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1 INTRODUCTION

Multi-agent scheduling [1, 2, 4, 8, 10–17, 20, 22–25] has received
significant attention in tackling the problem of load balancing and
task allocation in distributed systems. Apart from dividing the
work through decentralization, we consider dynamicity because
allocation of tasks must be concurrent with their execution, and
adaptation because tasks must be reallocated when a disruptive
event is performed. We will assume that agents are fully distributed
and cooperative in order to optimize the global runtime, i.e a system-
centric metric rather than user-centric metrics [10–13, 20, 24]. We
will also assume that a task can be performed by any single agent
without preemption and precedence order. Moreover, tasks have
no deadlines, are indivisible and not shareable.

We follow a market-based approach [10–13, 20, 24] to tackle the
multi-agent situated task allocation problem. In order to improve
load balancing, agents adopt a locality-based strategy in concurrent
one-to-many negotiations for task delegations. The task realloca-
tion is dynamic since the negotiation process is iterated and concur-
rent with the tasks processing. Moreover, the system is adaptive to
disruptive events, e.g. task consumptions. As a practical application,
we consider the distributed deployment of the MapReduce design
pattern for processing large datasets [9]. Our preliminary empir-
ical results show that, for such an application, the locality-based
strategy improves the runtime.

2 NEGOTIATION PROCESS

In a multi-agent situated task allocation problem, tasks have dif-
ferent costs (runtime) for different agents due to the resource lo-
cality. A task allocation is evaluated by considering the maximum
completion time (makespan). In order to locally improve the task
allocation, agents consider socially rational task delegations that
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strictly decrease the local makespan until a stable allocation is
reached.

Decentralized task delegation process. Agents operate in con-
current, one-to-many and single-round negotiations for task del-
egations. Each negotiation, which is based on the Contract Net
Protocol [21], is divided in three steps: 1) the choice of the task to
negotiate by the strategy of the initiator; 2) the refusals/bids from
the peers based on the social rationality of the task delegation; 3)
the selection of the winning bid by the initiator, e.g. the bidder
with the smallest workload. Several negotiations may concurrently
occur as in [3] and the responsiveness of the task reallocation can
be improved [5]. Even if the computation of the local makespan by
the initiator of a negotiation is based on its beliefs, that can be in-
accurate, a successful negotiation can only reach a socially rational
task delegation, and so it tends to improve the makespan.

Concurrent consumptions and delegations. Task delegations
and task consumptions are concurrent. Fig. 1 represents their impact
on the allocation until all of the tasks are performed (Tfinal = ∅).
Starting from the initial allocation P0, agents perform socially ratio-
nal task delegations to improve the makespan (e.g. the path from P0
to Pk ) until a task consumption (e.g. the edge from Pk to P ′0), which
eventually interrupts the path toward a stable allocation (e.g. the
path from Pk to Pstable shown in gray). A task consumption may
occur when the agents have reached a stable allocation (e.g. P ′stable)
or not (e.g. Pk ). Even if task delegations and task consumptions are
concurrent and the two of them tend to decrease the makespan,
these processes are complementary since a task removal may allow
new socially rational task delegations.

Locality-based strategy. According to a trivial strategy, an agent
can perform the largest task in its bundle and negotiate the smallest
one in the set of potential socially rational delegations. By contrast,
we build the strategy upon the locality since resource fetching
consumes time. Intuitively, an agent should perform first the tasks
which may cost more for its peers and it should negotiate first
the tasks which may cost less for its peers. For this purpose, we
define the local availability ratio of an agent for a task as the ratio
between the number of local resources for this task with respect to
the agent and the total number of resources for the task. According
to our strategy, an agent performs first the large local tasks and it
negotiates first the large distant ones based on its local beliefs and
knowledge, i.e. the local availability ratios and the task costs. This
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Figure 1: Concurrent task consumptions (vertical edges) and
task delegations (horizontal edges).

strategy is built on a composite task bundle, called locality-based
bundle which is divided in three subbundles as follows.

• The maximum locality bundle contains the tasks s.t. agent owns
at least one resource and there is no other agent which owns
more resources for this task. The tasks are sorted in decreasing
order of cost.

• The intermediate locality bundle contains the tasks which are
partially local. The tasks are sorted in decreasing order of local
availability ratio and the tasks with the same local availability
ratio are sorted in decreasing order of cost.

• The distant bundle contains the tasks which are distant. The
tasks are sorted in increasing order of cost.

When an agent looks for a task to perform, it starts from the top of
the maximum locality bundle, i.e. the largest local task. When an
agent looks for a task to negotiate, it starts from the bottom of the
distant bundle (i.e. the largest distant task) and it selects the first
one which is a potential socially rational delegation according to
its beliefs.

3 EMPIRICAL VALIDATION

We have implemented a multi-agent system which deploys the
MapReduce design pattern in a distributed system setting [6]. Our
agents negotiate the reduce tasks during the job in order to improve
the poor load balancing due to data skews [7, 18, 19], and so the
job execution time.

Our experiments1 are based on a 8 Gio dataset (82, 283 keys, i.e.
tasks) which has been generated such that the initial task allocation
(cf. Fig. 2) is poorly load balanced in order to check that the locality
has an impact on the makespan and thus on the job runtime.

We compare the median job execution times when the agents adopt
the trivial strategy or the locality-based one with 10 runs for each
configuration. We observe that the locality-based strategy signif-
icantly improves the runtime, around −7.6%. When there is no
negotiation, it corresponds to the Hadoop behaviour where the
1Our experiments have been performed on 16 PCs with 4 cores Intel(R) i7 and 16GB
RAM each.

initial task allocation is never challenged. For comparison, in this
case the job runtime is 853 seconds (around +100%). We deduce
that the price of the negotiation can be neglected regarding the
impact of the load balancing. Moreover, the negotiation allows to de-
crease the job execution time and even more with the locality-based
strategy.

Fig. 2 compares the task allocation when all the tasks have been
performed whatever they have been negotiated (or not) between
the 16 agents in accordance with the trivial strategy or the locality-
based one. We observe that the makespan of the initial allocation
is approximately 3.3 108, around 2.5 108 (−24%) for the negotiation
with the trivial strategy and 2 108 (−30.7%) for the locality-based
one. We deduce that the negotiation, in particular with the locality-
based strategy, allows to improve the load balancing.

Figure 2: Initial and ex-post task allocation with the trivial
strategy and the locality-based one.

4 CONCLUSION

We have introduced a task reallocation mechanism which is dy-
namic, since it is concurrent with the tasks processing, and adaptive
to disruptive events, i.e. task consumptions. In this context, we have
proposed a locality-based strategy adopted by the agents operating
in concurrent one-to-many negotiations for task delegations. Ac-
cording to their local beliefs and knowledge, the agents perform first
large local tasks and they negotiate first large distant ones. In order
to validate our approach, we have developed a proof-of-concept
prototype where agents negotiate reduce tasks of the MapReduce
design pattern in a distributed setting. Our preliminary empiri-
cal results show that, for such an application, the locality-based
strategy can improve the load balancing and so the job execution
time.

As part of our future work we are currently evaluating our proto-
type with numerous and representative experiments with real-word
datasets in various settings.
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