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ABSTRACT
Understanding how to design agents that sustain cooperation in
multi-agent systems has been a long lasting goal in distributed
Artificial Intelligence. Solutions proposed rely on identifying de-
fective agents and avoid cooperating or interacting with them.
These mechanisms of social control are traditionally studied in
games with linear and deterministic payoffs, such as the Prisoner’s
Dilemma or the Public Goods Game. In reality, however, agents
often face dilemmas in which payoffs are uncertain and non-linear,
as collective success requires a minimum number of cooperators.
These games are called Collective Risk Dilemmas (CRD), and it is
unclear whether the previous mechanisms of cooperation remain
effective in this case. Here we study cooperation in CRD through
partner-based selection. First, we discuss an experiment in which
groups of humans and robots play a CRD. We find that people only
prefer cooperative partners when they lose a previous game (i.e.,
when collective success was not previously achieved). Secondly,
we develop a simplified evolutionary game theoretical model that
sheds light on these results, pointing the evolutionary advantages
of selecting cooperative partners only when a previous game was
lost. We show that this strategy constitutes a convenient balance
between strictness (only interact with cooperators) and softness
(cooperate and interact with everyone), thus suggesting a new way
of designing agents that promote cooperation in CRD.
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1 INTRODUCTION
Cooperation between self-interested agents has been a fundamen-
tal research topic in economics [12] and evolutionary biology [27].
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Likewise, designing agents that sustain cooperation is a long-standing
goal in multi-agent systems (MAS) [10, 20, 60]. Often agents take
part in interaction paradigms that pose them the dilemma of choos-
ing between maximizing individual gains or cooperating for the
sake of social good. Studying cooperation is thereby significant
for two reasons: on the one hand, to understand the biological and
cultural mechanisms developed by humans (and other species) that
allow altruism to evolve [35]; on the other hand, to learn how to
engineer agents and incentive schemes that enable cooperation to
emerge through decentralized interactions, thus allowing for social
desirable outcomes that benefit all [31].

In some cooperative interactions, collective benefits are only
distributed – or collective losses avoided – whenever a minimal
number of agents decides to cooperate. Crucially, this interaction
paradigm sits at the heart of climate negotiations, needed to prevent
the hazardous consequences of climate change. Reducing green-
house gas emissions stands as a costly action that, if done by a
sufficient number of countries, allows preventing catastrophic out-
comes and benefit everyone. This situation inspired the so-called
Collective Risk Dilemma (CRD) [23, 38, 51]. In this game, a group
of agents interact during a few rounds; in each round, subjects de-
cide how much to invest, from their personal endowment, in order
to prevent dangerous climate change (i.e., the collective goal). The
goal is achieved if the sum of all contributions amounts to a certain
threshold. If the collective goal is achieved, every player keeps the
money that was not invested. Otherwise, everyone looses the saved
endowment with a given probability (therein lies the risk).

This situation is common to many collective action problems. It
is possible to apprehend the core of the dilemma at stake, resorting
to a simplified game. Following the model formalized in [38], we
can assume that, in a group of size N , each agent starts with an
endowment b and the actions available are Cooperate (C) or Defect
(D). Cooperating means contributing with c (where c < b) towards
the collective goal; Defecting means contributing 0. The collective
goals are achieved if at least M agents cooperate. If the required
number of contributions is not verified, everyone looses the saved
endowment with a probability r (the risk). Assuming the most
extreme scenario (r = 1) we can verify that, if everyone cooperates
everyone earns b − c . If everyone defects – or, in general, if the
threshold M of cooperators is not attained – everyone earns 0.
Cooperation is noticeably desirable, however it may be hard to
implement: the individual optimal occurs when the threshold M is
achieved without requiring one’s contribution. In this situation, a
defector earns b, while a cooperator just keeps b − c .
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A possible way of incentivizing cooperation in CRD is to pun-
ish defectors or reward cooperators [2, 9, 57]. These mechanisms,
however, require the existence of costly monitoring institutions or
the willingness of individuals to spend an amount to directly re-
ward or punish an opponent. This origins the so-called second-order
free riding problems. A more subtle way of eliciting cooperation in
CRD is the avoidance of agents known to have previously behaved
as defectors. In fact, mechanisms of such kind were previously
applied in the context of pairwise interactions – chiefly, the Pris-
oner’s Dilemma or the Ultimatum Game [7, 11, 28] – or multiplayer
interactions with linear payoffs [16, 18, 26] – that is, payoffs that in-
crease linearly with the number of contributors, without the abrupt
changes that occur when a threshold of contributors is attained, as
in the CRD. It remains unclear, however,

• Howwill individuals decide to select or avoid defectors given
the previous success in CRD encounters? or, in general

• Whether defector avoidance constitutes an effective mecha-
nism to elicit cooperation in CRD.

In this paper we explore these questions, focusing on partner selec-
tion in CRD through a human-robot experiment and an Evolution-
ary Game Theoretical (EGT) model [59].

