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ABSTRACT
Reinforcement Learning (RL) has been applied successfully to In-
telligent Tutoring Systems (ITSs) in a limited set of well-defined
domains such as mathematics and physics. This work is unique
in using a large state space and for applying RL to tutoring inter-
personal skills. Interpersonal skills are increasingly recognized as
critical to both social and economic development. In particular, this
work enhances an ITS designed to teach basic counseling skills that
can be applied to challenging issues such as sexual harassment and
workplace conflict. An initial data collection was used to train RL
policies for the ITS, and an evaluation with human participants
compared a hand-crafted ITS which had been used for years with
students (control) versus the new ITS guided by RL policies. The RL
condition differed from the control condition most notably in the
strikingly large quantity of guidance it provided to learners. Both
systems were effective and there was an overall significant increase
from pre- to post-test scores. Although learning gains did not dif-
fer significantly between conditions, learners had a significantly
higher self-rating of confidence in the RL condition. Confidence
and learning gains were both part of the reward function used to
train the RL policies, and it could be the case that there was the
most room for improvement in confidence, an important learner
emotion. Thus, RL was successful in improving an ITS for teaching
interpersonal skills without the need to prune the state space (as
previously done).
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1 INTRODUCTION
Intelligent Tutoring Systems (ITSs) have great potential to help
learners who may have limited access to human teachers and tu-
tors, but need help deciding what to study next, e.g., [11], or support
when attempting to solve a problem, e.g., [5]. Such ITSs face a se-
quential decision-making task; at each time point, the ITS generally
has a variety of possible actions and must choose which one to
perform (e.g., do nothing, ask a question, or give a hint). Reinforce-
ment Learning (RL) [16] is a popular machine learning approach
to addressing this decision-making task as immediate and delayed
rewards can be defined. RL attempts to generate a policy specify-
ing what action to take in each possible system state to maximize
rewards. Immediate rewards capture the immediate effectiveness
of ITS actions on the learner (e.g., giving a hint may increase the
probability that the learner answers a question correctly). Delayed
rewards capture the effectiveness of ITS actions on longer-term
measures (e.g., rewards based on test scores after tutoring). Includ-
ing delayed rewards can help avoid a situation in which the learner
succeeds during practice with help but is not able to succeed later
without help (e.g., during a test).

A serious limitation of the current work on RL for ITSs is a
focus on well-defined domains, e.g., physics [4], microbiology [15],
computer databases [11]. In contrast, interpersonal skills are an
example of an “ill-defined domain” [14] since the problem-solving
(e.g., what is actually said) can be hard to support in the same way
as problem-solving in a formalism such as mathematical equations
or computer programs. In particular, learners view conversations as
a real-time activity and although quick pop-up help can be given, it
is not appropriate to stop the conversation when an error is made.
Another difficulty is the necessity to give mixed feedback during
practice. Since you cannot realistically solve someone’s problem
with a single response, learners may struggle to identify when they
made a good conversational move.

Despite the difficulty in teaching interpersonal skills, they are in-
creasingly being recognized as critical to both social and economic
development. Deming [8] focuses on the importance of social skills
for the labor market, and notes that the U.S. labor market has been
increasingly rewarding social skills in recent years. In fact, between
1980 and 2012, employment and wage growth was particularly
strong for jobs requiring high levels of social skills together with

Session 3B: Socially Intelligent Agents AAMAS 2019, May 13-17, 2019, Montréal, Canada

737



STEM-related skills (science, technology, engineering, and math-
ematics). Deming points out that the return of the labor market
to social skills was more prominent in the 2000s, and that the rea-
son for this shift in perspective is that social skills are difficult to
automate [1]. Despite their importance, social and interpersonal
skills are often left to be learned on the job or through unproven
methods such as role-play with untrained partners, e.g., Hays et al.
[10] discuss the need for better interpersonal skills training for
junior officers in the U.S. Navy.

Core et al. [7] describes a system in which learners can practice
interpersonal skills with virtual role-players who speak using pre-
recorded audio and act via 3D animations. Users select what to
say to the role-player from a menu leading to different points in
a branching graph representing the possible conversations. The
built-in ITS monitors the interaction and can pop up a “coach”
window with a feedback message (positive/negative comments on
the previous choice) and/or a hint (indirect reference to the current
correct choice). We focus on the version of the system called ELITE
Lite Counseling which is designed to teach basic counseling skills
to prospective U.S. Army officers. Such counseling skills can be
used more generally by any supervisor dealing with the personal
and performance problems of subordinates. Later versions of the
system deal with the specific issue of preventing and responding
to sexual harassment and assault in the workplace.

