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ABSTRACT

As a key component of collaborative robots (cobots) working with
humans, existing decision-making approaches try to model the un-
certainty in human behaviors as latent variables. However, as more
possible contingencies are covered by such intention-aware mod-
els, they face slow convergence times and less accurate responses.
For this purpose, we present a novel anticipatory policy selection
mechanism built on existing intention-aware models, where a robot
is required to choose from an existing set of policies based on an
estimate of the human. Each of these intention-aware robot models
anticipates and adapts to a different human’s short-term changing
behaviors. Our contribution is the Anticipatory Bayesian Policy
Selection (ABPS) mechanism which selects from a library of dif-
ferent response policies that are generated from such models, and
converges to a reliable policy after as few interactions as possible
when faced with unknown humans. The selection is based on the
estimation of the human in terms of long-term workplace char-
acteristics that we call types, such as level of expertise, stamina,
attention and collaborativeness. Our results show that incorporat-
ing this policy selection mechanism contributes positively to the
efficiency and naturalness of the collaboration, when compared to
the best intention-aware model in hindsight running alone.
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1 INTRODUCTION

Recent advancements in robotics are enabling more human-robot
teams to work together for increased productivity. For this purpose,
research into human-robot collaboration (HRC) has been mainly
inspired by human-human teamwork, the core of which lies in
an ability to adapt one’s behaviors to the other collaborators by
categorizing their observed behaviors. By doing so, humans select
appropriate behavioral responses to maintain a reliable and efficient
collaboration [13]. Our motivation here is to implement a similar
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mechanism for robots to ensure their autonomous adaptation to
different humans having naturally changing intentions, preferences
and behaviors. We call such robots social cobots [10].

Towards building such robots, many approaches have been pro-
posed, most of which model human intentions and behaviors as a
latent variable in robot planning [3–6, 8–10]. An important open
problem of such intention-aware models, for their usability in real
life scenarios, is the degree to which they allow for interacting with
different humans that change their intentions (goals) [1]. A limita-
tion for such models is that they become computationally expensive
and less accurate as a wider variety of human behaviors are mod-
eled [12, 22]. Therefore, for more efficient decision-making, existing
models implicitly make the assumptions that a human’s intention
and collaboration preferences are constant or always relevant to
an assigned task [10]. This majorly limits a human’s intention and
behavior space, whereas in reality a human’s dynamic desires and
emotions introduce greater uncertainty in human behaviors over
the course of repeated interactions [19]. Failing to adapt would
restrict the fluency of the collaboration also leading to distrust and
frustration from the collaborating human [14].

Our belief is that it is very difficult to design and/or learn a
single model for a person a robot is collaborating with, let alone for
different human types. A robot could face various type of human
behaviors. A human behavior may change as a reaction to robot
responses. For example, a human may become less collaborative
when a robot frustrates her by interfering with a task that she would
not trust the robot with. Such human behaviors may also adapt
to the context, such as a different task to collaborate on, changing
working conditions, daily mood, etc. [7]. Those changes may even
be as a result of another human worker starting to collaborate
(e.g. a work shift). To ensure long-term usability of robots, a robot
should adapt to both short-term changes in a human collaborator’s
mental state (e.g. tough day at work) and long-term personal habits,
preferences and trust. We call each different combination of such
long-term behaviors a unique human type. Our intuition is that
rather than a single adaptive model, sometimes a robot may need to
follow completely different decision-making strategies, i.e. policies,
to enable fast and reliable online adaptation to various human types.

In this paper, we present a novel anticipatory policy selection
mechanism built on top of existing intention- and situation-aware
models for an extended adaptation of robots to various human types.
In our previous study, we designed a partially observable Markov
decision process (POMDP) that adapts to a human’s short-term
changing behaviors, modeling her availability, intention (motiva-
tion) and capability as a latent variable [10]. Our focus in this study
is on a robot’s adaptation to human long-term behaviors, i.e, human
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types. We create a policy library by randomly constructing different
robot models based on our existing model design. Through this
random generation, we are agnostic to specific human types and
behaviors modeled. Our contribution is an Anticipatory Bayesian
Policy Selection (ABPS) mechanism based on Bayesian Policy Reuse
(BPR) [25], which selects a policy from the library in short time
and converges to a reliable and nearly optimal policy after as few
interactions as possible. The selection is based on a human’s es-
timated long-term workplace characteristics, such as level of ex-
pertise, stamina (or fatigue), attention and collaborativeness1, that
correlate to the policy performance. Instead of modeling known
human types as a latent variable, we estimate unknown human
types from the observed human behaviors using Bayesian belief
estimation. To our knowledge, this is the first time such a policy
selection mechanism has been proposed complementing intention-
aware planning approaches in HRC, providing fast and reliable
anticipatory decision-making for both long-term and short-term
adaptation to unknown human types (through ABPS) and their
changing behaviors through each selected policy.

