) un-

der a fixed vocabulary (size 8645). Each action involves predicting

words sequentially until a stop token is predicted, or the generated

statement reaches the maximum length. Additionally, Q-Bot also

produces a guess of the visual representation of the input image

(VGG fc-7 embedding of size 4096). Both Q-Bot and A-Bot share the

same objective and get the same reward to encourage cooperation.

Information gain in each round of dialog is incentivized by setting

the reward as the change in distance of the predicted image em-

bedding to the ground-truth image representation. This means that

a QA pair is of high quality only if it helps the Q-Bot make a better

prediction of the image representation. Both policies are modeled

by neural networks, as discussed in Section 4.

A dialog round at time t consists of the following steps: 1) the Q-
Bot, conditioned on the state encoding, generates a questionqt , 2) A-
Bot updates its state encoding withqt and then generates an answer
at , 3) Both Q-Bot and A-Bot encode the completed exchange as a

fact embedding, 4) Q-Bot updates its state encoding to incorporate

this fact and finally 5) Q-Bot predicts the image representation for

the unseen image conditioned on its updated state encoding.

Similar to Das et al. [2], we use the REINFORCE [32] algorithm

that updates policy parameters in response to experienced rewards.

The per-round rewards that are used to calculate the discounted

returns follow:

rt (s
Q
t , (qt ,at ,yt )) = l(yt−1,y

дt ) − l(yt ,y
дt ) (1)

This reward is positive if the distance between image represen-

tation generated at time t is closer to the ground truth than the

representation at time t − 1, hence incentivizing information gain

at each round of dialog. The REINFORCE update rule ensures that

a (qt ,at ) exchange that is informative has its probabilities pushed

up. Do note that the image feature regression network f is trained

directly via supervised gradient updates on the L-2 loss.

However, as noted above, this RL optimization problem is ill-

posed, since rewarding the agents for information exchange does

not motivate them to stick to the rules and conventions of the Eng-

lish language. Thus, we follow an elaborate curriculum scheme

described in [2]. Specifically, for the first K rounds of dialog for

each image, the agents are trained using supervision from the Vis-

Dial dataset. For the remaining 10-K rounds, however, they are

trained via reinforcement learning. K starts at 9 and is linearly

annealed to 0 over 10 epochs. Despite these modifications the bots

are still observed to diverge from natural language and produce

non-grammatical and incoherent dialog. Thus, we propose a multi

bot architecture to help the agents interact in diverse and coherent,

yet informative, dialog.

5.3 Multi-Agent Dialog Framework (MADF)
In this section we describe our proposed Multi-Agent Dialog ar-

chitecture in detail. We claim that if, instead of allowing a single

pair of agents to interact, we were to make the agents more social,

and make them interact and learn from multiple other agents, they
would be disincentivized to develop a private language, and would

have to conform to the common language. We call this Community

Regularization.

In particular, we create either multiple Q-bots to interact with a

single A-bot, or multiple A-bots to interact with a single Q-bot. All

these agents are initialized with the learned parameters from the

supervised pretraining as described in Section 5.1. Then, for each

batch of images from the VisDial dataset, we randomly choose a

Q-bot to interact with the A-bot, or randomly choose an A-bot to

interact with the Q-bot, as the case may be. The two chosen agents

then have a complete dialog consisting of 10 question-answer pairs

about each of those images, and update their respective weights

based on the rewards received (as per Equation 1) during the conver-

sation, using the REINFORCE algorithm. This process is repeated

for each batch of images, over the entire VisDial dataset. It is im-

portant to note that histories are not shared across batches. MADF
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Table 1: Comparison of answer retrieval metrics with pre-
viously published work. SL has the best scores. The scores
drop drastically in RL-1Q,1A, but MADF agents (RL-3Q,1A
and RL-1Q,3A) are able to retain the same language quality
as the SL agent.

