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ABSTRACT
Extensive research has been done on planning for single-agent
problems, but multi-agent planning has not as yet been thoroughly
explored in agent development platforms. These platforms typically
provide various mechanisms for runtime coordination, which are
often useful in online planning. In this context decentralised multi-
agent planning can be efficient as well as effective, especially in
loosely-coupled domains, whilst also ensuring important properties
in agent systems such as privacy and autonomy. In this paper, we
describe the DOMAP planning framework and its integration with
a multi-agent programming platform to support the achievement of
social goals. Our planning framework has separate phases for goal
allocation and individual HTN planning, whilst relying on available
runtime coordination. Experiments on three different multi-agent
systems implemented in JaCaMo show that DOMAP outperforms
four other state-of-the-art multi-agent planners with regards to
both planning and execution time.
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1 INTRODUCTION
Multi-Agent Planning (MAP) has received significant attention
from the relevant research communities [19, 35] as it tackles new
and complex multi-agent problems that require decentralised so-
lutions. By allowing agents to do their own individual planning
the search space is effectively pruned, and agents also get to main-
tain their autonomy and keep some privacy within the system. A
prevailing problem in the area is to combine planning and execu-
tion [21]. Multi-agent programming languages and development
platforms that cover the social and environment dimensions [2, 31]
of Multi-Agent Systems (MAS) as well as the agent dimension [3]
make multi-agent oriented programming especially suited for solv-
ing complex problems that require highly social, decentralised au-
tonomous software.
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One such multi-agent development platform is JaCaMo1 [2]. A
platform for the development of MAS that explores the use of three
programming dimensions, each operated by a dedicated approach
with its own programming model: organisation (Moise [17]), agent
(Jason [4]), and environment (CArtAgO [25]). The JaCaMo plat-
form connects them all together via a global meta-model. At the
top-most level, the organisation dimension is composed of roles,
missions, and schemes. The roles are adopted by Belief-Desire-
Intention (BDI) agents that populate the agent dimension. At the
bottom-most dimension, the environment houses artifacts that pro-
vide information about the environment, grouped into workspaces
that agents can access. These workspaces can be distributed across
multiple network nodes, effectively distributing the MAS.

JaCaMo has been used in many applications, such as in the pro-
duction control of printed circuit boards [26], applying ontologies
in the area of health care [13], and in the simulation of social pro-
duction and management processes in urban environments [24].
JaCaMo was also used by several top-ranking teams in the Multi-
Agent Programming Contest (MAPC) [1], an annual competition
to stimulate research in multi-agent programming. The MAPC
introduces complex scenarios that can be used to compare the effec-
tiveness of multi-agent platforms towards solving these problems.

Our main contribution in this paper is a framework for De-
centralised Online Multi-Agent Planning (DOMAP), including the
design details, its implementation in JaCaMo, and evaluation of the
framework. DOMAP is divided into several main components: (i)
a multi-agent factored representation, i.e., a multi-agent planning
formalism that contains information about the world according to
each agent’s point of view; (ii) a contract net mechanism for goal
allocation; and (iii) individual Hierarchical Task Network (HTN)
planning. Our approach combines MAP with MAS, allowing for dy-
namic execution of solutions found through planning, and making
it easier to transition from planning to execution and vice-versa. So-
lutions found by DOMAP are generally sub-optimal, since planning
at runtime often requires fast response, although finding optimal
solutions is possible, depending also on optimal goal allocation.

We use three scenarios in our experiments to compare our frame-
work against other implemented multi-agent planners: the well-
established Petrobras domain [34], the classical Rovers domain,
and the Floods domain [9]. In our experiments agents are fully
cooperative and norm-complying entities that aim to achieve their
organisations’ plans. To evaluate our implementation, we selected
four state-of-the-art planners that took part in a multi-agent plan-
ning competition. DOMAP outperforms those other planners in the
largest planning problems and has the best overall results in both
planning and execution experiments. For the latter, we use JaCaMo
to execute the solution found by all planners.

