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ABSTRACT
Multiagent coordination is a key problem in cooperative multia-
gent systems (MASs). It has been widely studied in both fixed-agent
repeated interaction setting and static social learning framework.
However, two aspects of dynamics in real-world MASs are cur-
rently neglected. First, the network topologies can change during
the course of interaction dynamically. Second, the interaction utili-
ties can be different among each pair of agents and usually unknown
before interaction. Both issues mentioned above increase the dif-
ficulty of coordination. In this paper, we consider the multiagent
social learning in a dynamic environment in which agents can alter
their connections and interact with randomly chosen neighbors
with unknown utilities beforehand.We propose an optimal rewiring
strategy to select most beneficial peers to maximize the accumu-
lated payoffs in long-run interactions. We empirically demonstrate
the effects of our approach in a variety of large-scale MASs.
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1 INTRODUCTION
Multiagent coordination in cooperative multiagent systems (MASs)
is a significant and widely studied problem. It requires agents to
have the capability of coordinating with others effectively towards
desirable outcomes. A wide spectrum of works have studied the
multiagent coordination problems in cooperative MASs [4, 6–9, 11].
One line of research is multiagent social learning that study the mul-
tiagent coordination problem among a population of cooperative
agents with sparse and local interactions [1, 5, 10, 12, 13, 15].

However, most existing works under the social learning frame-
work assume that agents are located in a static network. Thus, two
aspects of dynamics in real-world MASs are currently neglected.
First, the interaction utilities for agent pairs are not necessary to
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be identical due to the difference of agents’ preferences and the
contexts they are situated in [2, 16]. Second, the network topolo-
gies can be dynamic, i.e. agent changes their interacting partners
autonomously. To this end, we study the multiagent coordination
in cooperative MASs with taking above two aspects into considera-
tion. We consider a dynamic environment where agents can alter
their connections by rewiring, and propose an optimal rewiring ap-
proach to select most beneficial peers among all reachable peers to
maximize the accumulative payoff during the long-run interactions.

2 PROBLEM DESCRIPTION
We consider a population of agents N , in which each agent i has a
set of reachable peers, defined as {Oi ∪Ōi }. Agent i can only interact
with its neighborhood Oi through the connections, and also has a
probability φ to be able to establish a new connection to a potential
agent j ∈ Ōi with cost cij through rewiring. For each rewiring, an
old connection should be broken before establishing a new one to
model agents’ limited communication ability in practice [16].

We model the strategic interaction between each pair of agents
as a cooperative game. A general form of two-action cooperative
games between agent i and j is denoted asG j

i = [ua ,α ,α ,ub ], where
ua (or ub ) is the payoff when agent i and j both choose action a (or
b) and α (≤ ua (ub )) is the outcome for mis-coordination. To model
the uncertainty and diversity of agents’ utilities, the coordination
payoff ua (or ub ) is sampled from a stochastic variable xa (or xb )
following a cumulative probability distribution Fa (x) (or Fb (x)).
Moreover, Fa (x) (or Fb (x)) is unique for each game. The value of
ua (or ub ) is unknown before interaction and is revealed when the
corresponding outcome is reached once. Each agent can observe
the actions of its interaction neighbor at the end of each interaction.

3 OPTIMAL REWIRING STRATEGY
The overall interaction protocol is shown in Algorithm 1, including
rewiring phase (Line 2-4) and interaction phase (Line 5-7).

Algorithm 1 Overall interaction protocol for agent i ∈ N .

1: for a number of interaction rounds do
2: if random variable p ≤ φ then
3: Perform rewiring action (including NOOP).
4: end if
5: Play game G j

i with randomly chosen player j ∈ Oi .
6: Obtain payoff and update its policy.
7: Update neighbor j’s action model.
8: end for
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Figure 1: The rewards of rewiring strategies in different
topologies (horizontal axis). The tuple denotes the initial
size of agents, neighborhood and reachable peers. For each
color, three degrees of opacity represent the value of mini-
mum, average and maximum separately.