Given the importance of these interpersonal skills, it is crucial to
optimize the ITS such that learners can succeed during their virtual
role-play scenarios and more importantly learn the underlying
principles for dealing with workplace problems. However, ELITE
Lite Counseling, like many other training systems, uses heuristics to
guide the ITS’s decision-making process rather than a data-driven
approach. We modified the ELITE Lite Counseling system so that it
can consult an RL service to make decisions. The modified system
can be updated by replacing the data file containing the RL policy.
The key question was whether a policy developed through RL
could outperform the heuristics of the original system. Although
researchers have had positive results in well-defined domains, it
was not clear whether such results could be repeated in a domain
where problem-solving corresponds to conversational actions.

We recruited human participants and tested the original heuristics-
based version of ELITE Lite Counseling versus the modified version
that employs RL. As described below, both versions of the system
were effective, resulting in a significant increase from pre- to post-
test scores. Although test scores and learning gains (a traditional
ITS evaluation metric) did not differ significantly between condi-
tions, learners had a significantly higher self-rating of confidence
in the RL condition. We discuss the results in more detail below,
but given that confidence was part of the RL reward function, and
the importance of this learner emotion, we can say that RL was
successful in improving our interpersonal skills training ITS.

This paper’s main contributions are two-fold: (1) To our knowl-
edge this is the first time in the literature that RL has been applied to
an ITS that teaches interpersonal skills, an “ill-defined domain”. (2)
Unlike previous work on using RL for learning tutoring policies, we
used Least-Squares Policy Iteration (LSPI) [12], a model-free sample
efficient RL algorithm employing linear function approximation,
which allowed us to learn successful policies without pruning the

state space and without having to build a model of the environment
(in our case, the environment is the learner).

The rest of the paper is structured as follows: First we present
related work and then the learning environment (the Elite Lite
Counseling ITS). After that we describe our experimental design
and how we applied RL to our system, followed by our evaluation
and results. Finally, we conclude with a summary of our findings
and directions for future work.

2 BACKGROUND AND RELATEDWORK
RL is used with the decision-making frameworks, Markov Decision
Processes (MDPs) and Partially Observable Markov Decision Pro-
cesses (POMDPs). In these frameworks, each distinct system state
is a separate node in an inter-connected network. After taking an
action, an agent will move from one state to another with a certain
transition probability. Unlike MDPs, POMDPs do not make the as-
sumption that the state is fully known which is beneficial when the
state includes the learner’s mental state (e.g., knowledge of a topic).
However, this increases the complexity of using RL since the system
must track the multiple possible states. In general, tractability is
an issue, and although some initial work with POMDPs has taken
place, e.g., [3], we use MDPs, like the majority of work in this area,
to keep training times manageable without oversimplifying the
problem.

There are two approaches to using MDPs for RL, model-free
and model-based. The difference is that model-based approaches
attempt to estimate the transition probabilities of the MDP allowing
for more directed learning whereas model-free methods take more
of a trial-and-error approach and do not attempt to estimate the
transition probabilities.

The trial-and-error learning of model-free approaches generally
requires a large number of interactions during training to learn
an effective decision-making policy. Since it is not feasible to have
human learners interact with the ITS over thousands of trials, re-
searchers instead create simulated learners using a relatively small
amount of data or hand-crafted rules. Such a learner can tirelessly
interact with the system during the RL training process. Beck et al.
[2] describe a simulated learner built for an arithmetic ITS and
used for training an RL policy with temporal-difference learning
(specifically TD(0) with state-value learning) using a reward based
on minimizing the time spent per problem. Given the possible dif-
ferences between simulated learners and human learners, Beck et al.
evaluated their RL policy against the default ITS with human learn-
ers, and verified that the policy did result in a significant decrease in
time spent per problem. However, they did not test whether the RL
policy achieved this result (i.e., efficient problem-solving within the
ITS) at the cost of more shallow learning (e.g., lower performance
in class tests).

Iglesias et al. [11] use a combination of a hand-crafted simulated
learner and real learners to learn a policy for a computer database
ITS. Iglesias et al. employ theQ-learning RL algorithmwith a reward
based on performance on tests given within the ITS. They find
improvements in efficiency while evaluating with human users
and comparing to the default ITS, and no significant differences
between post-experience test results.
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Other researchers use a model-based approach in which the
transition probabilities of the MDP are estimated from a corpus of
learners interacting with the target system. Given that the size of
the MDP grows exponentially with the number of variables in the
state, researchers highly constrain the state size to prevent training
from becoming intractable. For example, Chi et al. [5] discuss the
use of an MDP for Cordillera, a physics ITS which has 2 possible
tutor actions, a state with 3 binary features, and a resulting 16
possible transitions.