1http://jacamo.sourceforge.net/
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2 RELATEDWORK
Much work [6, 14, 16, 19, 28] has been done to add planning into
autonomous agents, but to the best of our knowledge there is no
other recently implemented multi-agent online planner that takes
advantage of the various programming dimensions in MAS. As
such, in this section we describe some alternative approaches that
share a few similarities with our work.

The work on the CANPLAN language provided the first opera-
tional semantics for incorporating HTN planning into BDI agent
programming languages [28]. However, there is no available im-
plementation of CANPLAN, making it difficult to use and compare
it with current approaches. IndiGolog [14] is an agent-oriented
programming language based on the situation calculus and im-
plemented in Prolog. It adds planning in the form of high-level
program execution, allowing planning to be incremental by inter-
leaving planning and execution. IndiGolog agents are not strictly
BDI-based, even though it has been shown that Golog is capable of
capturing BDI semantics [27]; the language does not contain sup-
port for programming environments or organisations as first-class
abstractions, one of the keymotivators in our choice of development
platform. The GOAL [15] agent programming language was also
extended to include a subset of PDDL (Planning Domain Definition
Language) planning in [16]. GOAL focuses on classical single-agent
planning with PDDL, whilst we use HTN.

By extending the AgentSpeak(L) interpreter as proposed in [19],
BDI agents are able to call a classical planner to create new plans
at runtime in order to respond to unforeseen circumstances at
design time. Annotating the expected effects of actions at design
time allows them to be used during the creation of new plans. The
translation between the agent and the planner is very limited due
to the use of classical planning, effectively losing information that
could potentially be used in planning and execution.

There was also pioneering work on RETSINA [32], TAEMS [12],
and Machinetta [29]. Goals are pre-allocated in RETSINA, that is,
there is no goal allocation mechanism. TAEMS and Machinetta
both use scheduling techniques to coordinate tasks with no explicit
planning component. These three approaches were discontinued
and are no longer being developed, which limits their practical
use, particularly their use in new experiments such as the ones
conducted in Section 4.

A Multi-Agent Planning Language (MAPL) is proposed in [6].
Agents expressed in this language interleave planning, acting, sens-
ing, and communication. Their approach is based on sharing knowl-
edge to ensure the synchronous execution of joint plans. Our ap-
proach is aimed towards loosely-coupled domains where agents
can keep their knowledge private.

3 A FRAMEWORK FOR DECENTRALISED
ONLINE MULTI-AGENT PLANNING

DOMAP is a general-purpose domain-independent framework for
multi-agent planning in loosely-coupled MAS. It consists of several
main components: input language — a description of the language
that is used as input for planning and to describe the output plans
that are sent for execution; goal allocation — a mechanism used to
allocate goals to agents; individual planning — the planner to be
used during each agent’s planning phase. In this paper, we focus

on loosely-coupled domains, that is, domains with a low number
of interactions that can cause conflicts. We assume that there are
social laws [30] in place to solve any potential conflict.

Multiple agents interact in an environment to exchange informa-
tion and carry out actions. These agents are part of an organisation
where they can adopt roles, follow norms, and work towards social
plans. A social plan is a structured collection of social goals (specif-
ically a Moise scheme, in the case of JaCaMo). One such social plan
achieves one particular global goal of the system through the work
of various agents trying to achieve the social goals forming the
social plan. In Moise, a scheme has a tree structure and the social
goals at the leaves are pursued by one particular agent individually.
One of our assumptions is that achieving all the leave goals of a
social plan counts as achieving the global goal, although this might
not be true in all domains.

Planning in DOMAP starts in any of the following situations:
(a) new global goals are created for which there are no known
social plans; or (b) the execution of a social plan fails, prompting
the dropping of all current social goals and intentions related to
that social plan. Then, all of the remaining social goals that are still
active in that plan are announced as new social goals to be allocated
to the available agents. Note that because we do not know the cause
of the failure, it is not unreasonable to discard information that was
provided by the designer of the social plan. We extract only the
leave goals from the failed social plan (i.e., a Moise scheme) and
discard all other goal-related information (e.g., roles, cardinalities,
and missions). We assume that we have at our disposal artifacts
that will support runtime coordination to make up for the lack of
coordination that the designer aimed to enforce with the scheme,
which failed.