Our goal is to show that integrating such a policy selection
mechanism contributes positively to the efficiency (e.g. time to
finish a task, success rate) and naturalness (e.g. a human’s increased
willingness to collaborate) of the collaboration, when compared
to the best intention-aware model in hindsight running alone. We
consider a simulated HRC scenario at a conveyor belt for the task of
inspecting and storing various products, each of which has different
weights. Different types of modeled humans, responsive to both
robot actions and changing environment, collaborate on the task
autonomously with our adaptive robot decision-makingmechanism
implementing ABPS (Section 3). We present our experiments and
analysis on our policy selection through its effects on the efficiency
and the naturalness of the collaboration (Section 4).

2 RELATEDWORK

Human-robot interaction studies have lately focused on human
intention-aware robot decision-making models for anticipatory
adaptation of the robots to humans. Most of these models introduce
human intentions as a latent variable in a POMDP, which causes
great complexity with an increasing number of human intentions
anticipated and handled. For a reasonable convergence time, such
a design conventionally has to limit the human intention space
and systemic errors a human can make [12]. Therefore, the studies
implicitly make the assumption that either a human’s intention (or
goal) is constant or it is changing in a known limited intention space
[10]. We were unable to find any studies that consider the human
behaviors as freely stochastic in an unconstrained environment. As
a result, robot decision policies generated by such complex models
have been developed and tested under constrained environments
with rather limited interactions [2–6, 15]. It has been stated that
such assumptions limit a robot’s anticipation of a human’s dynamic
behaviors and goals that mostly occur in the long-term as a result
of changing preferences, habits, needs and trust [1, 10, 19].

There has been a handful of studies that removes such assump-
tions on human intentions and behaviors. Contingencies in human

1We use this term to indicate the level of a human’s will to collaborate that may change
due to, for example, task-relevant distrust of the human to the robot.

actions have been partly considered [11, 18]; however, all actions
are still assumed to be toward fulfilling a task, possibly in a way that
differs from the expected plan. In our recent work, we conceptualize
an anticipatory decision-making model (a POMDP) for the robot
that removes those assumptions and handles a human’s unexpected
behaviors after the human’s changing availability, motivation and
capability in collaboration tasks [10]. Even though we show that
such a proactive model performs better than a robot model with the
assumptions, the handled behaviors are limited and less dynamic,
and the POMDP model handles only the basic type of behaviors
(i.e., tired, distracted, incapable) as a latent variable. In other words,
the robot model was not adapting to different humans but instead
acting proactively against one simulated person randomly generat-
ing such short-term changing behaviors. In this study, we extend a
robot’s adaptation to anticipate a variety of human types.

Towards incorporating more variety in human characteristics,
some studies have proposed complementary solutions to be built
on top of a robot’s intention-aware planner to foster high-level
strategies. In [21], humans are clustered from observations during a
training phase into a finite number of human types. The estimated
human type is again used as a latent variable in a MOMDP (mixed
observability MDP) model to decide on robot actions. The number
of types in this study is a limiting factor, where each different type is
considered as a partially observable state. This limitation is majorly
due toMOMDPs struggling to scale tomore states when each type is
introduced as a latent state variable. It has been recently stated that
when POMDPs are used to optimize spatio-temporal assignments of
robots, accurate system models are needed to evaluate both actions
and rewards, which are often unavailable or fail to anticipate and
adapt to various conditions in long-term missions [20].

To overcome the limitation of a Markov decision process in its
larger scale adaptation, the authors in [3] build several such robot
models with varying reward and transition functions to handle
different tasks. In other words, the robots are given the ability to
explore different policies and trade-off toward higher interaction
and task quality. However, the study is limited to analyzing differ-
ent policies to govern such varieties in humans in the context of
pedestrian-robot vehicle interaction leaving out the autonomous
selection of an optimal one. Our approach brings together the idea
of generating many such reliable Markov models [3] to construct a
policy library, and the idea of estimating human types on a meta-
level as a complementary solution to the intention-aware models
[21]; and goes beyond them to offer a fast and reliable policy selec-
tion mechanism as part of a closed-loop robot system. Our policy
selection replaces the conventional method of using hierarchical
or more complicated POMDPs, as it acts as a discretization of the
POMDP models instead of modeling types as a latent variable. This
allows us to deal with the problem in a more computationally effi-
cient way, and to handle unknown human types while mitigating
the need to learn (expensive) response policies on the fly.