Cordillera’s policy was developed using a form of RL called
policy iteration and was significantly better than a similar hand-
crafted system in terms of a traditional ITS evaluation metric called
learning gain [4]. Learning gain is calculated based on scores from
tests given after tutoring (post-tests) and tests given before tutoring
(pre-tests) which take into account prior knowledge and ability.
Post-tests provide a measure of knowledge and/or performance in
which the ITS is not allowed to give any support.

Crystal Island [15] is an ITS for microbiology in which problem-
solving is situated in a virtual world. Behind the scenes, the ITS
makes decisions such as parameters of the problem (e.g., what
disease must be diagnosed) and hint-providing behavior of virtual
characters in the world. Rowe and Lester [15] use a model-based
RL technique called value iteration, and to keep the models to
a reasonable size, the decision-making task is split into multiple
MDPs each having 8 binary features (e.g., one of the MDPs models
the setting of problem parameters). The RL policies were compared
against random decision-making but no significant difference in
learning gain was seen. Although learning gain has the advantage
of being an independent measure, it has the disadvantage that
the tests used may not align with material taught by the ITS. In
the case of Crystal Island, Rowe and Lester found that learners in
the RL condition scored significantly better on in-game problem-
solving measures such as use of virtual laboratory tests, which is
not something the post-test was designed to capture.

We choose a model-free approach to RL to avoid this need to
prune information about the learner and the context (e.g., reaction
times, number of questions attempted, scores achieved, difficulty of
questions) to a handful of state features (e.g., 8 for Crystal Island)
potentially omitting important information. However, we do not
follow the standard practice of using simulated learners with model-
free RL. Relatively simple simulated learners canmimic the behavior
of real learners interacting with the ITS in terms of reaction time
and problem-solving behavior, but unlike real learners cannot take
tests or surveys (i.e., we would not know the learning gain or
confidence gain of a simulated learner after a session). Instead, we
take the novel approach of applying Least-Squares Policy Iteration
(LSPI) [12] to learning policies for an ITS. During learning, LSPI
allows us to estimate the expected reward at the current state given
a corpus of interactions even with over 500 features.

We felt that the model-free approach of LSPI would give us the
best chance to show that RL can be used successfully in an “ill-
defined domain” (i.e., ELITE Lite Counseling). As described in [7],
on the surface, ELITE Lite Counseling seems similar to well-defined
domains; the ITS provides guidance on problem-solving steps and
there are constraints such as ordering (e.g., do not respond with a
course of action before checking for underlying causes). However,
learners must make the connection between abstract conversational

actions and constraints and actual dialogue (e.g., recognize that
an emotional outburst calls for active listening, and identify the
proper way to summarize what was said with neutral wording).
Thus, although the general approach of using RL has been shown
to be successful in well-defined domains, it was not clear that it
would be successful here.

3 LEARNING ENVIRONMENT
Core et al. [7] introduces a system called ELITE Lite Counseling
used by U.S. Army officers in training to learn leadership counseling
skills, the interpersonal skills (e.g., active listening, checking for
underlying causes, responding with a course of action) necessary to
help subordinates with personal and performance problems. A fea-
ture of the system is the ability to interact with virtual subordinates
who speak using pre-recorded audio and act via 3D animations
(see Figure 1). Users select what to say to the subordinate from a
menu leading to different points in a branching graph representing
the possible conversations. Each choice can have both positive and
negative annotations. Positive annotations correspond to correctly
applying a skill such as active listening, and negative annotations
correspond to omissions or misconceptions. Based on these annota-
tions, a choice can be correct (only positive annotations), incorrect
(only negative annotations), or mixed (both positive and negative
annotations).

The ITS monitors the interaction and can pop up a “coach” win-
dow (lower left corner of Figure 1) with a feedback message (posi-
tive/negative comments on the previous choice corresponding to
positive/negative annotations) and/or a hint (corresponding to a
positive annotation of the correct choice in the menu). In the de-
ployed system, this coach is governed by heuristics: give hint if last
choice is not correct, give feedback if last choice is incorrect, or
last choice is mixed and performance is less than a pre-set thresh-
old. The coach also has icons that light up to indicate whether the
last choice was correct, incorrect, or mixed, regardless of whether
textual feedback is given.

Each simulated conversation is followed by a self-directed Af-
ter Action Review (AAR) which allows learners to view all their
decisions, the possible choices, and the underlying annotations.
Core et al. [7] noted that the average number of clicks in the AAR
was sometimes as low as 0.12 which indicates little if any use. To
overcome this lack of engagement, we created a new AAR for our
experiments in which every non-correct response was replayed
and a multiple choice question asked (i.e., choose-again or identify-
the-error). For each question, learners selected answers until they
chose correctly.