In our experiments failure would often result from unpredictable
changes in the environment that had an impact on the entire system.
Thus, replanning for all related goals in a social plan was more
reliable than replanning for only the one that failed. DOMAP can
also be used to plan for private goals, which is reduced to single-
agent planning and only uses the individual planner component.
However, our framework does not provide scheduling between
private and social goals; they will be executed in the order that
solutions were originally found.

When called, DOMAP goes through the following steps:

(1) Allocate goals: Agents receive the announcement of new
social goals. A Contract Net Protocol (CNP) mechanism is
used to allocate goals to agents that have the best (estimated)
chance of finding a potential solution.

(2) Translate factored representation interface: Each agent has its
own representation with all the information about the MAS
that it has access to at the time. This is translated into input
for the SHOP2 HTN planner [22].

(3) Agents start their individual planner : Each agent runs an
instance of the SHOP2 planner to search for a plan to achieve
all of the goals it has been allocated. If an agent was not able
to find a solution to an allocated goal, the process returns
to step (1) to reallocate any remaining social goals that have
failed during planning.

(4) Solution translation: After all social goals have been allocated
the solution found by each agent’s planner goes through an
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inverse translator, parsing it into plans and adding them to
their respective agent’s plan library.

(5) Plan execution and coordination: Agents execute their newly
found plans in accordance with the social laws embedded
into the coordination artifacts.

Figure 1 illustrates the steps above, and show the implementa-
tion and runtime of DOMAP2 in JaCaMo. Boxes with observable
properties and operations represent CArtAgO artifacts. Agents that
focus on an artifact receive the observable properties as beliefs
and are able to execute the artifact’s operations (i.e., actions). The
CArtAgO infrastructure artifacts are omitted from the figure to
improve readability. More details about CArtAgO infrastructure
can be found in [23, 25].
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Figure 1: Overview of DOMAP’s implementation in JaCaMo.

To facilitate the translation of the agents’ knowledge we added
one artifact per agent (Artifact a1 ... an ) that contains the infor-
mation and actions that only its associated agent would have. Note,
however, that this is not how MAS are traditionally programmed in
JaCaMo. Normally these things would either be directly represented
within the agent’s code or in a public environment artifact.

3.1 Multi-Agent Factored Representation
Planning input (i.e., domain and problem representation) and output
(i.e., the solution) in DOMAP are regulated by a factored representa-
tion of each agent’s knowledge. Each agent’s factored representa-
tion serves as an interface between the MAS and DOMAP. Agents
use their interface to extract information from plans in their plan
library and from CArtAgO environment artifacts. The correlations
between JaCaMo elements, our factored representation, and SHOP2
syntax are expressed in Table 1.

We use a HTN translator to parse information from the factored
representation interfaces to SHOP2 syntax. Briefly, SHOP2 syntax
consists of a set of operators and a set of methods. Operators (also

2DOMAP’s source code can be found at https://github.com/smart-pucrs/DOMAP

Table 1: Correlations between different representations.

JaCaMo elements factored represent. SHOP2 syntax
observable property belief state
operation action operator
operation’s precond. action’s precond. operator’s precond.
operation’s effects action’s effects operator’s add/delete
plan plan method
plan’s precond. plan’s precond. method’s precond.
Moise leaf goals social goals initial task network

known as primitive tasks) are action descriptors that can be exe-
cuted given some preconditions, causing a list of postconditions
to become true. Methods are non-primitive tasks that impose con-
straints into the domain in order to guide the search for solutions
through task decomposition. A HTN problem description contains
a list of atoms that are true during the initial state of the system, as
well as the initial task network to be decomposed (i.e., the goals).