First, we conduct an experimental study with humans and robots.
Using robots allows us to fine-tune the strategies used and thus
test explicitly a cooperative and defective opponent. We frame
CRD in the form of a band selection game: agents are recruited
to form a band and record albums. Cooperation means investing
in mastering an instrument that contributes for the success of the
band’s album; defect means investing in self-marketing. An album
is successful if a threshold album value is achieved – which is
positively impacted by the instrument skill of each player. After
interacting in a group with a cooperative and defective robot, we
ask each human participant which robot would be selected for
a future game. Surprisingly, we find that humans tend to select
with significantly more frequency the cooperative opponent only
when they faced a previous collective failure. If collective success is
achieved, humans select cooperative or defective opponents alike.

Inspired by this result, we develop an EGT model that allows
studying, in the context of an evolving population, the scenarios in
which an Outcome-based Cooperative strategy (OC) prevails in the
context of CRD. Individuals that use this strategy cooperate, yet
only accept to play with defectors when they previously achieved
collective success. We compare this strategy with a strategy that
always Cooperates and always plays (C), a strategy that always
Defects (D) and a strategy that cooperates but always refuses play-
ing with defectors (coined Strict Cooperators, SC). We find that
OC is the most prevailing strategy in a wide parameter region. In
particular, OC wins against SC when thresholdM is high and the
cost of cooperating, c , is low. We find that OC conveniently com-
bines the strict component of SC (refusing playing with Ds) with
the softness of Cs. This allows agents using OC to concede playing
with D opponents when their representativeness in the population
is low enough to still guarantee reaching the collective threshold
M within the majority of interaction groups.

With this model, we open a new route to study strategies that
efficiently incentivize cooperation in CRDs through partner selec-
tion conditioned on own success experiences. In the next section

we discuss several approaches to elicit cooperation through defec-
tor avoidance, mainly in the context of pairwise interactions or
multiplayer games with linear payoffs. In section 3 we detail our
experimental framework and provide the obtained results. Next, in
section 4, we detail the theoretical model used to shed light on the
results obtained experimentally. The theoretical results are further
presented in section 5. We end with section 6, where we summarize
our findings, point the limitations of our theoretical approach, and
provide avenues for future work.

2 RELATEDWORK
In this paper, we focus on a multiplayer social dilemma of cooper-
ation previously named Collective Risk Dilemma (CRD), already
alluded to in the previous section. This game was originally pro-
posed in [23] with the goal of investigating decision-making in
the context of greenhouse gas emission reduction and the avoid-
ance of dangerous climate change. Later on, CRD was analyzed
theoretically, resorting to Evolutionary Game Theory, EGT [38].
The authors found that, similarly to what was verified in the ex-
periments, high-risk leads to higher contributions. Additionally,
small group sizes were found to be particularly suitable to sustain
cooperation. Here we follow the specification and notation in [38].

In the core of CRD lies a dilemma of cooperation, in which
contributing to the collective target is at odds with individual inter-
est. Even if missing the collective threshold has a huge impact in
everyone’s payoff, the decision to Defect – expecting that others
contribute enough to achieve the collective goal – is the strategy
that maximizes the individual payoffs of agents. As we explore
in the present paper, several approaches to solve the dilemma of
cooperation are based on mechanisms of defector identification
and interaction avoidance. In the context of the iterated Prisoners’
Dilemma, Mor and Rosenschein found that allowing agents to opt
out from a repeated interaction opponent eases the dominance
of cooperative strategies [24]. In that work, individuals interact
repeatedly with the same opponents. Avoiding defectors can, alter-
natively, be accomplished through reputations or social network
rewiring. In this context, Ghang and Nowak found that reputations
and optional interactions can be combined such that cooperation
evolves among self-interested agents, provided that the average
number of rounds per agents is high enough [11]. In that work, a
cooperator only accepts a game when the reputation of the oppo-
nent does not indicate her to be a defector. Also, for a game to take
place, both agents must accept to play the game. An extension to
private interactions was later suggested in [29]. Using reputations
to adapt behaviors and punish unreasonably defective opponents is
a principle that underlies indirect reciprocity. In this context, Grif-
fiths showed that using reputations to discriminate and refusing
to cooperate with defectors allows for cooperation to emerge [13].
An alternative mechanism to avoid interacting with defectors is
social network rewiring. Santos et al. [39] found that this mech-
anism allows for cooperation to emerge even when the average
degree of networks – a factor known to reduce cooperation in static
networks – is constant, a result also found in lab experiments [8],
and Public Goods Games [26]. Peleteiro et al. also used network
rewiring, in combination with coalition formation, to promote the
evolution of cooperative behavior [32]. Griffiths and Luck studied

Session 6A: Agent-Based Simulation AAMAS 2019, May 13-17, 2019, Montréal, Canada

1557



network rewiring as a way of improving tag-based cooperation
[14]. More recently, Kumar et al. studied cooperation and network
rewiring, focusing on how human-like motivations – such as sym-
pathy, equality preferences and reciprocity – affect the resulting
social network topology [5]. Following the same principle of avoid-
ing interactions with defective opponents, Fernandez et al. studied
anticipating mechanisms in the the context of Anticipation Games
[7], an interaction paradigm proposed in [61]. In this case, agents
refuse to play with agents if they were previously defective/unfair.