Model MRR Mean Rank R@10
Answer Prior [2] 0.3735 26.50 53.23

MN-QIH-G [2] 0.5259 17.06 68.88

HCIAE-G-DIS [19] 0.547 14.23 71.55

Frozen-Q-Multi [3] 0.437 21.13 60.48

CoAtt-GAN [33] 0.5578 14.4 71.74

SL(Ours) 0.610 5.323 72.68
RL - 1Q,1A(Ours) 0.459 7.097 72.34

RL - 1Q,3A(Ours) 0.601 5.495 72.48

RL - 3Q,1A(Ours) 0.590 5.56 72.61

can be understood in detail using the pseudocode in Algorithm 1.

Connection to Regularization: It is interesting to note that

theMADF setting can actually be seen as a regularizer for the model.

To establish this more formally, we look at the total loss minimized

by each agent. The Total loss (TL) being minimized during the RL

phase =A1t +A2t at time t, whereA1t is negative of the RL reward

as described in section 5.2, andA2t is the L-2 loss between predicted
and true image embeddings. Consider a setting with N Abots and 1

QBot. The A2t Loss can be written as:

A2t =
N∑
i=1
(y
(i)
t − y

дt )2 = (y
(1)
t − y

дt
t )

2 +

N∑
i=2
(y
(i)
t − y

дt )2

From the equation, we observe that A2t is a sum of 2 terms, where

the first term is the standard regression loss which would apply for

the 1Q,1A case. The second term can be viewed as a regularization

imposed by pairing the other A-bots with the Q-bot, hence we can

rewrite A2 as:

A2t = (y
(1)
t − y

дt
t )

2 + RA2t (θ ) (2)

whereRA2t (θ ) represents regularization imposed by the other agents.

Similarly, A1t can also be broken down into a likelihood and a reg-

ularization term as follows:

A1t = −G
(1)
t loдπ (q

(1)
t ,a

(1)
t ) + RA1t (θ ) (3)

whereG
(1)
t is the monte-carlo return calculated using the first pair

of agents at time t. Thus, both the terms in the total loss can be

broken down into a loss term akin to the 1Q, 1A case and a regular-

ization term. This regularization term comes from the regularization

imposed by pairing each Q-Bot with multiple A-bots or vice versa.

This clearly shows that the multi-bot framework can be seen as a

form of regularization. In the experiments we show that the reg-

ularization helps with the language quality by ensuring that the

bots don’t deviate much from natural language.

6 EXPERIMENTS AND RESULTS
6.1 Dataset description
We use the VisDial 0.9 dataset for our task introduced by Das et al.

[2]. The data is collected using Amazon Mechanical Turk by pairing

2 annotators and asking them to chat about the image as a multi

round VQA setup. One of the annotators acts as the questioner

Figure 4: Comparison of Task Performance: Image Retrieval
Percentile scores. This refers to the percentile scores of the
ground truth image compared to the entire test set of 40k im-
ages, as ranked by distance from the Q-Bot’s estimate of the
image. The X-axis denotes the dialog round number (from
1 to 10), while the Y-axis denotes the image retrieval per-
centile score. The percentile score decreases monotonically
for SL, but is stable for all versions using RL. This shows
that the MADF agents are able to capitalize on the benefits
of interactive learning.

and has access to only the caption of the image and has to ask

questions from the other annotator who acts as the ‘answerer’ and

must answer the questions based on the visual information from the

actual image. This dialog repeats for 10 rounds at the end of which

the questioner has to guess what the image was. We perform our

experiments on VisDial v0.9 (the latest available release) containing

83k dialogs on COCO-train and 40k on COCO-val images, for a

total of 1.2M dialog question-answer pairs. We split the 83k into

82k for train, 1k for validation, and use the 40k as test, in a manner

consistent with [2]. The caption is considered to be the first round

in the dialog history.