For the policy selection in the context of adaptive social agents,
some studies have developed decision trees [17] or Bayesian mod-
els, e.g. [22], selecting from a limited number of policies. Towards
broader adaptations, a recent study proposes a contextual multi-
arm bandit (CMAB) approach in an assistant selection mechanism
for a robot [20]. Although this approach has proven to be useful in
adapting to human capabilities and constraints in a simulation, the
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exploration factor of a CMAB would be very dangerous and frus-
trating for a human collaborator in real world. In addition, in policy
or reward learning algorithms, the learning rate is very difficult to
tune and the response time is considerably high for any interaction
in real time. Therefore, to satisfy fast learning rates in HRC, which
is related to how fast the human behaviors are changing, the studies
mostly assume limited human intention space [21, 23]. Particularly,
when human workers have their shift changes or when a human
drastically exerts different behaviors (e.g. loss of attention, fatigue
or injuries in workplaces [7, 16]), learning a new reward function or
a policy would take time which is very costly, especially in collabo-
ration scenarios. Moreover, we still need to have an accurate reward
and transition model which, in the end, needs to be applicable to
all humans being interacted with, and yet again is not realistic to
find. In such cases, it is better to reuse a pretrained model rather
than spending too much time on training a new one [25].

In an online HRC, a robot’s autonomous, reliable and fast re-
sponse is a direct influence on the fluency and the naturality of
the human-robot teaming [14]. Toward more efficient and safe
HRC, we believe the Bayesian Policy Reuse (BPR) algorithm is
the best fit to our problem [25]. BPR has been shown to perform
better than a multi-arm bandit (fast and reliable policy selection)
in online adaptation tasks when faced with a greater uncertainty
about the description of the task. It considers a priori information
leading to less exploration and so less unreliable responses of the
robot during operation. In our solution, ABPS, we have updated
BPR to incorporate anticipation of a human’s uncertainty in her
long-term behaviors and to be a generic and complementary so-
lution to the existing intention-aware planning solutions for an
increased adaptation in real time. Even though ABPS is agnostic to
any labels of human types and robot policies, for our domain we
generalize some characteristic features of humans in workplaces,
inspired from [7, 16, 20], that are crucial for a collaborative robot
to know. These are a human’s expertise, attention, stamina-level
and collaborativeness and they are used to describe a human type.

3 METHODOLOGY

3.1 Overall Framework

Figure 1 shows our overall framework with an overview of how
we organize the decision-making process in a human-robot col-
laboration. In the upper layer, tasks are created and assigned to
either the human or the robot. In the meta-cognitive level the ABPS
agent selects one decision strategy among a policy library accord-
ing to the anticipated type of the human partner. Following the
selection, a decision strategy is forwarded to the cognitive level for
the decision-making agent to execute. In our implementation, each
decision strategy is a robot policy comprised of optimal actions for
each possible belief over the world states and generated when a
POMDP robot model is solved for maximizing expected rewards
(see in Section 3.2.1).

The cognitive level of the system in Figure 1 has been the fo-
cus of similar studies, which involves a robot’s decision-making
agent acted upon one precomputed anticipatory model, in our
case a POMDP model [10]. In this work, we focus on the meta-
cognitive level. It includes the policy library constructed from such
handcrafted Markov models (detailed in Section 3.2.1) and our

Figure 1: Anticipatory Bayesian Policy Selection (ABPS)

agent in the overall framework of our autonomous system

ABPS mechanism consisting of human type (belief) estimation
(Section 3.2.2) and policy selection with an exploration heuristic
for a quick adaptation to a class of human types (Section 3.2.3).

3.2 Anticipatory Bayesian Policy Selection

(ABPS)

Our approach is based on the Bayesian policy reuse algorithm [25].
The definition of ABPS is given with Definition 1.

Definition 1 (ABPS). An ABPS agent is equipped with a policy
library Π to act appropriately in the context of some human types and
tasks in HRC domain. The agent is presented with a human collabora-
tor having an unknown type in a known task, which must be solved
within a limited time and small number of trials. The goal of the agent
is to select policies from Π for the new and possibly unknown human
type, over which it has a belief distribution β(.), while minimizing the
total regret in a limited time. Minimizing the regret in this domain is
defined by increasing the task success rate and decreasing the amount
of warnings received from a human collaborator, relative to the best
alternative from Π in hindsight.

ABPS measures the similarity between an unknown human type
and previously known types to identify which policies may be the
best to reuse. In this case, a collaborated human’s type is latent
and the human type space is not fully known. Therefore, a corre-
lation between policies and a bounded set of human types is not
possible. The similarity of types is extracted from offline training
with some known types and by utilizing this trained model online,
constructing β(.). The general algorithm is given in Algorithm 1.
We first detail how a policy and the library Π is constructed in
Section 3.2.1. The observation signals and the observation model
for the human type belief update (see line 7, 8 of Algorithm 1) are
detailed in Section 3.2.2. Then, the policy selection step and the
construction of the performance model used in this step (in line 4
of Algorithm 1) is described in Section 3.2.3.