The previous works adopt strategies of defector avoidance in the
context of 2-person games. In the context of multiplayer interac-
tions, Hauert et al. found that simply introducing the opportunity
for agents to opt out form a Public Goods Game (a strategy called
Loner) creates a cycling dynamics that prevents the stability of
defection. Interestingly, this strategy does not rely on knowledge
about the strategies of others [18]. More recently, Han et al. studied
Public Goods Games and commitments, assuming that agents may
only accept to take part in an interaction group provided that a
minimum number of group members decided committed to cooper-
ate [16]. In all cases, agents are allowed to opt out from interaction
groups, providing a possibility to dissuade defection.

So far, defector avoidancemechanisms were implemented in pair-
wise cooperation dilemmas (Prisoner’s Dilemma) or multiplayer
cooperation games with linear and deterministic payoffs (Public
Goods Game). Here we address – both experimentally and theoreti-
cally – a new type of conditional strategies in the CRD, based on
the overall group success. As mentioned, in the CRD the payoffs
depend, ultimately, on a threshold value of contributions that must
be achieved to guarantee group success. This said, the decision of
agents to take part in groups with defective opponents might be
based, not only on opponents’ strategies, but also on the previous
success/failure experienced. Strategies of this kind were seldom
studied. Our work attempts to provide a first step in filling this gap.

The methods that we use to study CRD theoretically (Evolu-
tionary Game Theory, EGT) were originally applied in the con-
text of ecology and evolutionary biology [50]. Notwithstanding,
previous works within AI (and particularly theMAS community)
revealed that adopting a population dynamics perspective provides
important insights regarding multi-agent learning and co-evolving
dynamics [1, 19, 22, 54, 55]. EGT was also recently applied, for ex-
ample, to study social norms along different directions, namely the
stability of normative systems [25], the emergence and time evolu-
tion of social norms [6], or the evolution of cooperation through
norms and reputations [43, 45, 46]. Finally, recent results suggest
that partner selection can be a mechanism to coordinate actions
of humans and agents, showing that past interactions with vir-
tual agents shape the subsequent levels of human trust in virtual
teammates [47]. In the next section we present, precisely, a Human-
Robot experiment in the context of a cooperation dilemma.

3 EXPERIMENTAL RESULTS
In the field of Human-Robot Interaction (HRI) there has been a
rising interest in exploring how people interact with robots in social
dilemmas [37]. The motivation for this line of research is in part
driven by the potential for robots to become true collaborative
partners that have autonomy and become more than mere tools

that obey our commands [15]. People will then need to build trust
relationships with the robots they collaborate with. Using well
established social dilemmas, such as a Public Goods Game, can
provide important insights into the dynamics of these relationships.

With this motivation in mind, we developed a digital collab-
orative game – named For the Record – that was designed to be
played by mixed human-robot teams. Thematically, the game con-
sists of players assuming the role of musicians that form a band
together with the goal of recording and selling successful albums.
The game is composed by several rounds, each corresponding to the
publication of an album on the market. Individuals may invest on
instrumental skills (cooperate, with a direct impact on the success
of the band), or on marketing skills (defect, with an impact on indi-
vidual profit). In order for an album to succeed, its musical quality
must surpass a threshold. Otherwise, the album is considered a
failure and no one receives any profit. The uncertainty in the game
is caused by the fact that the contributions to the album’s quality,
the value for the market’s threshold, and the amount of profit made
by each player are all determined by rolling a set of dice.

Specifically, from round to round (in a total of 5 rounds), each
player decides to invest one die (6 faces) to improve the instrument
skills or to improve self-marketing. In the last round, an album
achieves success if its value surpasses a threshold, given by rolling
3 dice with 20 faces. The value of the album is given by the sum
of trowing all dice invested by the 3 players along the 5 rounds.
If the album achieves success, each individual will either earn 3
points or the sum of points given by the result of throwing the dice
invested in marketing. The expected payoff of an individual that
always Defects (and assuming that, nonetheless, the album achieved
success) is 3.5×5 = 17.5. A player that always cooperates receives 3
and the dilemma lies in the difference between these payoffs: those
that chose the first option (defect) will make the most profit but will
hurt the band’s capability of making successful albums consistently.
This way, while payoff is only realized when an album’s quality
reaches a minimum threshold, the pressure to free-ride – defecting
and relying on others’ contributions to increase the album’s quality
– is high (as in the CRD).

