
Towards Accurate Deep-Sea Localization in Structured
Environments based on PerceptionQuality Cues

Extended Abstract

Arturo Gomez Chavez
Robotics Group, Computer Science &

Electrical Engineering,
Jacobs University
Bremen, Germany

a.gomezchavez@jacobs-university.de

Qingwen Xu
School of Information Science and

Technology of
ShanghaiTech University

Shanghai, China
xuqw@@shanghaitech.edu.cn

Christian A. Mueller
Robotics Group, Computer Science &

Electrical Engineering,
Jacobs University
Bremen, Germany

chr.mueller@jacobs-university.de

Sören Schwertfeger
School of Information Science and

Technology of
ShanghaiTech University

Shanghai, China
soerensch@shanghaitech.edu.cn

Andreas Birk
Robotics Group, Computer Science &

Electrical Engineering,
Jacobs University
Bremen, Germany

a.birk@jacobs-university.de

ABSTRACT
In recent years, the number of maritime exploration and exploita-
tion activities has rapidly increased, and with it the necessity to
performmore complex tasks underwater, e.g., floatingmanipulation
and mapping with Remote Operated Vehicles (ROVs). The first step
to perform these activities in a reliable manner, is to obtain an accu-
rate robot localization estimate. Localization approaches based on
multi-robot systems or complex acoustic infrastructures have been
favored in the literature, but alternatively visual modalities are pur-
sued when these options are not feasible. In this work, we present
a two-stage navigation scheme that initially generates a coarse
probabilistic map of the workspace that is used to refine localiza-
tion accuracy and filter noise in the second stage. Additionally, an
adaptive decision-making approach is introduced that determines
which perception cues to incorporate into the localization filter, i.e.,
tracked 2D features or plane representations, to ensure high accu-
racy and reduce computation times. Our approach is thoroughly
investigated in simulation and validated with deep-sea field trial
data originated from oil & gas commercial operations.
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Figure 1: ROV performing oil & gas valve manipulation.

1 INTRODUCTION
In the present work, we propose a navigation scheme that uses
visual odometry (VO) methods based on stereo camera imagery [5]
and an initial probabilistic map of the working space to boost lo-
calization accuracy in challenging conditions. As an example, we
use the EU-DexROV project [1, 2, 4] in which the final objective is
the monitoring and dexterous manipulation of an oil & gas panel
(Fig. 1). However, the nature of underwater scenarios where the
light behavior produces low contrast, blurred and color attenuated
images highly impacts the performance of VO approaches.

To solve this, we combine plane registration and feature tracking
methods to obtain odometry values. 3D planes are extracted from
dense point cloud (DPC) generators which produce complete dis-
parity maps at the cost of depth accuracy, but their density is key
to find reliable 3D planes. This is useful in structured environments
which predominantly contain planar surfaces that can be repre-
sented as plane primitives to reduce localization drift. Likewise, a
decision-making strategy based on image quality is used to select
which visual odometry method to perform in order to obtain more
reliable measurements and improve computation times.
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Figure 2: Illustration of the proposed two-stage navigation scheme – from Workspace definition to optimized localization.
First stage: (a) recognize the target and compute its pose based on visual markers, (b) navigate close to the target based on
navigational sensors and visual markers, (c) generate probabilistic with stereo imagery and Dispnet [3]; RGB-D camera based
probabilistic map displayed for reference. Second stage: (f)-(h) showmultimodal localization inputs which are incorporated to
a final Kalman filter-based localization estimate. An image quality assessment (IQA) [6] is introduced (h) to validate reliability
of the extended localization inputs to boost the accuracy of the estimates given by the baseline inputs.

2 METHODOLOGY
Figure 2 illustrates the proposed two-stage navigation scheme:

First stage-Workspace definition with loose localization

1.1. Approach the target until its global 3D pose its determined
with confidence based on a priori knowledge; see Fig. 2(a).

1.2. Navigate using odometry from navigation sensors and
visual landmarks (baseline localization); see Fig. 2(a)(b).

1.3. Compute a probabilistic map from stereo input of the target
while navigating based on the odometry uncertainty; see
examples in Fig. 2(c).

Second stage-Optimized localization

2.1 Evaluate the quality and reliability of the visual input, i.e.,
stereo imagery, based on image quality measures (Fig. 2(h))
and determine which of the next VO modalities to use to
extend the localization inputs:

2.2.a Extract planes [8] from dense point clouds [3], filtered
using the probabilistic map computed in the first stage to
avoid huge drifts and noise artifacts as shown in Fig. 2(g).

2.2.b Extract/track 2D features from imagery; see Fig. 2(f).

2.3. Compute VO either from plane registration [7] or feature
tracking [5] depending on the image quality assessment
(IQA) [6] and integrate the results into the localization filter.

3 EXPERIMENTAL RESULTS
Using the IQA to decide which VO inputs to integrate into the local-
ization filter (EKF-adaptive) reduces the pose error and increases the
smoothness of the followed trajectory. Simply integrating all odom-
etry inputs (EKF-all) does not boost performance as the kalman
filter does not reason about the quality of the sensor data except for
examining the inputs covariance matrix, see Table 1(b). Table 1(a)
shows the higher computational costs of the plane-based VO.

Table 1: Image quality based navigation performance

VO-ORB VO-planes

CPU [%] 3.2 6.8
GPU [%] 0.1 17.6
Time [s] 0.145 3.151

EKF-all EKF-adpative

Translation
ϵ [m]

0.73 ± 0.38 0.61 ± 0.14

Orientation
ϵ [deg]

8.93 ± 4.22 3.02 ± 1.06

Autocorrelation
(Smoothness)

0.92 0.95

(a) Computation performance (b) Pose error and trajectory autocorrelation [4]
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