3.2.1 Policy Library Construction. To generate many policies
for the policy library, we use the anticipatory robot model design
simplified in Figure 2 as a base, which we have previously shown
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Algorithm 1 Anticipatory Bayesian Policy Selector (ABPS)
Require: Human type space τ , robot policy library Π, an observation

vector for observed human behaviors σ in an observation space Ω,
an observation model to match observables to known human types
P (Ω |τ , Π), utility as accumulated discounted reward obtained from
running a policy U , a performance model P (U |τ , Π), number of tasks
K , exploration heuristicsυ .

1: Train offline for performance and observation models.
2: Initialize a belief: β 0 uniform distribution from the priorτ .
3: for task IDs t = 1...K do

4: Select a policy π t ∈ Π using β t−1 and performance model,
P (U |τ , Π), usingυ in Equation (3).

5: Apply selected policy π t to the task and the human.
6: wait(until the task t is completed)
7: Obtain observations σ t from the human and the environment emit-

ted during the task.
8: Update belief β t using σ t by belief update function in Equation (1).
9: end for

to perform well in this context [10]. The model is the POMDP tuple{
S,A,T ,R,Ω,O,γ

}
. S comprises the hidden states of a human’s

task related availability, motivation and capability. These are antici-
pated at the first stage (see Stage-1 in Figure 2). Then, moving from
Stage-1 the robot anticipates whether the human needs assistance
or not from the robot’s perspective at Stage-2. The other states
are the global success and failure states that define the result of
a task (terminal states), the states of a new task assigned to the
agents (initial states), and a state when the robot receives a warning
from the human for any reason. A is the robot actions to wait for
human (idle), plan for assisting action (planning) and assist human
as shown in Figure 2. T is the state transition probabilities. R is the
immediate reward the robot receives. Positive rewards are acquired
when a task has been accomplished by any agent and negative re-
wards are for a task failure or when warnings are received from the
human. The latter is to encourage the planning to be less intrusive,
i.e., the robot will not offer assistance unless it is deemed part of the
optimal policy. Ω is the set of human action and task observations
as detailed in Section 3.2.2 and O represents the conditional obser-
vation probabilities. γ is the discount factor for delayed rewards
and we solve the model for an optimal robot policy, π .

The offline generation of different policies to construct the pol-
icy library is done by adjusting T and O : the state and observation
probabilities of the model corresponding to different human types.
Changes inT correspond to different transitions of a human’s inter-
nal states, e.g. a robot policy assumes the human tires faster (related
to the stamina-level) or the human needs assistance when she is not
capable (related to the collaborativeness). Whereas changes in O
define the observations emitted by the human as a function of her
internal states. For example, a human not being able to handle the
task could indicate that she is tired, or she is a beginner (related to
expertise) depending on her type, both of which should be handled
differently by the robot. Additionally, by adjustingO , we are able to
make the model a partially observable, mixed observability or fully
observable Markov decision process (POMDP, MOMDP or MDP,
respectively). We randomly adjust the probabilities as mentioned
above to generate various Markov decision models, each of which
handles a unique human type, and solve for their optimal policies

Figure 2: Our anticipatory robot model design as a Markov

decision model. At the first stage, the robot anticipates hu-

man states, such as human may be tired, may not be capable,
doing fine. Then, it anticipates whether the human needs

help moving from first stage estimations [10].

to construct our policy library Π. The main reason we move from a
base model as in Figure 2 is to limit the arbitrary generation of robot
policies to avoid overloading the space with unreliable candidates
[1]. This way we also show how we integrate ABPS to existing
intention-aware models.

3.2.2 Human Type Belief Estimation. The space of human types
is in general infinite, but we limit this to control complexity. There-
fore, the construction of a type space τ is a crucial process. For this
purpose, we train an estimation model from a set of known types
and use it online to estimate a new unknown type as a belief distri-
bution over the known ones, β(.). In order to train such a model,
we generalize some characteristic human features to approximate
a human type. These features are inspired from [7, 16, 20] and are
stated to be crucial to be known by a collaborative robot. These are
a human’s expertise, attention, stamina-level and collaborativeness.
The last term is a more general description of a human’s acceptance
rate of a robot’s offer for assistance. The type space consists of many
human types by adjusting the level of these features, e.g. a human
with beginner skills, pensive, bad stamina and non-collaborative
behaviors (e.g. always rejecting a robot’s assistance due to distrust).
We argue that any human worker can be represented as a distri-
bution of such features in our experiments. More details on the
simulated human types in type space τ are given in Section 4.1.2.

The human type estimation model is used by ABPS as a priori
information, which we call the observation model.

Definition 2 (Observation model). For a robot policy π , a hu-
man type τ and an observation vector σ obtained from the human
actions and the environment, the observation model P(σ |τ ,π ) is a
probability distribution over the observation signals σ ∈ Ω that results
by applying the policy π to the type τ .