Finally, the band has a fixed upper limit on the amount of al-
bums that can fail. If such limit is reached, then the band collapses,
causing the game to end prematurely and all the players lose their
accumulated profits. This catastrophe condition reinforces the need
for collaboration. Even if framed within a specific context, the na-
ture of this dilemma is general enough to capture the non-linear
(and uncertain) nature of many Human collective endeavors [38].

We experimentally tested For the Record using a 3-players setting,
in which 2 robotic agents played with a human player. The goal
was, not only to compare how people perceive robotic partners
which apply different strategies to play this collaborative game,
but also to evaluate which of such partners would people select
for future partnerships. In particular, one of the robots (the collab-
orator) unconditionally opted to cooperate, whilst the other one
(the defector) unconditionally opted to defect. Although we have
hypothesized that different outcomes would lead to different per-
ceptions of the team and its members, we expected individuals to
reveal a significant preference for the cooperator robot .

The user study was conducted at a company facility where 70
participants with ages ranging from 22 to 63 (M = 34.6, SD =
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11.557) were recruited. The task lasted for 30 minutes and consisted
of 1) a briefing, 2) the game with the robotic players and 3) a survey.
The dice rolls were scripted to manipulate the outcome of the game
using a between-subjects design, which could either result in a
winning or losing outcome. To assess how participants perceived
the team and the robotic partners, several measures were applied
(e.g., trust, attribution of responsibility, social attributes). Moreover,
participants were asked to select one of the two robotic partners,
the cooperator or the defector, for a hypothetical future game.

The particular findings regarding the partner selection revealed
a significant association between the preferred robot and the game
result (χ2(1) = 14.339,p < 0.001,ϕc = 0.453). A further analysis
of the same preferences across conditions (see Fig. 1) showed the
cooperator is significantly preferred over the defector after losing
the game (χ2(1) = 31.114,p < 0.01, r = 0.889). However, no signif-
icant difference was found in the partner selection after winning
the game (χ2(1) = 1.400,p = 0.237, r = 0.040). A detailed descrip-
tion and discussion of the remaining measures is presented in [4].
These findings inspired us to develop the following evolutionary
game theoretical model to interpret the advantages of selecting
cooperative partners only when a previous game was lost.

Winning Losing

5
10
15
20
25
30
35

14

1

21

34

#
pa

rt
ic
ip
an

ts

Defector
Cooperator

Figure 1: Behavioral experiments on partner selection
grouped by conditions, i.e., if collective goals were achieved
in the last round (winning) or not (loosing). The results sug-
gest that cooperative partners (yellow bars) are only pre-
ferredwhenever collective success is not achieved. Inwinning
configurations, humans select the cooperative or defective
opponents almost alike.

4 THEORETICAL MODEL
In order to shed light on the advantages and disadvantages of such
a strategy, we build a theoretical model based on evolutionary game
theory. Let us assume a population with Z agents. Maintaining the
barebones of the dilemma at stake in For The Record, we focus our
attention on the previously introduced Collective Risk Dilemma
(CRD) [23, 38]. Two baseline strategies are possible in this multi-
player game: Cooperate and Defect. The Cooperators (C) pay a cost
(c) in order to contribute to a collective endeavor (album quality, in
the previous scenario). The Defectors (D) refuse contributing and
retain the cost, which contributes to increase their relative indi-
vidual payoff compared to the cooperators (investing in individual

marketing skills). Agents are assembled in groups with size N . Suc-
cess in the group is achieved if at leastM agents cooperate towards
the collective goal – a threshold that, in For The Record, corresponds
to the minimum market value that an album must accomplish, in
order to be successful. In case of success, each agent in the group
receives a benefit b (e.g. sell a lot of albums, fame). In case of failure,
each agent in the group has a penalty p (failure and mocking as
a band and as individual musicians; or, as in the For The Record,
risking that the game ends prematurely and all the players lose
their accumulated profits). To capture the role of partner selection
and, in particular, to intuit the reason for this selection to depend
on a previous failure, we consider three types of cooperators:

• Unconditional Cooperator (C): Always cooperates and al-
ways plays with any agent;

• Strict Cooperator (SC): Always cooperates yet only plays
with those perceived as cooperators.

• Outcome-based Cooperator (OC): Always cooperates; only
plays with those known to be cooperators when was previ-
ously in an unsuccessful group; plays with any agent when
was previously in an successful group.

While in the experiments with For The Record we considered an
iterated game repeated over several rounds, in the simplified model
(which we now study theoretically), interactions are assumed to be
one-shot. However, agents are assumed to be able to uncover the
strategy adopted by opponents in a group – in real scenarios, such
phenomena may depend on the availability of public reputations or
previous direct interactions. We abstain from addressing the role
of repeated interactions, reputation or other strategy anticipation
mechanisms in order to focus on the reasons for an agent to prefer
a cooperative partner only when she looses a previous game, as-
suming that information about previous interactions is available.
Following the experimental results obtained, we aim at exploring
the potential advantages, from an evolutionary point of view, of
using strategy OC, when compared with SC.