The translator generates the problem and domain representation
for each agent based on information available in their factored repre-
sentation interface. Environment information is collected from the
CArtAgO artifacts observable properties into initial states. Social
goals are retrieved from their respective announcements. Operators
are created from all of the artifact operations that the agent has ac-
cess to; their preconditions are obtained from any conditional tests
in an artifact operation; and their add and delete lists are acquired
from addition and deletion of observable properties. Methods are
generated from the plans found in that agent’s plan library, with
the preconditions parsed from the context of the plan, and the task
list parsed from actions and subgoals found in the body of the plan.

Although we do not enforce privacy, our agents also do not
violate it unless specifically programmed to do so. Enforcing privacy
would require mechanisms that ensure that an agent cannot access
information that it is not privy to. We also do not impose any
restrictions in agent communication, agents can freely exchange
information via message passing.

3.2 Goal Allocation using CNP
Centralised planners assign goals to agents during the search for a
solution to a planning problem. In a multi-agent setting, this can
constrain the autonomy of the agents and potentially violate their
privacy. By using task allocation protocols the agents themselves
can decide who is better suited to take each goal, then later plan in-
dividually (provided coordination mechanisms are in place), giving
a higher degree of autonomy and privacy during planning.

A high-level overview of DOMAP’s goal allocation is shown
in Algorithm 1. It starts with the initiator announcing a contract
for each outstanding social goal. For implementation purposes, we
used an agent to represent the organisation as the initiator during
goal allocation. The excluded list contains the names of agents that
have previously failed planning for a particular social goal and, as
such, should not receive the same contract again. This list starts
empty and is populated if any reallocation rounds are necessary,
that is, if any agent fails planning for a social goal. Due to space
constraints, Algorithms 1 and 3 are shown from a system’s point
of view, although both implementations are entirely decentralised.
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We provide a domain-independent function that agents can use
to calculate their bid (line 5 in Algorithm 1). This function per-
forms a breadth-first expansion of a social goal using the agent’s
plan library, essentially exploring structures similar to goal-plan
trees [33] in the process. For the purpose of comparing goal-plan
trees between agents we ignore goals and subgoals from the tree.
We also opted for not saving the whole goal-plan tree, instead, we
update the measurements that will be part of the bid and save only
the plans that need to be immediately expanded. This makes the
expansion process faster and uses less memory, as shown in [7].

Algorithm 1: Goal allocation from the system’s point of view.
1 Function allocate (SocialGoals, Agents, excluded, deadline)
2 foreach aдent ∈∈∈ Aдents do
3 foreach socialдoal ∈∈∈ SocialGoals do
4 if (agent, socialgoal) <<< excluded then
5 bid_value← expand (socialgoal, deadline);
6 bid (agent, socialgoal, bid_value);

During the expansion of a social goal our algorithm ignores the
preconditions of plans, that is, we do not apply an action theory.
This would involve performing lookahead, which is essentially
planning, and would have a high computational cost. Instead, we
opted for a quick expansion of the plan library by selecting all plans
that are related to the social goal while ignoring the context of
these plans. This relaxation allows for quick computation of the
statistics for the goal allocation phase, sacrificing allocation quality
for faster allocation times.

Agents place a multi-valued bid, a 5-tuple containing the follow-
ing criteria: recursion (0 or 1), total number of actions expanded,
total number of plans expanded, and maximum tree depth and
width found while expanding their goal-plan tree. The “recursion”
criteria indicates whether any recursive plan was expanded dur-
ing the bid calculation for a social goal. Although we considered
limiting or ignoring these recursive plans, we found out from our
experiments that this can be a valuable information to have, and
the disadvantage of infinite loops are surpassed by using deadlines
to prevent initiators to wait indefinitely for bids. If an agent did not
expand any recursive plan, then this indicates that the agent may
potentially solve the social goal in less steps than agents with recur-
sive plans. These criteria are used by the initiator to allocate social
goals to agents with the best (according to the heuristic chosen for
that application) bids. Our algorithm for domain-independent bid
calculation is shown in Algorithm 2.