Estimation of Expected Interaction Payoff
The expected payoffs of agent i interacting with j according to an
known or unknown payoff matrix G j

i , i.e., v
j
i or x

j
i , are evaluated

respectively as follows:

v
j
i = max

m∈Ai
p
j
i (m)um +

(
1 − p

j
i (m)

)
α , (1)

x
j
i = max

m∈Ai
p
j
i (m)xm +

(
1 − p

j
i (m)

)
α . (2)

Agent j’s policy p ji can be estimated from historical actions.

K-Sight Index and Rewiring Strategy
Each agent’s situated environments are continuously changing due
to rewiring and thus we model it as an Markov Decision Process.
Each state s of agent i can be represented as a tuple ⟨Ōi ,yi ⟩, with
the set of potential peers Ōi and the current baseline value yi =
minj ∈Oi v

j
i . With a long sight, the K-step utility functionUK (π∗

i , s)
of an optimal strategy π∗

i is formulated as,

UK (π
∗
i , s) = max

{
Kyi +UK (π

∗
i , ⟨Ōi ,y

′
i ⟩),

max
j ∈Ōi

{
− c

j
i + Ky

′
i +UK (π

∗
i , ⟨Ōi\{j},y

′
i ⟩)

}}
.

(3)

To compute the optimal policy in Equation 3, inspired from
Pandora’s Rule [14] and Negotiation Problem [2], we calculate the
K-sight rewiring index Λj

i as follows,

Λ
j
i =

∫ ∞

−∞

y′i · dF
j
i (x) − yi , (4)

where yi ′ is the new baseline value after rewiring and F
j
i (x) is the

distribution of x ji (Equation 2). The benefit index Λj
i captures the

relevant information about agent j: it should be rewired when it
has the highest positive value of the accumulated net benefit in the
following K rounds interaction.

Thus, we propose K-sight rewiring strategy: at each rewiring
phase, an agent i first calculates the interaction baseline value yi .
Second, for each potential peer j ∈ Ōi , the index Λ

j
i is computed

by following Equation 4. Finally, agent i choose the agent t with
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Figure 2: Performance comparison for (a) different rewiring
strategies and (b) different interaction strategies.

highest benefit index as its rewiring target, i.e., Λti = Λmax =

maxj ∈Ōi
(KΛ

j
i − c

j
i ). Then agent i makes the rewiring decision ac-

cordingly: to rewire target agent t if KΛmax − cti ≥ 0, or not to
rewire otherwise. For each rewiring, agent i breaks the worst con-
nection, i.e., arg minj ∈Oi v

j
i .

Interaction Strategies
We consider three representative learning strategies in interaction
phase, i.e., Fictitious play (FP), Joint-Action Learner (JAL) [4] and
Joint-Action WoLF-PHC (JA-WoLF) [3].

4 EXPERIMENTAL EVALUATIONS
To evaluate our K-sight rewiring strategy (Optimal), we compare it
with two benchmark strategies, i.e., Random and K-sight Highest
Expect (K-HE) that rewires the agent with the highest positive value
of K-round expected payoff minus the cost.

First, we conduct experiments under different topologies for
each rewiring strategy. The average accumulated payoff over 1000
rounds of each agent are shown in Figure 1. We can observe that
our optimal rewiring strategy outperforms benchmark strategies in
terms of average, best and worst cases across all settings. Second,
in Figure 2(a) we evaluate our approach under the settings with
the rewiring cost c varying in the range of [0.0, 200.0] and the
fixed K = 200. The results show that our approach significantly
outperforms others across almost all c/K settings. For both Figure
1 and Figure 2(a), we use FP as the interaction strategy.

Moreover, we analyze the performance of three interaction strate-
gies with our rewiring strategy. Figure 2(b) shows the average
single-round interaction payoffs of each agent during the long-
term interaction. We can observe that FP strategy can fast reach a
good payoff level while JAL and JA-WoLF outperform FP in the long
term due to their better convergence on optimal Nash equilibrium.
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