We shall first notice that, by using OC, an agent will either
behave as a SC or as a C, depending on the probability of being in
a previous unsuccessful interaction; if the collective goal was not
achieved, as the experiments show, individuals significantly prefer
to play with C partners, thus behaving as a SC. In our analysis we
will study the 3-strategy dynamics, assuming that, at most, three
different strategies can co-exist in the population. This is more
likely to occur when the exploration rate of agents is low [58]. We
start by formalizing the scenario 1) {C, SC, D}; then we show how
the other two scenarios of interest, 2) {OC, SC, D} or 3) {C, SC,
D}, can be mapped onto scenario 1).

4.1 3-strategy game fitness
4.1.1 {C, SC, D}: When there are k agents adopting strategy

SC, l agents adopting C and Z −k − l agents adopting D, the fitness
(or average payoff) of an agent adopting C, resulting from plays in
groups with size N , reads as,

f C1 (k, l) =
N−1∑
i=1

( (l−1
i

) (Z−l−k
N−1−i

)(Z−1
N−1

) ΠC (i + 1)

)
+

(l+k−1
N−1

)(Z−1
N−1

) (b − c), (1)

where ΠC (i) = Θ(i − M)b − c − [1 − Θ(i − M)]p is the payoff of
C obtained in a group with i Cs and N − i Ds and Θ(x) is the
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Heaviside step function: Θ(x) = 1 if x ≥ 0 and Θ(x) = 0 otherwise.
Note that collective success requires at least M cooperators. The
first term of the right hand side of Eq (1) represents the payoff
earned in groups where only Cs and Ds take part; the second term
adds the payoff in groups where Cs and SCs take part, where the
thresholdM is always achieved. Also, note that

(l
i
) (Z−l−k

N−i
)
/
(Z
N
)
is

the probability (hypergeometric) of sampling a group with size N
with i Cooperators (C) and N − i Defectors (D), from a population
with l Cs, k SCs and Z − k − l Ds. The fitness of agent D stands as,

f D1 (k, l) =
N−1∑
i=0

( (l
i
) (Z−k−l−1

N−1−i
)(Z−1

N−1
) ΠD (i)

)
. (2)

where ΠD (i) = Θ(i −M)b − [1 − Θ(i + 1 −M)]p is the payoff of a
defector in a group with i cooperators. The fitness of SC reads

f SC1 (k, l) =

(k+l−1
N−1

)(Z−1
N−1

) (b − c). (3)

as SCs always prefer C – refusing to play withD – and, so, the only
groups they concede to play in are those composed by SCs and Cs.

4.1.2 {OC, SC, D}: Now we formalize the scenario in which
strategies OC, SC and D can co-exist in a population. First, the
probability that an agent OC looses a game (i.e., takes part in a
group where collective success is not achieved) is given by,

u2(k, l) =
M−2∑
i=0

( (l−1
i

) (Z−k−l
N−1−i

)(Z−1
N−1

) )
, (4)

that is, the probability that the game occurs (no SC andD simultane-
ously the group) and less thanM individuals with strategy OC take
part in the group. We can now realize that, with probability u2(k, l),
an individual with strategy OC will play as SC; with probability
(1 − u2(k, l)) an agent will play with strategy C. This said, we may
use the fitness functions detailed in the previous section to describe
the evolutionary dynamics in the present OC-SC-D scenario. If
each OC individual becomes SC with probability u2(k, l), the prob-
ability that, out of l OC agents, l ′ become SC (P(X = l ′)) is given
by the binomial distribution P(X = l ′) =

(Z
l ′
)
(u2)l

′

+ (1−u2)l−l
′

. For
the sake of simplicity, we will use the mean value of the distribution
(l ′ = u2(k, l).l ) as the average number of OC agents that will play
as SC. This way, the effective number of agents playing as SC will
be given by k ′ = k + l ′ and the effective number of agents playing
as C comes down to l − k ′. The fitness of agent X (with strategy C,
SC or D) can conveniently be written as

f X2 (k, l) = f X1 (k ′, l − k ′). (5)

The fitness of an agent playing OC can be written as

f OC2 (k, l) = u2(k, l)f
SC
2 (k, l) + (1 − u2(k, l))f

C
2 (k, l). (6)

4.1.3 {OC,D, C}: Following the previous reasoning, in the 3rd
scenario, the probability that an agent with strategy OC looses a
game can be given by,

u3(k, l) =
M−2∑
i=0

( (l+k−1
i

) (Z−k−l
N−1−i

)(Z−1
N−1

) )
. (7)

In this case, using l ′ = u3(k, l).l , the effective number of agents
playing as SCwill be given by l ′ and the effective number of agents

playing as C is k ′ = k + l − l ′. Thus, we have,

f X3 (k, l) = f X1 (l ′,k + l − l ′). (8)