The expansion starts with the social goal at the root of the tree.
The agent uses a relevant_plans function that returns all plans in
the agent’s plan library that can be used to achieve that particular
goal. If the set of such Plans is empty, then the agent is not eligi-
ble to bid for this contract. Otherwise, the following statistics are
initialised: rec is the presence of recursion; n_actions is the total
number of actions found in all of the plans that were expanded;
n_plans is the total number of plans that were expanded;m_depth
is the maximum depth of the tree; andm_width is the maximum
width of the tree, which initially receives the cardinality of the

Plans set, indicating the initial width of the tree. The Subplans set
is initially empty. Parameter deadline is the maximum time after
the start of the expansion that the algorithm can run for. It is ex-
pected that when calling the expand function, the deadline given
for the algorithm is slightly lower than the CNP deadline, so that
the agent has time to communicate its bid to the initiator.

Algorithm 2: Breadth-first expansion of a social goal.
1 Function expand (goal, deadline)
2 Plans ← relevant_plans (дoal);
3 if Plans = ∅ then
4 return “not eliдible”;
5 rec, n_actions, n_plans, m_depth ← 0;
6 m_width ← |Plans |;
7 Subplans ← ∅;
8 while there exists {plan} ∈ Plans do
9 if time() ≥ deadline then

10 return
(rec, n_actions, n_plans, m_depth, m_width);

11 if {plan} is recursive then
12 rec ← 1;
13 n_actions ← n_actions + count_actions (plan);
14 n_plans ← n_plans + 1;
15 Goals ← дoals (plan);
16 Subplans ← Subplans ∪ relevant_plans (Goals);
17 Plans ← Plans \ {plan};
18 if Plans = ∅ then
19 if |Subplans | > m_width then
20 m_width ← |Subplans |;
21 m_depth ←m_depth + 1;
22 Plans ← Subplans;
23 Subplans ← ∅;

24 return (rec, n_actions, n_plans, m_depth, m_width);

While there remains any plan in the Plans set: we check if the
plan has recursion; increase the counter of total plans expanded;
add the number of actions found in the body of the plan to the total
number of actions; and assign all the subgoals found in the body of
the plan to the Goals set. Then, the agent uses the relevant_plans
function to get all relevant plans, but now for each of the subgoals
in the Goals set. The plan that was expanded is removed from the
Plans set. If this was the last plan and the Plans set is now empty,
then the agent checks if the cardinality of the Subplans set is higher
than ourm_width, in which case the cardinality of the Subplans set
becomes the newmaximumwidth. Then, we increase the maximum
depth counter and move the Subplans set to the Plans set. When
both sets are empty, or the deadline is past, the algorithm returns
the multi-valued bid with the information collected during the
expansion of the goal-plan tree for the given social goal.

We also allow concurrent contract net announcement and bid-
ding. To avoid situations where an agent could win all social goals,
we added priorities to the bid selection heuristics used by initiators.
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The initiator awards contracts as follows: after bidding has finished
for all active contract nets, the initiator first prioritises processing
the results of contracts that had agents not eligible to accomplish
the task, since contracts that had valid bids from all agents are eas-
ier to allocate and result in a more even distribution of goals. The
first bidding attribute to be processed is recursion, giving priority
to agents that did not expand any recursive plans. If there are any
such agents, then the contract is awarded to the agent with the
lowest total number of actions. Otherwise, the contract goes to the
agent with the higher maximum tree width. In both cases, agents
that have not been awarded any social goal yet are prioritised, and
in case of any ties, the first bid that was processed wins.

3.3 Individual Planning with SHOP2
In Algorithm 3, we show the high-level function for individual
planning that highlights the reallocation mechanism of DOMAP. If
the individual planning of one (or more) allocated social goal(s) fail,
the agent sends the respective social goal(s) back to the initiator.
When all agents finish their individual planning, the initiator will
either start a new round of goal allocation and individual planning
(if it received at least one social goal back), or allow agents to start
their execution (if no social goals were received). The name of
agents who have failed planning are added to a list called excluded,
which is sent together with the social goal when it is announced
again in a new allocation round. The number of reallocation rounds
depends on the efficiency of the bid selection heuristics that are
being used and how restrictive the domain’s goals are. For example,
goals that can only be completed by a select handful of agents can
cause a negative impact in performance, since more reallocation
rounds may be required (see the Rovers experiments in Section 4.2).