All the combinations of known human types in τ and the robot
policies in the library are run against each other offline several
times to generate our observation model (detailed in Section 4.1.3).
The observation signals are emitted by the collaborated human and
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the environment, reflecting a human’s actions and their impact
on the task and the environment. In our experiments, an obser-
vation vector, σ ∈ Ω, is a 6-D boolean vector with the following
observables:

{
human is detected, human is looking around, human

has taken a task related action and succeeded in it (e.g. grasping and
lifting a package in our scenario), human has taken a task related
action and failed, human is warning the robot, human is idle

}
. The

ABPS agent receives these observables at every episode of a task
and accumulates them to update its belief on the human type after a
task finishes (see line 6, 7, 8 of Algorithm 1). Finally, the type belief
update is Bayesian, given by

βt (τ ) =
P(σ t |τ ,π t )βt−1(τ )∑

τ ′∈τ P(σ t |τ ′,π t )βt−1(τ ′)
, ∀τ ∈ τ (1)

where βt−1 stands for the previous belief and P(σ t |τ ,π t ) is the
probability of observing σ t after applying π t in an interaction with
any human type τ . This distribution is directly retrieved from the
observation model for each requested type and policy.

3.2.3 Policy Selection with Exploration Heuristics. The policy
selection process of the robot is based on an exploration heuristic
called expected improvement (EI) [25]. As stated in line 4 of Algo-
rithm 1, this algorithm runs on another trained a priorimodel called
the performance model.
Definition 3 (Performance model). The performance model,
P(U |τ ,π ), is a probability distribution over the utility,U , of a policy
π when applied to human type τ ∈ τ .

The system utility, U , is the accumulated discounted reward
received after a policy is run (see Section 3.2.1 for the immediate
rewards a robot obtains during a task). All the combinations of
known human types τ ∈ τ and the robot policies π ∈ Π are re-
peatedly run against each other offline to generate our performance
model. Then, this model is used by the policy selection heuristic.

The heuristic assumes that there is aU + in reward space which
is larger than the best estimate under the current type belief, U β .
A probability improvement algorithm can be defined to choose the
policy that maximizes Equation (2) and achieves the utility U +.

π ′ = argmax
π ∈Π

∑
τ ∈τ

β(τ )P(U + |τ ,π ) (2)

Because the choice of U + directly affects the performance of the
exploration, its selection is crucial to the performance of this ex-
ploration. The expected improvement approach instead addresses
this nontrivial selection ofU +. The algorithm iterates through all
the possible improvements on an existing U β of the current be-
lief, which satisfies U β < U + < Umax . The policy with the best
potential is then chosen, as given in Equation (3).

π ′ = argmax
π ∈Π

∫ Umax

U β

∑
τ ∈τ

β(τ )P(U + |τ ,π )dU + (3)

= argmax
π ∈Π

∑
τ ∈τ

β(τ )(1 − F (U β |τ ,π )) (4)

where F (U β |τ ,π ) =
∫ U β

−∞
P(u |τ ,π )du is the cumulative distribution

function of U β for a τ and π . The algorithm, therefore, selects the
robot policy with the most likely improvement on the expected
utility.

4 EVALUATION

4.1 Experiments

In this section, we first detail the simulation environment we have
used for our experiments in Section 4.1.1. We then give our human
simulation mechanism and how human models are crafted towards
simulating short and long-term changes in human behaviors and
types, in a task of inspection and storage of various products (Sec-
tion 4.1.2). After that, we describe the training phase to construct the
library and the estimation models for ABPS (Section 4.1.3). Finally,
we give the details of how we conduct the real-time experiments
and our performance metrics in Section 4.1.4.

4.1.1 Simulation Environment. We implement the proposed ar-
chitecture in Figure 1 in the Robot Operating System (ROS) and
use our simulation environment developed under the MORSE en-
vironment. As seen in Figure 3, we have developed an updated
version of the MORSE human and PR2 models with special actions
related to our use-case task. The simulation environment allows our
robotic system to run a long-term collaboration. Such long-term
experiments make it possible for the robots to face many different
changing human types and behaviors under various conditions. As
a result, we do not have to be limited to constrained environments
and human interactions. This helps us train very accurate models
of the interaction, as well as run rigorous tests on our system facing
and covering more uncertainties of humans.

All of our scenarios consist of several sequential task assignments
to simulate a long-term collaboration. A task in our case is product
inspection and storing. It starts with an initial task assignment
to either robot or the human based on the product’s weight and
fragility. We only consider the cases where a task is assigned to the
human, in order to keep our focus on anticipating the human’s type
and behaviors and correctly assess her need for assistance. The
collaboration is when the robot correctly estimates the human’s
such need and helps with the task. A task is successful when the
product is inspected and put into green containers either by the
human or by the robot (see Figure 3a). We set a maximum allowed
processing time for each product inspection, tmax , to keep the
collaboration and production flowing in the factory. The conveyor
belt waits for tmax for a package to be processed, or else it runs
and the product falls into the uninspected-product container (the
red container in Figure 3a) leading to a task failure. As stated in
Algorithm 1, a new policy is selected after each task is finalized.