The fitness of an agent playing OC can be written as

f OC3 (k, l) = u3(k, l)f
SC
3 (k, l) + (1 − u3(k, l))f

C
3 (k, l). (9)

4.2 3-strategy game dynamics
The previous fitness functions convey the average payoff pertain-
ing each strategy. With those quantities we are able to analyze the
evolutionary dynamics of strategy adoption, assuming that, at each
moment in time, the most successful strategies have a higher proba-
bility of being adopted through social learning (e.g., imitation) [49].
In general, we assume that an agent with strategy X will imitate
an agent with strategy Y with a probability given by the sigmoid
function pX ,Y [53] defined as,

pX ,Y = (1 + eβ (fX−fY ))−1, (10)

where β is the selection intensity, controlling how dependent is the
imitation process on the fitness differences and often used to better
fit experimental data with theoretical predictions [36, 61]. We use
β = 1 in our analysis. The probability that one more agent adopts
strategy X , from a configuration in which k agents adopt X , l adopt
strategy Y and Z − k − l adoptW is given by,

T+X (k, l) = (1−µ)
k

Z

(
l

Z − 1
pY ,X +

Z − k − l

Z − 1
pW ,X

)
+µ

Z − l

2Z
, (11)

where we add a mutation term µ. This setup assumes that with
probability (1 − µ) agents resort to social learning and with prob-
ability (µ) to exploration – i.e., randomly adopting any strategy
[42, 48, 52]. Likewise, the probability that one less agent adopts
strategy X from a configuration in which k agents adopt X , l adopt
Y and Z − k − l adoptW is given by,

T−
X (k, l) = (1 − µ)

k

Z

(
l

Z − 1
pX ,Y +

Z − k − l

Z − 1
pX ,W

)
+ µ

l

Z
. (12)

We are now able to define a Markov Chain where each state corre-
sponds to a particular combination of 3 strategies (or 2, see Fig. 2
below) and where transition probabilities between adjacent states
are given by Eqs (11) and (12). As the corresponding Markov Chain
is irreducible (whenever µ > 0), its stationary distribution is unique
and conveys the information about the long-term behavior of this
chain (limiting and occupancy distribution) [21]. The stationary
distribution represented in vector π = [πk ] thus translates the long-
run fraction of the time the system spends in each state s = (k, l) –
where k = sk X agents and l = sl Y agents exist. This distribution is
calculated as π = πT , where T is the transition matrix constructed
resorting to Eqs (11) and (12) such that

T(k,l )→(k+1,l ) = T
+
X (k, l)

T(k,l )→(k−1,l ) = T
−
X (k, l)

T(k,l )→(k,l+1) = T
+
Y (k, l)

T(k,l )→(k,l−1) = T
−
Y (k, l)

T(k,l )→(k,l ) = 1 −T+X (k, l) −T−
X −T+Y −T−

Y
T(x,y)→(w,z) = 0, otherwise.

(13)

A similar stationary distribution would be obtained through simu-
lations, yet requiring intensive computational resources to obtain
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numerically precise results. In particular, our approach (also re-
cently used in [41]) has the advantage of providing an expedite
intuition on the origins of such distributions through the so-called
gradients of selection, whose numerical calculation would also re-
quire extensive simulations covering all possible population states.
The gradient of selection portrays, for each configuration, the most
likely evolutionary path. These gradients of selection read as,

∆T (k, l) = (T+X (k, l) −T−
X (k, l),T

+
Y (k, l) −T−

Y (k, l)). (14)

Using these tools, in panel a) of Fig. 2 and Fig. 3 we represent the
gradient of selection (streamlines) whereas in panel b) of Fig. 2
and the background of the simplexes in Fig. 3 we represent the
stationary distribution(s). Table 1 summarizes the notation used:

Symbol Meaning
N group size
b initial endowment
c contribution of cooperators
M min number of cooperators for collective success
r risk
µ mutation / exploration probability
β selection intensity
Z population size
p penalty incurred with collective failure
Table 1: List of mathematical symbols used.