Algorithm 3: Planning from the system’s point of view.
1 Function plan (AllocatedGoals, Agents, excluded, deadline)
2 foreach aдent ∈ Aдents do
3 start_HTN_planner (agent, AllocatedGoals);
4 if planning_failed (agent, AllocatedGoals) then
5 foreach socialдoal ∈ AllocatedGoals do
6 excluded← excluded ∪ {(agent, socialgoal)};

7 if excluded , ∅ then
8 allocate (AllocatedGoals, Agents, excluded, deadline);

Execution of the solution starts only when all agents who were
awarded social goals finish their individual planning. This includes
any reallocation rounds that might be necessary. The newly gener-
ated plans are translated into ground plans that are added to the
respective agent’s plan library.

4 EVALUATION
In our experiments we implemented coordination at runtime to be
enforced in two different cases: joint plans involvingmultiple agents
by using Moise schemes to define plans that have to be executed in
parallel; or plans where an agent’s actions can cause conflicts in
other agents’ plans. To solve the latter, we used the following social
law: when two or more agents are trying to execute conflicting

actions in the same time step, one of the agents is arbitrarily chosen
to continue its execution, while all remaining involved agents hold
their actions (e.g., do nothing) until the next time step. This process
continues until there are no longer any conflicting actions trying
to be executed in the same time step. These mechanisms were
sufficient for our loosely-coupled scenarios, but tightly-coupled
domains may require more sophisticated coordination mechanisms.

To the best of our knowledge, DOMAP is the only recently de-
veloped multi-agent online planner that is able to take advantage
of the different programming abstractions in MAS (agent, envi-
ronment, and organisation). Thus, to evaluate our framework we
isolated the online components of DOMAP and compared against
four state-of-the-art multi-agent offline planners, all of which took
part in the 2015 Competition of Distributed and Multi-Agent Plan-
ners (CoDMAP-15) [35]. SIW+ -then-BFS(f) [20] (SIW) was the
top performing planner of CoDMAP-15 with regards to planning
time, out of 17 planners. CMAP-t [5] obtained second place, ADP-
legacy [10, 11] third place, and PMR [18] eighth place.

Although DOMAP is the only one to use HTN rather than PDDL,
we first created PDDL descriptions for all of our experiments and
then translated them into suitable MAS that were later parsed to
HTN during DOMAP’s planning. This way there is no additional
domain information being provided to SHOP2. We made sure that
the HTN encoding matched the PDDL encoding to be able to pro-
vide a fair comparison, guaranteeing that the extra expressiveness
of HTN would not cause any impact on the results. All HTN and
PDDL encodings for our experiments can be found in the DOMAP
repository at ⟨https://github.com/smart-pucrs/DOMAP⟩.

We created 10 problem variations for each scenario increasing
the number of agents, goals, and initial states. We gave all planners
a time limit of 60 minutes for each problem. We ran each of the
five planners 20 times, resulting in a total of 3000 executions. Our
measurements include: average time spent planning, average plan
size, parallelisation, and average time spent executing the generated
plans. Parallelisation is defined by the variance of the plan size of
each individual agent, thus indicating how well the actions are
spread across all agents (i.e., if the loads are balanced). To obtain
execution time measurements we translated the solutions found by
each planner into plans to be executed in a MAS in JaCaMo. All
actions had the same execution time of 100 milliseconds.

Our experiments in this paperweremade to evaluate theDOMAP
framework as a whole, and not the individual planner we chose to
use. Previous experiments [8] have shown that running SHOP2 by
itself has much worse performance results than running it within
the DOMAP framework.

The computer used to run the experiments has the following
specification: Intel Xeon Processor E5645 (12M Cache, 2.40 GHz,
6 cores, 12 threads), 32 GB of memory, Ubuntu 16.04 operating
system, and Java 8.