We also modified ELITE Lite Counseling to use our RL service
to make decisions instead of relying upon the heuristics described
above. After each learner choice in the simulated conversation,
ELITE Lite Counseling will ask the RL service whether it should
give feedback on the choice, give a hint about the next choice to
be made, give both feedback and a hint, or do nothing. During this
process, the system actually makes two separate queries (hint or
not; feedback or not), but all guidance is presented at the same
time (see Figure 1). ELITE Lite Counseling also uses the RL service
during the AAR to decide whether to ask a choose-again question
or identify-the-error question for a particular mistake. Since the
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Figure 1: ELITE Lite Scenario.

state in RL is a simplified version of the variables in the actual
system, we modified ELITE Lite Counseling to send messages when
important changes occurred so that the RL service could update
its state representation. The state captured by the RL service is
outlined later in the paper.

4 EXPERIMENTAL DESIGN
Two studies were conducted: a data collection to obtain training
data for RL, and an evaluation comparing the RL policies against
the heuristics in the original system (for when to give feedback
and hints) and random choices for the AAR questions. In previous
empirical work with the ELITE system, Hays et al. [10] developed
survey questions for confidence and experience as well as a test
for the target counseling skills. This test includes basic knowledge
questions (i.e., true-false questions), and a situational judgment
test (SJT) in which learners read problem descriptions and rank
the appropriateness of different actions that could be taken. Given
before and after practice with ELITE as a pre-test and post-test,
it can be used as a measure of learning gain. The questions on
confidence can also be asked before and after the experience to
calculate a confidence gain. Core et al. [7] adapted this material to
a non-military setting (i.e., a workplace environment) and added
additional survey items to the pre- and post-experiment surveys.

To allow comparison with Core et al. [7], we used the same ex-
perimental design. In particular, Core et al. focused on two scenar-
ios (i.e., simulated conversations) called Being Heard and Bearing
Down. In Being Heard, a Soldier asks for a transfer but the root
cause is sexual harassment, and in Bearing Down, a Soldier has

grabbed and threatened another Soldier. Being Heard is used as
a practice scenario; the coach may give hints and feedback, and
participants play through the scenario twice to measure improve-
ment. Bearing Down is used as an in-game assessment; the coach
is deactivated including the correctness indicating icons. The full
experimental procedure is: (1) pre-survey, followed by pre-test, (2)
introductory video on leadership counseling skills, (3) first try of
Being Heard followed by AAR, (4) second try of Being Heard fol-
lowed by AAR, (5) complete Bearing Down with coach deactivated
followed by AAR, (6) post-survey, followed by post-test.

Both studies used undergraduate participants from the Univer-
sity of Southern California. The first study was conducted during
the fall 2016 and spring 2017 semesters, and the second study was
conducted during the fall 2017 semester. Because the goal of the first
study was data collection, the RL service made decisions randomly
for both the hint/feedback decision and the AAR question-type
decision. Because a random policy was used during data collection,
during training, RL could explore different possible policies and not
be limited by assumptions (e.g., the original ELITE Lite Counseling
would never give feedback after a correct choice). Unfortunately due
to software error, data from 9 participants was completely lost and
for some participants no AAR information was recorded. The data
from 93 participants was used as training data for the hint/feedback
decision-making policy. The data from 72 participants contained
AAR information and was used for training the AAR question-type
policy. In the larger data set, there were 43 male participants and
50 female participants; the ratio for the smaller set was 35:37. The
self-reported ethnicity of the 93 person sample was 47 Asian/Pacific
Islander, 23 White, 13 Hispanic/Latino, 6 Black/African American,
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4 Other/Unreported, and 0 Native American/American Indian with
a similar pattern in the 72 person sample.

The second study compared the trained RL policy against a base-
line (control) condition in which the heuristics from the deployed
system were used to give hints and feedback, and task choices
in the AAR were made randomly (i.e., identify-the-error versus
choose-again). In the RL condition, the hints and feedback, and
choices in the AAR were controlled by RL policies learned from
the data collected in the first study. We alternated between these
two conditions, assigning participants to one based on the order
in which they arrived. Due to lost data and software crashes, we
excluded 8 participants leaving 72 participants (35 in the baseline
condition and 37 in the RL condition). There were 22 male par-
ticipants and 50 female participants. The self-reported ethnicity
was 40 Asian/Pacific Islander, 14 White, 6 Other/Unreported, 5
Hispanic/Latino, 5 Black/African American, and 2 Native Ameri-
can/American Indian.

5 REINFORCEMENT LEARNING FOR ELITE
LITE

As discussed in the background and related work section, this work
uses an MDP framework for RL. An MDP is defined as a tuple (S ,
A, P , R, γ ) where S is the set of states that the agent may be in, A
is the set of actions of the agent, P : S × A→ P (S , A) is the set of
transition probabilities between states after taking an action, R : S
× A→ ℜ is the reward function, and γ ∈ [0,1] a discount factor
weighting long-term rewards. In our experiments, we set γ to 0.9
because of the importance of long-term rewards such as gains in
learning and confidence.

