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ABSTRACT
Deep Reinforcement learning is a powerful machine learning para-
digm that has had significant success across a wide range of control
problems. This success often requires long training times to achieve.
Observing that many problems share similarities, it is likely that
much of the training done could be redundant if knowledge could
be efficiently and appropriately shared across tasks. In this paper
we demonstrate a novel adversarial domain adaptation approach to
transfer state knowledge between domains and tasks on the Atari
game suite. We show how this approach can successfully transfer
across very different visual domains of the Atari platform. We focus
on semantically related games that involve returning a ball with
the user controlled agent. Our experiments demonstrate that our
method reduces the number of samples required to successfully
train an agent to play an Atari game.
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1 INTRODUCTION
Deep Reinforcement Learning (DRL) successfully extends the re-
inforcement learning paradigm to complex control problems by
alleviating the need for expert hand-crafted features and allowing
for end-to-end learning from the input space, for example from
images. One way to view learning within DRL is to consider the
hidden layers as learning a state representation on top of which
a policy can be learned. This view has held true in the standard
deep learning paradigm, where the learned features are often re-
purposed through direct transfer with or without fine-tuning for a
subsequent task [11]. Learning the feature space from a sparse re-
ward signal is difficult and so deep RL algorithms typically require
a large number of training samples; this is further exacerbated by
the standard RL problem of the exploration-exploitation trade-off.

Transfer Learning can help by taking advantage of previous
training to reduce the effort needed to solve a new task. In this
work we show how learning an input mapping from source to
target task embedding in an unsupervised manner can be used
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Figure 1: Our agent’s architecture for domain adaptation,
combining adversarially discriminative domain adaptation
and adversarial autoencoder architectures. A fully-trained
source task is depicted on top, while on the bottom is the
target task autoencoder.

as an initialization step to improve learning even when the input
domain, task and action space vary.

2 ARCHITECTURE AND METHOD
We propose an Adversarial Domain Adaptation approach to the
problem of Knowledge Transfer for reinforcement learning in the
Atari domain. In this view the source and target problem share a
state space and we wish to learn a mapping from the target obser-
vations to this previously-learned source state space. Complicating
this problem is the lack of an obvious alignment between source
and target observation pairs.

Our proposed Architecture, depicted in Fig. 1, builds on the
Adversarial AutoEncoder (AAE) [6]. The AAE combines an au-
toencoder (AE) and generative adversarial network (GAN) [4]. The
GAN regularizes the embedding space of the AE as an alternative
approach to the approach of the variational autoencoder [5] In
our approach we replace the standard Gaussian distribution with
samples from a learned policy embedding.

By using samples from the source task and the pre-trained source
policy network, we can generate samples from the embedding of
the source policy, which we use to represent the state space of
our policy. In this way, real states are sampled from the source
domain. We train a generator function from target observations to
match the distribution of source states, as learned by our source
policy. If the tasks are related and require similar state features
pre-training the generator in this manner should make it easier
to learn a new task, as the problem of learning a state descriptor
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Figure 2: The 100-episode average score plot against total number of steps. From left to right, 1: Source Task: Breakout, Target
Task Pong. 2: Source Task: Pong, Target Task: Breakout. 3: Source Tasks: Pong, Breakout, Target Task: Tennis.

has been addressed. To ensure the learned mapping maintains all
the information contained in the target observations an AE is also
trained in conjunction with the GAN element of the architecture.

An alternative view is to see the source embedding as a regulariz-
ing force on the auto-encoder embedding. This interpretation aligns
the method with alternative approaches many of which seek to
minimize the Kullback-Liebler divergence between aligned source
and target embeddings [12]. Shared embeddings are a natural way
to conceptualize transfer as we consider related domains to be part
of a shared representation space. In this case the GAN element
allows us to perform that minimization without direct correspon-
dences. Applying a GAN to align reinforcement learning domains
for generalization has also recently been applied in the robotics
context in [10].

3 EXPERIMENTS AND RESULTS
Our experiments investigate the applicability of Adversarial Do-
main Adaptation to the reinforcement learning problem. We use
the Arcade Learning Environment (ALE) [2] to provide a set of
arcade games which are commonly used as benchmarks for DRL.
We interface with ALE through the OpenAi Gym platform [3]. Our
experiments focus on transfer between pairs of games. We begin
by selecting pairs of games which we deem to be related in order
to verify the effectiveness of our approach; we leave automatically
identifying appropriate source tasks for future work. In this work
we focus on three games: Pong, Breakout and Tennis.

To perform transfer we train an agent to solve the source task,
in our case using A2C [1, 9]; a type of actor-critic algorithm. We
then run this trained policy and store samples from the source task;
in our case 100000 images. We also run a random policy on the
target task and store 100000 sample images from this domain as
well. We now sample from these datasets to train our Adversarial
AutoEncoder framework. The generator weights are then used to
initialise the weights of a new policy network for the target task.
The final layers for the policy and value function are initialised
randomly, as they were untrained during the pre-training phase
and the action space differs from the source task’s action-space.

We can see in Fig. 2 that our approach significantly improves
learning on the target tasks. The baseline we compare against is
training a standard randomly initialised A2C agent on only the
target task. The comparison clearly shows that our approach has
much promise.

Since we always start training with randomly initialised policy
and value function layers, we cannot expect transfer to provide a
jumpstart [8] in rewards. We do however see observe that initialis-
ing the state representation can improve over tabula rasa learning
by decreasing the number of samples required to learn a solution
and therefore our method does achieve faster learning, which sug-
gests our learned representation provides a better initialisation than
learning tabula rasa.

When examining the result of transfer to Tennis from either Pong
or Breakout we can see that while both games provide benefit there
is a significant difference between them. Conceptually Pong and
Tennis are more aligned as they are both versions of the same game
with a similar scoring mechanic. Breakout however is rotationally
aligned with Tennis, both games play vertically on the screen, pong
plays horizontally. Understanding this difference and developing
a method to identify the best sources for transfer is left as future
work.

4 CONCLUSION
This paper presents an adversarial method for knowledge transfer in
reinforcement learning. We have demonstrated how this approach
can be used for domain adaptation to improve performance on
the difficult task of learning to play Atari games. As evident from
our results, the technique can help learning in the reinforcement
learning case, even when the final layer needs to be relearned as
the action space and task have changed, making this application
of domain adaptation significantly more difficult than standard
applications of the technique.

Transfer Learning is a complex problem with many approaches
and applications from reducing the number of samples required
to solve a problem to improving the usefulness of simulation for
training of agents. Future work will compare our approach to other
Transfer learning methods such as the Progressive Neural Network
[7].
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