4.1 Petrobras Scenario
The Petrobras domain [34] is targeted at modelling planning and
scheduling of ship operations in petroleum platforms and ports.
The problem to be solved is the transportation and delivery of cargo
from ports to platforms in the ocean, respecting any constraints
that are imposed such as vessel load and fuel capacity. The goal
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Figure 2: Results of experiments in the Petrobras domain.

is to optimise execution cost of the resulting schedule. The first
problem has 4 vessels (agents) and 4 cargo (goals). Each subsequent
problem adds one agent and one goal, thus, the last problem has 13
vessels and 13 cargo.

Results for time spent in planning are shown in Figure 2a. SIW
scales poorly with the increase in the number of agents and goals.
The other planners achieve comparable results. ADP-legacy and
CMAP-t are not shown in problem 1 (p01) in all graphs of the
Petrobras domain results because they had an error while parsing
this problem, and thus, could not find any solution.

We can observe the plan size results in Figure 2b. SIW had the
worst plan lengths across all problems in the Petrobras domain.
Parallelism results are shown in Figure 2c. SIWmanages to compete
directly with DOMAP, even surpassing DOMAP in some problems.

The impact of parallelism is even more apparent with the ex-
ecution time results in Figure 2d. The planners that had the best
parallelism, SIW and DOMAP, achieve the faster execution times.
The combination of planning and execution times for the last five
problems is shown in Figure 3.
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Figure 3: Planning and execution in the Petrobras domain.

Regarding parallelism, DOMAP achieves an impressive variance
of zero in problems 1 and 3 in at least one of the runs. This indicates
optimal goal allocation in regards to fairness with tasks distributed
evenly across all agents. This is reflected in the execution results,
which when combined with the planning time results show that
DOMAP outperforms all other planners in the last four problems.

4.2 Rovers Scenario
Rovers is a classical domain in automated planning that is inspired
by NASA exploratory space missions on Mars. Rovers are vehicles
equipped with different capabilities to explore Mars’ surface col-
lecting samples and taking pictures of objectives. All data collected
is then transmitted back to a lander spacecraft. Problem 1 starts
with 4 agents and 8 goals, and each problem after it adds 2 agents
and 4 goals, hence Problem 10 has 22 agents and 44 goals.

In Figure 4a we show the results for average planning time in the
Rovers domain. Time in seconds is on the y-axis and in logarithmic
scale to improve readability. The first five problems have a slow
increase in planning time across all planners, but they all have simi-
lar performances with differences in the order of milliseconds. One
of the 20 runs from DOMAP for the first, fifth, and sixth problems
suffered from a high number of reallocation rounds due to only a
few agents being able to solve some of the goals. This increased the
average planning time, but other runs were much faster.

SIW could not solve problem 8 under the time limit of 60 minutes.
ADP-legacy had some of the best times for the first six problems,
but it was followed closely by most other planners. Once again,
SIW scales poorly when increasing the number of agents and goals
in each problem. In the last four problems ADP-legacy and PMR
performance drop considerably; CMAP-t stays competitive with
DOMAP, but does not seem to scale quite as well.
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Figure 4: Results of experiments in the Rovers domain.

Plan size results are shown in Figure 4b. DOMAP has good plan
sizes in problems 1–5, but in problems 6, 9, and 10 DOMAP’s plan
length scales very poorly; the other planners remain competitive
across all problems. However, in Figure 4c, DOMAP achieves the
best performance in regards to parallelism.

The time spent in execution is shown in Figure 4d. DOMAP once
again shows excellent scalability and the best performance overall;
other planners are inconsistent and their execution times fluctuate
depending on the problem.

In Figure 5, DOMAP has the best results when combining plan-
ning and execution. SIW is not included because its total time was
much higher than other planners and would affect readability.
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Figure 5: Planning and execution in the Rovers domain.