RL seeks to learn a policy which given the state of the agent
specifies the action to take to maximize rewards. At any given time
step i the agent is in a state si ∈ S . When the agent performs an
action αi ∈ A following a policy π : S →A, it receives a reward ri (si ,
αi ) ∈ ℜ and transitions to state s

′

i according to P (s
′

i |si , αi ) ∈ P . In
tutoring applications, actions might include doing nothing, asking
a question, or giving a hint, and states might include information
such as the number of correctly answered questions.

For an RL-based agent the objective is to maximize the reward it
receives during an interaction. Because it is very difficult for the
agent, at any point in the interaction, to know what will happen
in the rest of the interaction, the agent must select an action based
on the average reward it has previously received after having per-
formed that action in similar contexts. This average reward is called
expected future reward, also called theQ-function,Qπ : S × A→ℜ.
The quality of the policy π being followed by the agent can always
be measured by the Q-function.

There are several algorithms for estimating the Q-function. This
work uses Least-Squares Policy Iteration (LSPI) [12]. LSPI can learn
directly from a corpus of interactions and is sample efficient, i.e., it
makes maximal use of data. It is also a model-free method, which
does not require a model of the environment. In order to reduce the
search space and make learning more efficient we use linear func-
tion approximation of the Q-function. Thus Q(s , α ) =

∑k
i=1wiϕi (s ,

α ) where s is the state that the agent is in and α the action that it
performs in this state, and w̃ is a vector of weights wherewi is the
weight for the feature function ϕi (s , α ). The magnitude of a weight

wi is an indicator of the contribution of the feature ϕi (s , α ) to the
Q(s , α ) value. These feature functions can be specified manually or
through feature selection algorithms [13]. Wemanually selected the
features but also experimented with automatic feature selection.

LSPI is an iterative procedure starting with an arbitrary initial
weight vector w̃1 of dimension k which is iteratively improved
until it converges to a near-optimal policy. It takes as input a set
ofm samples D = {(s1, α1, r1, s

′

1),...,(sm , αm , rm , s
′

m )} and works as
follows:

At iteration j = 1,2,...,

• First step: Let the current linear Q-function be Q j (s , α ) =
w̃T
j ϕ̃(s , α ) and the corresponding greedy policy be πj (s) =

arдmaxaQ j (s , α ).
• Second step: Calculate Q j+1(s , α ) = w̃T

j+1ϕ̃(s , α ) where w̃ j+1

can be estimated from Ãw̃ = c̃ . Ã is a k × k matrix and c̃ a
k-vector and are computed as follows: Ã =

∑m
l=1 ϕ̃(sl , αl )

(ϕ̃(sl , αl ) - γ ϕ̃(s
′

l , πj (s
′

l )))
T and c̃ =

∑m
l=1 ϕ̃(sl , αl )rl .

The algorithm stops when the distance between the current
feature weights and the feature weights computed in the previous
iteration is less than a manually selected value ϵ . Note that LSPI
does not require setting a learning rate like other RL algorithms
such as Q-learning or SARSA.

We learned two RL policies, one hint/feedback decision-making
policy and one AAR question-type policy. Tables 1 and 2 show the
state variables that we track for the hint/feedback decision-making
and AAR question-type policies respectively. The hint/feedback
decision-making RL policy can choose from 3 actions: do nothing,
provide hint, and provide feedback. The state variable “after user
response” in Table 1 models whether the user has just made a choice:
“no” = 0, and means a hint could be given but not feedback, while
“yes” = 1, and means that feedback could be given but not a hint.
Since the training corpus followed this pattern, RL picked up this
relationship without the need for us to encode it explicitly. The
AAR question-type RL policy can choose between 2 actions: choose-
again and identify-the-error, and has no implicit constraints.

The features used in LSPI are combinations of all the possible
values of the state variables and the actions. For each state variable
one of the possible values is always the “null” (empty) value. The
hint/feedback decision-making RL policy is used only for the Being
Heard scenario (first and second try) whereas the AAR question-
type RL policy is used for both the Being Heard scenario (first and
second try) and the Bearing Down scenario. The state variables
that are related to numbers of responses and scores, time, and
question difficulty have been clustered into 6 classes including the
null class in order to keep the number of features manageable. The
5 non-null classes for the numbers of responses and scores were
defined as [0,1], (1,3], (3,6], (6,11] and (11,∞). The 5 non-null classes
for time were defined as [0,3], (3,5], (5,10], (10,17] and (17,∞) (in
seconds). We used the data from Core et al. [7] as a development
set to calculate question difficulty. Based on this data we calculated
the probability that a question would be correct, and defined 5
non-null classes of difficulty given the following probability ranges:
[0,0.3], (0.3,0.6], (0.6,0.8], (0.8,0.9] and (0.9,1]. We decided not to use
equal-size classes because the data was not uniformly distributed.
For example, for time there were more data points between 0 and 5
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State Variable
Number of

