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ABSTRACT
AI agents are being developed to help people with high stakes
decision-making processes from driving cars to prescribing drugs.
It is therefore becoming increasingly important to develop “ex-
plainable AI” methods that help people understand the behavior
of such agents. Summaries of agent policies can help human users
anticipate agent behavior and facilitate more effective collaboration.
Prior work has framed agent summarization as a machine teaching
problem where examples of agent behavior are chosen to maximize
reconstruction quality under the assumption that people do inverse
reinforcement learning to infer an agent’s policy from demonstra-
tions. We compare summaries generated under this assumption to
summaries generated under the assumption that people use imita-
tion learning. We show through simulations that in some domains,
there exist summaries that produce high-quality reconstructions
under different models, but in other domains, only matching the
summary extraction model to the reconstruction model produces
high-quality reconstructions. These results highlight the impor-
tance of assuming correct computational models for how humans
extrapolate from a summary, suggesting human-in-the-loop ap-
proaches to summary extraction.
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1 INTRODUCTION
AI agents are being developed to help people with high stakes
decision-making processes from driving cars to prescribing drugs.
These agents offer the promise of learning to act optimally from
data, but their behavior can be opaque to the human users who
interact with them. Involving a human user in the evaluation pro-
cess can help guard against potential harms due to failings in agent
training, and elucidate the strengths of successful agents.

To support people’s understanding of agent policies, methods for
extracting summaries of an agent’s policy, i.e. informative collec-
tions of agent decisions consisting of state-action pairs, have been
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proposed [3]. One approach to summarization relies on heuris-
tics for diversity or state importance [2, 7] . Another approach
assumes a computational model of how humans will generalize
from a summary, and uses this model to optimize summaries to
aid in reconstructing the policy [8]. Specifically, Huang et al. [8]
assumed people would employ reasoning akin to inverse reinforce-
ment learning (IRL) to understand an agent’s objective, and extract
a summary that allows for accurate approximation of the agent’s re-
ward. But people may also do imitation learning (IL), mapping from
states directly to actions. The cognitive science literature shows
that users apply different computational models in different situ-
ations while planning [6], suggesting that they may do the same
when inferring an agent’s policy from a summary.

We investigate the question of whether summary quality is ro-
bust to a mis-match between the model assumed during summariza-
tion and the user’s true model. We run computational simulations
exploring whether summaries extracted assuming that people do
IRL allow an IL model to reconstruct the policy, and vice versa. Our
results show that in some domains, assuming the correct reconstruc-
tion model during summary extraction is necessary to accurately
reconstruct an agent’s policy using that summary, but that in other
domains, we can extract summaries that are robust to misspeci-
fication of the reconstruction model during summary extraction.
This highlights the importance of considering how humans will
extrapolate from summaries when selecting which agent behaviors
(state-action pairs) to show.

2 METHODOLOGY
We assume summaries in the form a set of state-action pairs T =
⟨⟨s1,a1⟩, ..., ⟨sk ,ak ⟩⟩ from a batch of agent demonstrations, chosen
to maximize the quality of a simulated user’s understanding of the
agent’s policy derived from these examples. The models we use
to simulate how users infer agents’ policies from summaries are
variants of IRL and IL, described below with the corresponding
procedures we employ for extracting summaries.

IRL Given a collection of trajectories, Inverse Reinforcement
Learning (IRL) extracts a reward function such that the optimal
policy with respect to those rewards matches the demonstrated
behavior [9]. We use the Maximum Entropy IRL (Max-Ent) model
[11] as a proxy of how people may extract such reward functions
given a collection of trajectories. To generate the summaries we use
the algorithmic teaching approach presented in [4] to extract a set of
trajectories that optimally reconstruct the true policy. We modified
the algorithm to extract a fixed budget by terminating after k states,
or by randomly adding trajectories when the algorithm terminates
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(a) Random Grid World
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(b) Pacman
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(c) HIV Simulator

Figure 1: Accuracy averaged over 20 restarts for every combination of reconstruction model (columns) and summary extrac-
tion model (rows). The number for IL models corresponds to length scale, and for IRL models to trajectory lengths. All recon-
struction models reconstruct the policy most accurately with the matched summary extraction model. For the gridworld, no
summary extraction models are robust to mis-match with the reconstruction model; for PAC-MAN and HIV, some summary
extraction models are more robust to mis-match with the reconstruction model than others.

with less than k states. IRL-based extraction of summaries was also
explored in [8].

IL An alternative model for human extrapolation, rather than
identifying rewards and planning against them, tries to directly
mimic the agent. Imitation learning captures the notion that people
may infer agent policies based on the actions an agent has taken
in similar states, with no concept of reward or goal. In our exper-
iments, we use the Gaussian random field (GRF) model and the
active learning algorithm described in Zhu et al. [10] to find the
set of size k that maximizes accuracy on states not included in the
summary. To our knowledge, IL-based summary extraction has not
been previously studied.

Domains We use the random grid world defined in [4]; a 6x7
PAC-MAN grid with a single food pellet in the middle, a wall sur-
rounding it on 3 sides, and a ghost that moves towards PAC-MAN
deterministically 1; and the HIV simulator described in [1]. We de-
rive the policies for the domains respectively with: value iteration
using discount factor 0.95; so the agent moves in the direction of
the nearest food that does not result in a collision with the ghost;
and using fitted Q iteration as in [5] with a 0.05 initial state pertur-
bation. For PAC-MAN, we derived distinct feature sets for IL and
IRL based on distance to food, walls and ghost attacks. For HIV, we
discretized states using K-Means clustering with 100 clusters.

MetricWe use accuracy for all unique states not in the summary.

3 RESULTS
In Figure 1, we present results for hyperparameters (listed in figure)
and summary sizes (gridworld: 48; PAC-MAN: 24; HIV: 24) that out-
perform other hyperparameter settings on reconstruction quality
with summaries optimized for them.

Across all datasets, all models reconstruct the policymost accurately
when the summary is extracted using the same model. In Figure 1,

1http://ai.berkeley.edu/project_overview.html

different reconstruction models perform better in different domains
(IL is more accurate for HIV and PAC-MAN; IRL is more accurate
for gridworld), but a fixed reconstruction model always produces
the highest quality reconstruction with the summary optimized
for it. This suggest that both the IL and IRL methods extract sum-
maries that allow the model assumed during summary extraction
to reconstruct the policy accurately.

In some domains, using any model of human computation other
than the correct one during summary extraction leads to poor recon-
struction. In the gridworld domain, the IL model cannot reconstruct
the policy well with either IRL summary, and the IRL model cannot
reconstruct the policy well with the IL summary. This suggests
that sometimes, knowing the reconstruction model is necessary to
extract summaries that produce high quality reconstructions.

In other domains, some summaries are more robust to a mismatch
between summarization and reconstruction models than others. In
PAC-MAN, the summary extracted with IRL and trajectory length
2 allows the GRF model to reconstruct the policy more accurately
than the summaries generated with other choices of trajectory
length. In the HIV simulator, the summary extracted with the GRF
model with length scale 10 allows the IRL model to reconstruct the
policy more accurately than the GRF model with length scale 1. The
summaries extracted with the IRL model with trajectory lengths
2 and 3 allow both GRF models to reconstruct the policy more
accurately than the summary extracted with the IRL model and tra-
jectory length 4. This suggests that there are domains where some
summaries are more robust to a mis-match between summarization
and reconstruction model than others.
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