This is not a particularly good scenario for DOMAP. Agents are
very homogeneous, their capabilities often overlap, and many goals
can only be solvable by a handful of agents due to each rover having
their own traversable paths. Problems 5 and 6 had the highest
planning time for DOMAP, since all 20 runs in both problems
required reallocation; problem 5 varied between 2 and 3 rounds of

reallocation, and problem 6 between 3 and 4 rounds. Regardless of
this disadvantage, DOMAP outperforms other planners in the last
four problems, even though there were some runs where DOMAP
had to reallocate goals and replan a few times.

4.3 Floods Scenario
The Floods domain [9] consists of a team of heterogeneous au-
tonomous robots (unmanned aerial, ground, and surface vehicles)
that are dispatched to monitor flooding activity and execute search
and rescue operations within a geographical region divided into
several interconnected areas. The Centre for Disaster Management
(CDM) establishes bases of operation in the region that is being
monitored. Problem 1 starts with 9 agents (3 of each role), 15 areas,
2 CDMs, and 9 goals. Each subsequent problem added 3 agents (1 of
each type), 5 areas, and 3 goals. Every other problem had one CDM
added. The last problem, p10, has 36 agents, 60 areas, 6 CDMs, and
36 goals.

Results for planning time are shown in Figure 6a. The y-axis
is in logarithmic scale to improve readability. SIW had very large
planning times, up to an average of 3135 seconds for problem 10.
CMAP-t has lower planning times for most of the problems, except
for the largest problems, where DOMAP performs best.

Plan size is shown in Figure 6b. CMAP-t, ADP-legacy, and PMR
found the lowest cost plans. PMR does much worse on problems
6 and 9, when it has to use a second planner, but it is able to find
the lowest cost plan for the largest problem (p10). Results of plan
length were much more spread out compared to the results of plan
length in the previous domains, with each planner generating the
lowest cost plan for at least one problem.

DOMAP’s goal allocation, of prioritising fairness among agents
pays off when we consider concurrent actions (see Figure 6c). Our
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Figure 6: Results of experiments in the Floods domain.

results show that DOMAP has excellent parallel solutions, domi-
nating other planners on most of the problems.

Time spent in execution is shown in Figure 6d. DOMAP is the
only planner that scales reliably due to its good use of fairness dur-
ing goal allocation. Even though DOMAP had some of the longest
plans, because it allocated social goals as evenly as possible it still
managed to finish execution faster than all other planners.
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Figure 7: Planning and execution in the Floods domain.

When combining planning and execution (Figure 7) DOMAP
scales well and obtains the best results; CMAP-t, for the most part,
is able to follow closely in some problems; the other planners do not
perform as well. We removed SIW for readability as its planning
times for these problems were too high.

5 CONCLUSION
We described the DOMAP framework and its implementation in
the JaCaMo MAS development platform. Our results show that
DOMAP scales rather well, provides excellent parallel solutions,
and is the fastest multi-agent planner for the largest problems. The

results we obtained indicate that allocating goals before planning
(only SIW does not do so) can lead to significant improvement with
regards to planning time. Moreover, the DOMAP, CMAP-t, and
PMR planners take advantage of multiple cores by decentralising
planning, which also led to faster planning times.

Our experiments have shown that when concurrent actions are
possible shorter plan lengths do not result in lower execution times,
and that fairness can be as important as the overall plan length in
some multi-agent settings. While most other multi-agent planners
favour the makespan metric (largest plan size between all agents),
we have shown that our parallelism metric is a better indicator
for execution performance. Our fairness heuristic for bid selection
proved to be very efficient in regards to execution time.

One of our goals with DOMAP is to turn it into a general-purpose
domain-independent framework. As such, we designed DOMAP
to be an open platform where other alternatives for modular com-
ponents can be used by swapping the main components, allow-
ing the developer to choose the approach that is more suited for
their particular problem. This modularity would allows us to add
a more complex coordination mechanism for dealing with tightly-
coupled domains, while also being able to revert back to a simpler
mechanism to remove any overhead for solving loosely-coupled
domains. Future work also include the automatic generation of
a Moise scheme to coordinate and activate the plans found by
DOMAP during planning. Finally, we aim to experiment with more
complex multi-agent domains.
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