State Variable
Number of

Possible Possible
Values Values

scenario number 3 gender 3
# correct responses in prev scenario 6 # correct responses so far 6
# mixed responses in prev scenario 6 # mixed responses so far 6
# incorrect responses in prev scenario 6 # incorrect responses so far 6
# responses in prev scenario 6 # responses so far 6
score in prev scenario 6 score so far 6
avg correct response time in prev scenario 6 avg correct response time so far 6
avg mixed response time in prev scenario 6 avg mixed response time so far 6
avg incorrect response time in prev scenario 6 avg incorrect response time so far 6
avg response time in prev scenario 6 avg response time so far 6
response quality of prev question 4 response time of prev question 6
response quality of one before prev question 4 response time of one before prev question 6
response quality of two before prev question 4 response time of two before prev question 6
response quality if question has appeared before 4 question difficulty 6
response quality of prev question 8 has question appeared in prev scenario 2combined with after user response
after user response 2 is this the final state 2

Table 1: State variables considered for the hint/feedback decision-making RL policy.

State Variable
Number of

State Variable
Number of

Possible Possible
Values Values

scenario number 4 gender 3
# correct responses in prev scenario 6 # correct responses so far 6
# mixed responses in prev scenario 6 # mixed responses so far 6
# incorrect responses in prev scenario 6 # incorrect responses so far 6
# responses in prev scenario 6 # responses so far 6
score in prev scenario 6 score so far 6
avg correct response time in prev scenario 6 avg correct response time so far 6
avg mixed response time in prev scenario 6 avg mixed response time so far 6
avg incorrect response time in prev scenario 6 avg incorrect response time so far 6
avg response time in prev scenario 6 avg response time so far 6
response quality of prev question 4 response time of prev question 6
response quality if question has appeared before 4 question difficulty 6
# choose-again so far 6 has question appeared in prev scenario 2
# identify-the-error so far 6 is this the final state 2

Table 2: State variables considered for the AAR question-type RL policy.

seconds than between 5 and 10 seconds, and for question difficulty
it was more likely to have a correctness probability over 0.6 than
below 0.6. For the hint/feedback decision-making RL policy we
ended up with 168 states × 3 actions = 504 features, and for the
AAR question-type RL policy with 151 states × 2 actions = 302
features.

For both policies a reward is applied at the end of each scenario
and is a combination of the unnormalized learning gain (see the
results section), the final score of the previous scenario (if we are in
the second try of Being Heard or in Bearing Down), the final score
of the current scenario, and the confidence gain. We used equal
weights for each of the above 4 factors. We experimented with a

variety of different weights but these settings resulted in policies
with a uniform decision (do nothing) and/or highly fluctuating LSPI
feature weight values with no signs of convergence. Although the
final reward weights were equal, the values of the reward factors
were not normalized so in practice more weight was placed on
the final scores of the previous and current scenarios [0,20] than
on the learning gain [-1,1] or the confidence gain [-7,7]. We also
experimented with immediate rewards based on the correctness
of the learner’s choices but ended up omitting them from the final
model. In the training data thereweremany cases of correct answers
with no associated hint or feedback; thus, these immediate rewards
gave little information.
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Gain RL Control p-value
Unnormalized Knowledge 0.0068 0.0161 0.7224

Unnormalized SJT 0.1192 0.0740 0.1360
Unnormalized Combined 0.0718 0.0496 0.3034
Normalized Knowledge 0.0513 0.0613 0.8320

Normalized SJT 0.2683 0.1895 0.1950
Normalized Combined 0.1813 0.1352 0.3039

Confidence 0.5270 0.0762 0.0248
Table 3: Comparison of RL and control conditions in terms
of unnormalized and normalized learning gain, and confi-
dence gain (two-tailed t-test).

We experimented with LSPI with fast feature selection [13] to
see if we could reduce the number of features used. As expected, the
selected features would change from iteration to iteration. However,
there were no signs that the algorithm was actually converging,
which indicates that all of our features were relevant. This was
also evident from the values of the weights resulting from standard
LSPI; the absolute values of all feature weights were relatively high.