6.2 Evaluation Metrics
We evaluate the performance of our model’s individual responses

by using 4 metrics, proposed by [3]: 1) Mean Reciprocal Rank
(MRR), 2) Mean Rank, 3) Recall@10 and 4) Image Retrieval
Percentile. Mean Rank and MRR compute the average rank (and

its reciprocal, respectively) assigned to the ground truth answer,

over a set of 100 candidate answers for each question (also averaged

over all the 10 rounds). Recall@10 computes the percentage of an-

swers with rank less (better) than 10. Intuitively all these language

metrics are trying to measure similar things, i.e, how highly does

the model rank the ground truth answer over a set of 100 candidate

responses. Thus, if the model gives a lower rank to the ground truth

answer, then we can say that the model is highly likely to produce

the ground truth response to the question. But at the same time

they do have some qualitative differences. For example, MRR and

Rank@10 are more robust to outliers but Mean Rank is not (but it
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Algorithm 1 Multi-Agent Dialog Framework (MADF)

1: procedure MultiBotTrain

2: while train_iter < max_train_iter do ▷ Main Training loop over batches

3: Qbot ← random_select (Q1, Q2, Q3 ....Qq )

4: Abot ← random_select (A1, A2, A3 ....Aa ) ▷ Either q or a is equal to 1

5: history ← (0, 0, ...0) ▷ History initialized with zeros

6: f act ← (0, 0, ...0) ▷ Fact encoding initialized with zeros

7: ∆imaдe_pred ← 0 ▷ Tracks change in Image Embedding

8: Qz1 ← Ques_enc(Qbot, f act, history, caption)
9: for t in 1:10 do ▷ Have 10 rounds of dialog

10: quest ← Ques_дen(Qbot, Qzt )
11: Azt ← Ans_enc(Abot, f act, history, imaдe, quest , caption)
12: anst ← Ans_дen(Abot, Azt )
13: f act ← [quest , anst ] ▷ Fact encoder stores the last dialog pair

14: history ← concat (history, f act ) ▷ History stores all previous dialog pairs

15: Qzt ← Ques_enc(Qbot, f act, history, caption)
16: imaдe_pred ← imaдe_r eдr ess(Qbot, f act, history, caption)
17: Rt ← (tarдet_imaдe − imaдe_pred )2 − ∆imaдe_pred
18: ∆imaдe_pred ← (tarдet_imaдe − imaдe_pred )2

19: end for
20: ∆(wQbot ) ←

1

10

∑
10

t=1 ∇θQbot

[
Gt logp(quest , θQbot ) − ∆imaдe_pred

]
21: ∆(wAbot ) ←

1

10

∑
10

t=1Gt ∇θAbot logp(anst , θAbot )
22: wQbot ← wQbot + ∆(wQbot ) ▷ REINFORCE and Image Loss update for Qbot

23: wAbot ← wAbot + ∆(wAbot ) ▷ REINFORCE update for Abot

24: end while
25: end procedure

Table 2: Human Evaluation Results - Mean Rank (Lower is better) : Results show that RL-3Q,1A outperforms RL-1Q,3A for
A-relevance and overall coherence but otherwise SL (Supervised Learning), RL-1Q,3A, and RL-3Q,1A showed equivalent per-
formance indicating that community regularization can effectively eliminate any losses to human intelligibility introduced
through RL.

Metric N SK RL 1Q,1A RL 1Q,3A RL 3Q,1A
1 Question Relevance 49 1.97 3.57 2.20 2.24

2 Question Grammar 49 2.16 3.67 2.24 1.91
3 Overall Dialog Coherence: Q 49 2.08 3.73 2.34 1.83
4 Answer Relevance 53 2.09 3.77 2.28 1.84
5 Answer Grammar 53 2.20 3.75 2.05 1.98
6 Overall Dialog Coherence: A 53 2.09 3.64 2.35 1.90

is more interpretable). The fourth metric, i.e, the Image Retrieval

percentile, is different from the first 3 metrics. It is a measure of

how close the image prediction generated by the Q-bot is to the

ground truth. All the images in the test set are ranked according to

their distance from the predicted image embedding, and the rank of

the ground truth embedding is used to calculate the image retrieval

percentile. This gives a measure of the quality of the information

exchange. All results are reported after 15 epochs of supervised

learning and 10 epochs of curriculum learning as described in Sec-

tion 5. Consequently, the training time of all 3 systems are equal.