4.1.2 Human Simulation. We have modeled many different hu-
man types for our collaboration scenarios. In our experiments, we
run randomly generated models to reflect changing and unknown
levels of expertise, stamina, attention and collaborativeness. The
models reflect them as actions, which are observations for the robot
obtained from 3D human body joints always available directly from
the simulated humans. Since it is not the focus of this study, we
use a state-of-the-art human activity recognition (HAR) system
inspired by existing studies, e.g., [24], to recognize the constrained
and distinctly simulated human gestures: the human is looking
around (i.e. distracted as in Figure 3a), attempting the task (see
Figure 3d), warning the robot (a special gesture to stop the robot as
shown in Figure 3b), idle (inactive), walking away (see Figure 3c).
During a task, the robot collects all the observations emitted from
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Figure 3: Our HRC scenario. (a) Distracted human while ro-

bot is pointing out to remind, with containers shown; (b) Ro-

bot takes over the task to assist and human gestures to stop

the robot (warns the robot); (c) Humanwalks away for a rest;

(d) Idle robot while human is grasping the product.

the human and the environment and averages them to construct
our 6-D observation vector for the task (given in Section 3.2.2). The
observation vector also has features of the human’s success in the
task. After each attempt the human makes at grasping, the robot
associates the human’s attempts with expertise.

In our experiments, we assume that a human worker optimizes
an objective function to reach her goal. However, following our
statement, this may also be an internal goal irrelevant to the as-
signed task, e.g. leaving her place for a short break. We also assume
that any human actions towards her goal may be imperfect [12].
Simulating such a human has been shown to be accurate using a
Markov decision process (MDP) to generate a policy for a human
agent [3, 10]. For this purpose, we use an updated version of our hu-
man model in [10] in our simulations, which is inspired by studies
on human behaviors in a workplace [7, 16, 20]. Our human MDP is
a tuple

{
S,A,T ,R,γ

}
where S is the human states of mind, A is the

human actions, T is the state transition probabilities and R is the
immediate rewards received based on the result of a task and the
type of the human to encourage that type of behavior. For example,
a beginner and non-collaborative human model receives positive
rewards when the human cannot handle the task and each time the
human warns the robot when the robot interferes with the task.
The model is inspired by our expectations that a human chooses an
action based on the collaborated robot’s action, the state of a task,
the human internal states and human internal goals.

Our update to the human model in [10] is toward governing
the human’s responsiveness to the interacted robot actions. Such
responsiveness is handled through a transition functionT (s,a, s ′) =
P(s ′ |s,a,nr ,kt ) for s, s ′ ∈ S , a ∈ A, the number of times the robot
interfered in a task nr and the number of tasks handled so far kt .
That means we have dynamic transition probabilities changing over
the course of the interactions, leading to updates on human models
after each task, and so updated human behaviors. An example to

such responsive behaviors is that a human becomes less collabo-
rative as her robot partner selects wrong policies, e.g., the robot
takes over a task (depicted as nr ) when the human was already
planning to handle it. A decrease in collaborativeness is handled
with an increased transition probability of the human to warn the
robot when a robot interferes with a task. Another example is that a
transition to the state of being tired depends on the number of tasks
already handled, kt . Finally, each human model is simulated with
random sampling usingMarkov Chain Monte Carlo (MCMC). In the
end, the MCMC simulation and the responsive transition function
lead to human simulations exerting dynamic behaviors changing
in response to the robot decisions and with a small random factor.
Through this modeling scheme we create various human types
with changing characteristics, e.g. a beginner, tired and collaborative
human, a mid-expert, high-stamina and less-collaborative human.

4.1.3 Training Phase. We have generated many different robot
policies to build Π, the library. During the generation, all robot
model designs have random transition and observation probabilities
assigned (see Section 3.2.1); therefore, they are agnostic to the state
transitions inherent in the human models. In the end, 20 policies
have been selected for their use in the experiments in order not
to overload the policy library. This selection is based on how well
they performed overall against many different randomly generated
humanmodels, i.e., discarding theworst ones, and how distinct their
performance models are (see Definition 3) from the other policies, i.e.,
grouping the similar ones. Some policies ignore a human’s warnings
and try to complete a task, whereas some pay more attention to a
human’s needs, taking the human as the leader of the collaboration.
The trade-off between these two is more obvious when it comes to
non-collaborative types. There are also some policies that prefer to
encourage the human to complete the task, e.g. by pointing out to
remind the human when distracted instead of directly taking over
the task. Which policy is more optimal depends on the interacted
human type and the task definition.