5 THEORETICAL RESULTS
Here we show the results of studying the model previously intro-
duced, with the goal of clarifying the advantages of strategy OC
over SC (or C) in the long-run. Intuitively, a strategy SC – only
preferring to play with C partners – would have all the ingredi-
ents to constitute a desirable behavior, from the individual point
of view. In fact, by comparing the 2-strategy dynamics of strate-
gies C, OC and SC against D, we can evince (Fig. 2) that SC is the
strategy in a better position to invade and fixate in a population
composed by the selfish agents D. The results in Fig. 2 portray
the gradient of selection (panel a) and the stationary distribution
(panel b) when considering that only two strategies are present in
the population. This analysis nicely charaterizes the competition
between cooperators (C, SC and OC) and unconditional Defectors
(Ds), missing however the potentially important interplay among
cooperative strategies. The 2-strategy dynamics can be obtained by
resorting to the 3-strategy models presented previously. Namely, i)
the dynamics of strategy C against D was obtained from scenario
1 (section 4.1.1) considering k = 0 (SC absent from the popula-
tion), ii) the dynamics of strategy SC against D was obtained from
scenario 1 considering l = 0 (C absent from the population) and
finally, iii) the dynamics of strategy OC against D was obtained
from scenario 2 (section 4.1.2) considering k = 0 (SC absent from
the population). In Fig. 2 we show that SC is the strategy allowing
the higher prevalence of cooperators (for the scenarioM=4, N=7,
b=10, c=2, p=2). This occurs as SC prevents the exploitation from D
agents, by refusing to take part in groups with defectors. This way,
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Figure 2: 2-strategy dynamics of OC, C and SC against D. In
a) we represent the gradient of selection (the more plausible
evolutionary path; when above the horizontal xx axis, it is
more likely that cooperators – C, OC or SC – spread; below
the horizontal axis, it is more likely that D spreads; this way,
arrows on top of the xx axis represent the most likely direc-
tion of evolution). In b) we represent the stationary distribu-
tion, i.e., the long-run fraction of the time the system spends
in each state. We can observe that strategy C (black curves)
is unable to invade a population of D, for this combination
of parameters; the strategy SC (red curves) invades a popu-
lation of Ds and the system ends up in a state where most
of the population adopts SC (portrayed by the red distribu-
tion skewed to the right, in panel b), which is supported by
the positive gradient of selection in panel a). Finally, strat-
egy OC (blue curve) is able to invade the population of Ds
and stabilze a configuration in which OCs and Ds co-exist.
Parameters used: µ=0.01,M=4, N=7, b=10, c=2, Z=100.

defectors are unable to achieve the benefits of collective success
in any possible group. The Unconditional Cooperators (C) obtain
less payoff than defectors when taking part in successful groups
in which a defector also has the benefit of collective success, yet
without contributing to that endeavor. OC constitutes a middle
point between the two strategies: whenever few cooperators exist,
OC is unable to take part in successful groups and thus behaves as
SC. When success is easier to be achieved – given the increased
number of cooperators –OC is willing to play withD partners, thus
recovering from the strictness of SC that condemns this strategy
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Figure 3: 3-strategy dynamics between D, C, SC, OC strategies. In the top panels we portray the gradient of selection (stream-
lines pointing the most likely direction of evolution, starting in each possible state) and stationary distribution (background
grayscale; the darker, the more time is spent in that state). The vertices of the simplexes represent configurations in which
only one strategy exists in the population (label close to the corresponding vertex). The edges correspond to configurations
in which two strategies co-exist and the interior of the simplexes comprises the configurations where 3 strategies co-exit. The
information regarding the stationary distribution is summarized in the bottom panels, where we represent the average usage
of all strategies (i.e., the frequency of strategies in each population configuration weighted by the probability of being on that
state). a) When D, SC and OC co-exist, most of time is spent in states where OC is highly prevalent; b) this is evenmore evident
if we consider highM . c) when D, C and OC co-exist, a lot of time is spent in states with high prevalence of C and OC, yet with
an higher fraction of individuals using OC. Parameters: µ=0.01, N=7,M=4, b=10, c=2 (panels a and b), c=5 (panel c), p=2, Z=100.

to a very low fitness (and gradient T+SC −T−
SC close to 0) when the

population is composed by half of cooperators and half of defectors.
The point is now to know how does SC behave when a third

strategy (OC) is introduced in the SC-D dynamics. The effect of
considering an OC-SC-D dynamics can be apprehended in Fig. 3a
and b. We can realize that, by introducing strategy OC in a popula-
tion of SCs and Ds, most of the time will be spent in states with a
high prevalence of OC. In fact, OCs are able to constitute a stable
strategy that concedes the existence of a small fraction of D, while
reaping the benefits of playing in groups that achieve collective
success (even if they have a very small number of D partners). The
streamlines in Fig. 3a and b show that SC dominates D (vectors
in the bottom edge of the simplexes) and there is a co-existence
between D and OC (left edges of the simplexes). This was precisely
the conclusion in Fig. 2. However, in the interior of the simplexes
(when 3 strategies co-exist) the gradients point, in large fraction of
configurations, upwards, which indicates a higher probability that
OC successively replaces D and SC. Interestingly, as observed in
Fig. 3c, OC can also be advantageous relative to C when c is high.
In this case, we observe a cyclical dynamics: OCs are needed to
initially punish Ds and open space for the evolution of Cs; when
strategy D vanishes, C becomes advantageous compared with OC,
as the adopters of this strategy manage to take part in more suc-
cessful groups thanOCs – which, with some probability, still refuse
to play in groups with Ds. With the increased number of successful
groups, OCs will increasingly play as C, making these two strate-
gies almost neutral, i.e., receiving a very close fitness. Whenever
Cs replace OCs, the barriers for the subsequent invasion of Ds
are alleviated. This way, the fraction of D agents increases, which,
again, evidences the advantages of OC over C and opens space for

the re-invasion of OC players. Finally, in Fig. 4, we observe that
the advantages of OC over SC are augmented (or exist) for low c .
Contrarily, OC tends to be more prevalent than C when c is high.
In general, however, we verify that OC profits from highM (Fig. 5).