Table 1 compares the Mean Rank, MRR, and Recall@10 of our

agent architecture and dialog framework (below the horizontal

line) with previously proposed architectures (above the line). SL

refers to the agents after only the isolated, supervised training of

Section 5.1. RL-1Q,1A refers to a single, idiosyncratic pair of agents

trained via reinforcement as in Section 5.2. RL-1Q,3A and RL-3Q,1A

refer to social agents trained via our Multi-Agent Dialog framework

in Section 5.3, with 1Q,3A referring to 1 Q-Bot and 3 A-Bots, and

3Q,1A referring to 3 Q-Bots and 1 A-Bot.

It can be seen that our agent architectures clearly outperform

all previously published results using generative architectures in

MRR, Mean Rank and R@10. This indicates that our approach

produces consistently good answers (as measured by MRR, Mean

Rank and R@10). It is important to note that the point here is not to

demonstrate the superiority of our architecture compared to other

architectures. The point here is instead to show that the MADF

framework (RL-3Q,1A and RL-1Q,3A) is able to maintain the same

language quality as the supervised agent while improving the image

retrieval scores. In fact, community regularization (in the form of

the proposed MADF setup) can be integrated with any of the visual

dialog algorithms in Table 1. Notice that SL has the best scores.

The scores drop drastically in RL-1Q,1A, but RL-3Q,1A and RL-

1Q,3A obtain scores comparable to SL. This shows that the agents

trained by MADF are able to maintain the language quality of SL
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agents without sacrificing much on the task performance (image

retrieval percentile). Fig. 4 shows the change in image retrieval

percentile scores over dialog rounds. The percentile score decreases

monotonically for SL, however it is stable for all versions using

RL. The decrease in image retrieval score over dialog rounds for

SL is because the test set questions and answers are not perfectly

in-distribution (compared to the training set), and the SL system

can’t adapt to these samples as well as the systems trained with

RL. As the dialog rounds increase, the out-of-distribution nature

of dialog exchange increases, hence leading to a decrease in SL

scores. Interestingly, despite having strictly more information in

later rounds, the scores of RL agents do not increase - which we

think is because of the nature of recurrent networks to forget.

The results in Fig. 4 and Table 1 show that the MADF setup

allows the agents to achieve consistent task performance without

sacrificing on language quality. We further support this claim in

the next section where we show that human evaluators rank the

language quality of MADF agents to be much better than the agents

trained via reinforcement without community regularization.

6.3 Human Evaluation
There are no quantitative metrics to comprehensively evaluate di-

alog quality, hence we do a human evaluation of the generated

dialog. There are 6 metrics we evaluate on: 1) Q-Bot Relevance, 2)

Q-Bot Grammar, 3)A-Bot Relevance, 4) A-Bot Grammar, 5) Q-Bot

Overall Dialog Coherence and 6) A-Bot Overall Dialog Coherence.

We evaluate 4 Visual Dialog systems, trained via: 1) Supervised
Learning (SL), 2)Reinforce for 1Q-Bot, 1 A-Bot (RL-1Q,1A), 3)
Reinforce for 1 Q-Bot, 3 A-Bots (RL-1Q,3A) and 4) Reinforce
for 3 Q-Bots, 1 A-Bot (RL-3Q,1A). We asked a total of 61 people

to evaluate the 10 QA-pairs generated by each system for a total

of 102 randomly chosen images, requiring them to give an ordi-

nal ranking (from 1 to 4) for each metric. All the evaluators were

provided with the caption from the dataset. Evaluators taking the

perspective of the A-Bot were provided with the image and asked

to evaluate answer relevance and grammar, while those taking the

perspective of the Q-Bot evaluated question relevance and grammar.