We are agnostic to the exact type labels of humans in our ex-
periments. As mentioned, we assume each human the robot is
interacting with has an unknown type to the robot, which can
only be estimated as a distribution over the known types. For this
purpose, we have crafted 16 different human types (known types),
again with the goal of each generating as distinct set of observations
(human actions) as possible toward a more heterogeneous distribu-
tion. Generating distinct observations means creating human types
with extremes of the four features, namely the levels of expertise,
stamina, attention and collaborativeness. Our assumption is that
an unknown human type can be approximated as a probability
distribution over these extreme types. Increasing the number of
known human types would yield less accurate type estimations
with a higher convergence time. However, we note that since each
of the 16 humanmodels are stochastic, they still generate a diversity
of behaviors after random sampling (see Section 4.1.2).

During the training phase we run each of the 20 robot policy
against the 16 known human types for 50 sequential tasks. In total,
human and robot models accomplished 16000 interactions (16000
task instances), which is very difficult to manage in real-life scenar-
ios. The performance model and the observation model (see Defini-
tion 2) are constructed after this training phase.
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Figure 4: Moving average regret over time with error bars

denoting the standard deviation, collected by ABPS and the

best performing policy in hindsight for the experimented

human type.

4.1.4 Real-Time Experiments Phase. Our goal is to prove the
hypothesis below:
A single intention-aware robot model is limited in its adaptation to
various human types. Our ABPS mechanism provides broader adap-
tation to various and changing human types leading to more efficient
and natural collaboration, while maintaining fast and reliable con-
vergence to the best policy.

To explore the hypothesis, we conduct two lines of experiments
and gather the objective measures below:
Experiment-1: The goal of this experiment is to see the performance
of ABPS in terms of how fast and reliably it converges to the best
policy performance. For this purpose, we compare an ABPS robot
collaborating with a randomly created human type unknown to
the robot, with the best performing robot policy for that type when
collaborating with the same human. The best robot policy is picked
from the library as the best performer in hindsight for the experi-
mented human type. Both robots interact with the human for 30
sequential task assignments and this scenario is repeated 10 times
for each. We measure the moving average regret of both of the
robots and compare the change over time. A regret for a selected
policy π ∈ Π is Rτπ = U τ

π ∗ −U τ
π for a human type τ ∈ τ and the

best policy π∗ = argmaxπ ∈ΠU τ
π ∗.

Experiment-2 The goal of this experiment is to show the contri-
bution of our ABPS model to the adaptation capability of a robot
through increased efficiency and naturalness in the collaboration. For
this purpose, we compare the performance of ABPS robot with the
library’s best policy in hindsight running alone, when collaborating
with various types of humans unknown to the robot and changing
during the operation. The robot is unaware of this change, which
might be thought of as a shift change in a factory environment. The
best policy for this experiment is the overall best performer in the
policy library, picked after the training phase when averaged over
all the interactions. For the purpose of simulating unknown human
characteristics, we randomly crafted 10 different human types of-
fline. At every 30th task in a scenario (enough to let ABPS converge),
the human type changes drastically to another unknown human
type in a certain order, and the robot has to adjust its responses
accordingly. The same order is repeated 5 times (300 sequential
tasks in each scenario) for each strategy to average and smooth the
human type characteristics and observe the long-term performance
of the robots. We analyze the following for both of the strategies:

• How the human state distribution and the average reward
the robot collects change over time. This shows the effect of
such type and behavior changes on a single intention-aware
model that introduces those changes as a latent variable
versus the ABPS mechanism and its adaptation capability.

• Success rate, the number of warnings the robot received from
humans and the approximate time a task takes. These are to
compare the task efficiency and naturalness of the robots.
We also analyze the trade-off between time and success rate
as made by the policy selector to avoid human warnings.

4.2 Results

The results of Experiment-1 are illustrated in Figure 4. ABPS natu-
rally has a uniform belief distribution over the human types when
first initialized, and has selected different policies (best performers
of the library) until its belief estimation converges (as shown by
higher deviations). It has already reached a very close performance
to the best policy after the 6th task, by correctly selecting the same
policy at that time (i.e., at the 6th iteration). The difference between
the moving average regrets of both strategies decreases to equalize
after this point showing the fast convergence of ABPS (one-way
ANOVA: F (1, 58) = 0.017,p = 0.895). It should be noted that a
zero regret cannot be reached even by the best policy and there is
a constant variance on the values. This reflects that the human’s
behaviors are constantly changing over the course of the interac-
tion. In a real world setup we may have more stable behaviors from
people; however, with this experiment we point out the adaptation
performance of ABPS.

For Experiment-2, the results are shown in Figure 5 and Figure
6. We compare our ABPS with the overall best policy in hindsight
in the policy library. To reflect the dynamic nature of our human
simulations, Figure 5a shows the average duration of each different
human state in one task, and how this duration changes over the
task assignments. Within every 30 tasks we visualize a human’s
changing availability, motivation and capability which are gen-
erated by a single type. These behaviors are reflected under the
human states of failed to handle the task, being tired, being dis-
tracted, evaluating (spending time to figure out how to achieve)
and warning the robot (when a human does not want the robot’s
assistance) as shown in Figure 5a. The drastic changes of these
states after every 30 tasks shows the different long-term character-
istics, i.e., types, of human workers. For example, the human which
took a shift between the 90-120th tasks is more of a distracted type
whereas between the 210-240th tasks is a more expert human, with
less failures and evaluating time.