Recovering the experiments performed, we may note that, in
For The Record, the expected payoff of a defector is 17.5 (expected
value of rolling 5 dice with 6 faces). A player that always cooperates
receives a payoff of 3. Assuming that individuals will always coop-
erate or defect, we need at least 2 cooperators (out of 3 players) in
the group (M = 2), for the expected value of the album to surpass
the expected value of the threshold in the last round. The cost of
cooperating is expected to be c = 14.5 (b = 17.5; b − c = 3 and
thereby 17.5 − c = 3). This way, we tested high expected values of
c andM , relatively to b and N : c/b = 0.83 andM/N = 0.66. Future
experiments shall test different expected values ofM and c .

6 CONCLUSION AND DISCUSSION
Here we explore partner selection in Collective Risk Dilemmas
(CRD). In the context of Prisoner’s Dilemmas [11] or Public Goods
Games [16, 26], previous studies found that introducing strategies
that refuse playing with defectors opens space for cooperative
strategies to invade the previously stable defective equilibria. In
CRD, a new component is introduced: group success or failure in
achieving the collective goals. It is thereby unclear which strategies
are more efficient in promoting cooperation, given that they can
be conditioned on 1) the strategies of opponents in the group or 2)
previous success or failure experience. Here we resort to a human-
robot experiment, which allows controling the robot behavior and
explicitly test a cooperative and defective artificial partner. After
the game, we ask the human subjects whether they would prefer the
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Contrarily, the advantages of OC over C are more evident for high c. Other parameters: N=7, Z=100, p=2, b=10
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more cooperators. Other parameters: N=7, Z=100, p=2, b=10,
c = 2 (left panel, a) and c = 5 (right panel, b)

defective or cooperative partner to play with, in the future. Humans
select the cooperative partner significantly more often when they
previously took part in a group that failed to achieve the collective
goals. Next, resorting to an evolutionary game theoretical model,
we test a strategy (that we called OC, Outcome-based Cooperator,
cooperating and only accepting to play with defectors when group
success was achieved previously) in comparison with the uncondi-
tional Cooperator strategy (C), the unconditional Defector strategy
(D) and the Strict Cooperator strategy (SC) – that cooperates but
only accepts playing with other cooperators, regardless previous
game outcomes. We find that OC can be more prevalent than C
and SC, preventing the invasion of defectors and, at the same time,
conceding to play in group configurations that, despite having a
few defectors, can nonetheless manage to achieve group success.
In summary, answering to the initial posed questions, outcome-
based cooperation in CRD seems to be both efficient in promoting
cooperation and likely to be used by human subjects.

The theoretical model proposed allows studying three co-existing
strategies in the population. We focus on studying OC in compari-
son with C and D (the traditional strategies studied in the context
of CRD [38]) and SC (the strategy only accepting to play with co-
operators that, intuitively, should have had the highest prevalence).
Notwithstanding, even keeping binary actions (C andD), strategies
can become increasingly complex by discriminating based on the

number of cooperators in the group [33, 56], or by stressing all
combinations of strategy avoidance and action played. One could
think about a strategy that only accepts playing with cooperators
and yet decides to defect – a malicious version of OC. In the context
of Public Goods Games it was found that introducing extra punitive
strategies – as anti-social punishment – may prevent cooperation
[34]. Thereby, our future plans include extending the current theo-
retical framework to access the robustness of cooperation in CRD,
when the full repertoire of strategies is considered.

We shall underline that, in the present work, we are mainly
concerned with analyzing the advantages of an outcome-based
strategy like OC against strategies C, D or SC. We do this com-
parison assuming that both discriminatory strategies (SC and OC)
have access to the same level of information. This way, we assume,
as a baseline, that all agents are able to anticipate accurately the
action used by an opponent, using this information to decide taking
part – or not – in a group. Future approaches may combine CRD
with models of reputation that allow anticipating the strategies
of opponents [40], commitments [16, 17], or even consider more
complex agent architectures that are capable of anticipating [7].

The theoretical model proposed can be, in the future, extended to
study outcome-based strategies in other multiplayer games, partic-
ularly those with non-linear payoffs such as Multiplayer Ultimatum
Games [41, 44], Multiplayer Trust Games [3] or N-Person Stag-
HuntGames [30]. Also, the conclusions that we derive now, mainly
the evidence that OC becomes more prevalent than SC when the
cost of cooperating (c) is low and the group success threshold (M)
is high, can inform new experiments with human subjects, thus
opening new avenues for a symbiosis between theoretical and ex-
perimental analysis in collective action problem.
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