Both groups rated dialogs for overall coherence. Table 2 contains

the average ranks obtained on each metric (lower is better).

The results convincingly validate our hypothesis that having

multiple A-Bots/Q-Bots improves the language quality as compared

with single Q-Bot and A-Bot. Kruskal-Wallis tests found strong

differences among rankings (p< .0001) across all measures. Pairwise

comparisons using the Mann-Whitney U test found a consistent

pattern in which RL 1Q,1A performed substantially worse than

other methods across all measures: for

(1) Q-relevance: SL: U=348, p<.0001; RL-1Q3A: U=2235, p<
.0001; RL-3Q1A U=2209, p< .0001,

(2) Q-grammar: SL: U=319, p< .0001; RL-1Q3A U=2280, p <

.0001; RL-3Q1A U=2221, p < .0001;

(3) A-relevance: SL U=256, p < .0001; RL-1Q3A U=2741, p <

.0001; RL-3Q1A U-2909, p < .0001;

(4) A-grammar: SL U=305, p < .0001; RL-1Q3A U=2857, p <

.0001; RL-3Q1A U=2673, p < .0001;

(5) Overall (both groups): SL U=1206, p < .0001; RL-1Q3A U=

9458, p < .0001; RL-3Q1A U=10052, P < .0001.

Results showed that RL 3Q,1A outperformed RL 1Q,3A for A-relevance

U=1889, p < .02 and overall coherence U=6543, p < .006 but other-

wise SL, RL-1Q,3A, and RL-3Q,1A showed equivalent performance

indicating that community regularization can effectively eliminate

any losses to human intelligibility introduced through reinforce-

ment learning. These results further support the claims made in the

previous section that the MADF setup allows the agents to show

consistent task performance (image retrieval percentile) while main-

taining the language quality of the supervised agents.

We show a couple of randomly chosen examples from the set

shown to the human evaluators in Fig. 2. The trends observed in

the scores given by human evaluators are also clearly visible in

this example. MADF agents are able to model the human responses

much better than RL 1Q,1A and are about as well as (if not better)

than SL trained agents. It can also be seen that although the RL-

1Q,1A system has greater diversity in its responses, the quality

of those responses is greatly degraded, with the A-Bot’s answers

especially being both non-grammatical and irrelevant.

7 DISCUSSION AND CONCLUSION
In this paper we propose a novel community regularization tech-

nique, the Multi-Agent Dialog Framework (MADF), to improve the

dialog quality of artificial agents. We show that training 2 agents

with supervised learning does not ensure good task performance

(measured by the image retrieval percentile scores) at test time, and

it only deteriorates as the agents exchange more information about

the image. We hypothesize that this is because the agents were

trained in isolation and never allowed to interact during supervised

learning, which leads to failure during testing when they encounter

out of distribution samples (generated by the other agent, instead of

ground truth) for the first time. We show how allowing a single pair

of agents to interact and learn from each other via reinforcement

learning dramatically improves their percentile scores, which addi-

tionally does not deteriorate over multiple rounds of dialog, since

the agents have interacted with one another and been exposed to

the other’s generated questions or answers. However, in an attempt

to improve task performance, the agents end up developing their

own private language which does not adhere to the rules and con-

ventions of human languages. As a result, the dialog system loses

interpretability and sociability. To alleviate this issue, we propose

a multi-agent dialog framework to provide regularization. In this

framework, a single A-Bot is allowed to interact with multiple Q-

Bots and vice versa. We first show mathematically that this has

direct connections to regularization. We then back it up with mul-

tiple empirical experiments including a human evaluation study,

and show that MADF leads to significant improvements in dialog

quality measured by relevance, grammar and overall coherence,

without compromising the task performance.
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