It is hard to measure which features contribute more to learning
than others, because what matters is their combination. Below
we report some observations based on the weights of the features
for the hint/feedback decision-making policy. The weight for the
provide hint action is larger in the Being Heard scenario (first try)
compared to the second try, and when a question has not been seen
before there is a large weight for the provide hint action. These
weights could correspond to a teaching strategy of being more
likely to hint on the first attempt and less likely on the second
attempt (i.e., provide more support for the first attempt). If we have
incorrect or mixed responses so far in the current scenario (even
if the numbers are small) then the weights for both the provide
hint and provide feedback actions have large values, and if we have
incorrect or mixed responses in the previous scenario (even if the
numbers are small) then the weights for both the provide hint and
provide feedback actions have large values. These weights could
correspond to a teaching strategy of providing more support when
mistakes have been made. Similar observations apply to response
times. If the average response time for incorrect or mixed responses
so far in the current scenario is high then the weights for both
the provide hint and provide feedback actions have large values.
If the average response time for incorrect or mixed responses in
the previous scenario is high then the weights for both the provide
hint and provide feedback actions have large values. These weights
could correspond to a teaching strategy of providing more support
to students who make mistakes and take a longer time to respond.
We also see that if the question difficulty is high then there are
weights with large values for both the provide hint and provide
feedback actions corresponding to giving more support for more
difficult questions.

6 RESULTS
We use the two-tailed t-test for all statistical significance results re-
ported below. Across both conditions the experience helped people
learn as measured by the pre- and post-tests. The scores on these

tests range from 0 to 1. We report both the total (combined) score
on the test as well as separate scores for the knowledge and SJT
questions. In all cases, the scores are the ratio of correct answers to
the number of questions. We report unnormalized learning gains
in each case which are simply: post-test score - pre-test score. We
also report normalized learning gains using the definition in Graf-
sgaard et al. [9]. Thus in each case the normalized learning gain
is: (post-test score - pre-test score) / (1 - pre-test score) if post-test
score is greater than pre-test score, and (post-test score - pre-test
score) / pre-test score otherwise. We did not have any cases where
the pre-test or post-test scores were equal to 1 or 0.

Based on the means, standard deviations, and the minimum and
maximum scores (knowledge, SJT, combined) and self-reported
confidence values, we saw no floor or ceiling effects.

The increase in average knowledge test scores across both con-
ditions (pre-test=0.6432 to post-test=0.6545) was not significant
(p=0.3920). However, the increase in average SJT scores across
both conditions (pre-test=0.5789 to post-test=0.6761) was signifi-
cant (p=1.3094 x 10−8). This result replicates earlier work with the
ELITE system, which showed greater learning gains on SJT tasks
since these are better-aligned to the scenarios [7]. The increase in
combined (knowledge and SJT) test scores across both conditions
(pre-test=0.6060 to post-test=0.6670) was also significant (p=2.8742
x 10−7).

The unnormalized mean SJT gain was greater for the RL condi-
tion (0.1192) compared to the baseline (0.0740) but this difference
was not significant (p=0.1360). The normalized mean SJT gain was
greater for the RL condition (0.2683) compared to the baseline
(0.1895) but this difference was not significant either (p=0.1950).
Table 3 shows the knowledge, SJT, and combined learning gains
(unnormalized and normalized) for the RL condition and the control
condition.

No significant differences were found between the RL and the
control condition on measures of scenario performance, based on a
score where correct choices earn 1 point and mixed choices earn
0.5 points.

The RL condition differed from the control condition most no-
tably in the quantity of guidance it provided to learners (mean
number of messages = 43.1622 for RL versus 5.2286 for control,
p=1.3861 x 10−44). Although no significant difference in learning
was seen between the conditions, the increased ITS guidance in the
RL condition significantly affected the confidence of learners. The
mean pre-survey self-evaluations of confidence (on a 7 point Likert
scale) were not significantly different (5.5631 for RL and 5.5429 for
control, p=0.9218); the mean post-survey self-evaluations of confi-
dence (also on a 7 point Likert scale) were significantly different
with the RL condition increasing to 6.0901 and the control condi-
tion only increasing to 5.6191 (p=0.0197). The confidence gain (raw
difference in scores) was 0.5270 for the RL condition and 0.0762 for
the control condition and this difference was significant (p=0.0248)
(Table 3).

There was also a borderline-significant trend in which the coach
was more highly rated on a 6 point Likert scale (mean=4.7143) in the
RL condition than the control condition (mean=4.2980); p=0.0510.
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7 CONCLUSIONS AND FUTURE DIRECTIONS
From a technical perspective, this work found that Least-Squares
Policy Iteration (LSPI) [12] offers some distinct benefits for applying
Reinforcement Learning (RL) to Intelligent Tutoring Systems (ITSs).
We were able to use over 500 state-action features; no pruning
was necessary and thus no information was potentially lost. There
was also no need to develop a simulated learner to facilitate a
large number of trial-and-error interactions. Compared to prior
applications of RL to ITS, these advantages enabled training policies
with fewer assumptions about the domain and users.