We note again the dynamic nature of each human models and
Monte Carlo sampling yield various behaviors as shown in Fig-
ure 5a, e.g. an expert human can also fail sometimes. This causes
many fluctuations in the moving average rewards collected after
each task as illustrated in Figure 5b. It is noticeable how the rewards
are affected by different humans starting to interact with the robot
(at every 30th task instance). In most of such cases, the overall best
policy model is affected more negatively than ABPS. For exam-
ple, between the 180-210th tasks the human type resembles more
beginner and less collaborative behaviors than the others due to
the number of warnings she made to the robot and the number of
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Figure 5: (a) Human state distribution over time showing the

changes on human types and behaviors. (b) Moving average

reward over time collected by ABPS and the overall best sin-

gle policy in hindsight (best performer in the library).

failures. Such a difficult human type causes a drop in the average
reward the overall best policy collects, whereas our ABPS selects
another policy (the best for that type) adapting to the situation that
results in almost no change to the reward level. This policy has
avoided possible warnings by not taking over the human’s task
directly but encouraging the human and waiting patiently for the
human to handle it unless it is too late for the task. ABPS shows its
necessity in such a realistic system, especially at the beginning of
the experiment where the overall best policy is clearly not suitable
for that type of human. In general, one-way ANOVA tests show
that the accumulated rewards of ABPS is significantly larger (see
in Table 1) with a mean difference of 39.2%. This and the almost
stable reward level in Figure 5b shows that ABPS provides faster
and more reliable adaptation to these difficult cases.

As shown in Figure 6b and Figure 5b, the warnings received
by the overall best policy accumulate greatly, especially against
the humans between the 60-90th and 180-210th tasks (the former
is tired, the latter is a beginner and both are non-collaborative),
whereas the ABPS robot has successfully adapted to the situations
and accumulated fewer warnings. This shows such an adaptation
is necessary for the naturalness of the collaboration, which also
affects the success rate of the system and finally the accumulated
reward being the combination of both (Figure 6c and Figure 6a,
respectively). During these task intervals, ABPS trades off the dura-
tion of the tasks with the efficiency and naturalness through the
selected policies (see Figure 6d and Figure 6b). The human type is
likely to exert slightly more non-collaborative behaviors and the
policy selection of the ABPS favors avoiding interference, waiting
for the human to succeed, collecting more rewards through higher
success rates and fewer warnings. On the other hand, the best policy
offered assistance and took over the tasks in general. This resulted
in more warnings received by the best policy and lower success
rates as the robot had to cancel its action after the warning. How-
ever, it led to faster times of completing the task, most of which

Figure 6: Comparison of the robot with ABPS and the robot

with the overall best single policy in hindsight over the task

assignments: (a) cumulative rewards acquired; (b) number of

warnings received; (c) moving average of the success rate; (d)

moving average of the task durations in seconds.

were a failure. Despite such small trade-offs, ANOVA tests show
that ABPS leads to significantly better efficiency (with 9.5% higher
mean success rate and with 14.6% less mean task duration) and
more natural (with 58.8% fewer warnings received) human-robot
collaboration, as summarized in Table 1.

Table 1: Final results from Experiment-2: ABPS vs. overall

best policy (µ =mean)

Type µABP S µBest P ol icy ANOVA

Discounted rewards 4.62 3.32 F (1, 598) = 74.11,
p < 0.0001

Total warnings 31 75.2 F (1, 598) = 70.37,
p < 0.0001

Success rate 0.92 0.84 F (1, 598) = 29.94,
p < 0.0001

Task duration 26.04 secs 30.49 secs F (1, 598) = 15.61,
p < 0.0001

5 CONCLUSION

We introduce our novel anticipatory Bayesian policy selection
(ABPS), in an HRC setup as a complementary solution to the exist-
ing intention-aware robot decision-making models. We examine
the effects of our ABPS on a collaborative robot’s adaptation to
unknown human types and their changing behaviors in a long-term
collaboration. Our results have shown that ABPS is a fast and reli-
able policy selection mechanism for HRC scenarios. Having such a
mechanism on top of a robot’s intention-aware decision-making
contributes positively to the efficiency and naturalness of the collab-
oration by providing better adaptation to the collaborated human,
when compared to the state-of-the-art robot decision-making mod-
els running alone. In our experiments, we have utilized our fully
autonomous architecture capable of running ABPS along with a
robot’s decision-making and observation agents, in a real-time
human-in-the-loop simulation setup. In future work we will vali-
date our system through user studies on a real setup.
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