From a social perspective, this work shows the potential for
machine intelligence to improve how we teach interpersonal skills.
Unlike earlier ITSs, which demonstrated the effectiveness of RL
exclusively on STEM topics, this work showed that policies could
converge and show positive benefits even for a domain where
human decisions are based on subtle personal cues that are not
explicitly available to the RL policy (e.g., voice affect for a virtual
human). This is particularly important, since modern workplaces
require teamwork that combines both social and STEM-related
skills [8].

The evaluation of the RL-trained policy versus the heuristics-
based (control) condition was positive, but not fully conclusive.
Replicating earlier results [7], we found significant pre-post learn-
ing gains, indicating that both conditions were effective. The RL-
policy also showed higher learning gains than the control condition
for SJT questions, but this difference was not statistically significant
for this sample size. With that said, the ability for RL to match or
exceed the expert human heuristics is promising: hand-tailoring
coaching rules for scenario-based training is non-trivial, so the
ability to infer these rules from user data could enable ITS support
to extend to new domains.

Themost definitive result was that learners reported significantly
higher levels of confidence after the RL condition. Confidence and
test scores were both part of the reward function used to train the
RL policies, so this might indicate the most room for improvement
in confidence. This is notable since confidence is particularly im-
portant for interpersonal skills: a significant number of errors are
omissions, where individuals know the skill but lack the confidence
to apply it, especially in the case of bystander intervention for both
violence and sexual harassment/assault [6].

In terms of behavior, the RL condition differed from the con-
trol condition most notably in the much larger quantity of coach
guidance it provided to learners, but the connection between this
increase and the increased confidence ratings for the RL condition
is unclear. Positive feedback is one potential influence on learner
confidence. The control condition never gave positive feedback af-
ter correct answers, but in some cases the RL policy would. Learner
confidence could also be affected by the overall quantity of coach
messages; learners may feel they learn more if they see more con-
tent. The borderline-significant trend to rate the coach more highly
in the RL condition may be a similar result (i.e., praise and overall
quantity of communication may result in increased ratings).

In principle, it might be possible that coach guidance has a some-
what linear influence on confidence (e.g., learners feel more con-
fident, regardless of the content). However, it is not the case that
the RL policy was simply giving feedback and hints in all states. To

explore such a causal relationship, a follow-up experiment would
need to compare the heuristic of always giving hints and feedback
to these RL policies. Such heuristics are often used in real-world
settings and tuned over time. This approach is simpler than using
RL but has the disadvantage of only being able to evaluate a single
tutoring policy at a time whereas RL explores many different poli-
cies by estimating their expected rewards (e.g., test scores). In this
case, the RL policy identified a mechanism that expert designers
did not, even after many years of use.

However, there are potential areas for future improvement. Cur-
rently our RL policies do not have any information about the spe-
cific questions asked, other than general features such as question
difficulty. It may be beneficial to keep track of the context of the
conversation in the RL state. This could potentially lead to more
interesting and perhaps more successful policies. It is also the case
that RL is using pre-authored content whose quality will impact the
ability of the resulting policies to influence later test scores. It could
be the case that pedagogical content that more strongly stressed
underlying principles could help learners improve their test scores.
Especially in interpersonal skills training, novices may fixate on
surface-level features (e.g., the specific problems in the scenarios
and on the test) and not be able to learn and apply general skills in
interactive scenarios that help improve test results. By changing
the pre-authored content for ELITE Lite Counseling and re-running
these experiments, we may see increases in both learning gain and
confidence in the RL condition.

Although the version of the system that we used is designed for
teaching counseling skills to U.S. officers, the same infrastructure
can be used for teaching other types of interpersonal skills. Indeed,
later versions of the system deal with the issue of addressing sexual
harassment in the workplace. Neither the RL state variables nor the
RL actions that we have used depend on the specific topic. Thus
we could potentially utilize the same RL setup for many different
topics provided that we have access to topic-specific content and
data.

However, while this work shows an additional domain where RL
offers improvements over hand-crafted policies, substantial work
remains to scale up RL to a broad range of systems. This results from
a lack of data pipelines from classrooms to data repositories: trans-
mitting data from systems to repositories, and transmitting new
policies back to the systems. Ideally, the entire process would be au-
tomated such that RL would continually train improved policies as
new data arrives. At the moment, much work is done by researchers
in setting up the RL learning (e.g., identifying features, discretizing
their values, designing the rewards). Although the setup used in
this paper could be reused for similar interpersonal skills training, a
more general approach is needed to automate the process of going
from raw data to tutoring policies.
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